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Abstract: End User (EU) architectures for smart environments aim to enable end users to create and deploy software 
applications for their smart spaces. EU Software Product Lines (SPL) extend EU architectures for smart 
environments with product line support to promote reuse and software application portability.  This paper 
describes a meta-modeling approach for developing EU SPLs for smart environments. We present a meta-
model as the basis for developing a framework for creating EU SPLs and deriving EU applications. The meta-
model is composed of platform independent and platform specific meta-models. This paper describes in detail 
both parts of the meta-model and discusses the relationships and mappings between them. This paper also 
presents the XANA EU SPL framework that was developed using the proposed platform specific meta-model 
and discusses XANA’s product line creation and application derivation process. 

1 INTRODUCTION 

Smart environments, also called smart spaces, are 
environments equipped with visual and audio sensing 
systems, pervasive devices, sensors, and networks 
that can perceive and react to people, sense on-going 
human activities and respond to them (Kindberg and 
Fox, 2002). Several End User (EU) architectures have 
been proposed to assist end users to create 
applications for their smart environments. EU 
architectures act as the middleware between software 
applications and devices deployed in the smart space 
while providing friendly user interfaces for end users 
to create software applications. Team Computing 
(TeC) (Sousa et al., 2010) and Puzzle (Danado and 
Paternò, 2012) are examples of EU architectures for 
smart environments.  

Even though EU architectures enable end users to 
create applications for their spaces, not all smart 
environments are configured the same way. 
Furthermore device capabilities vary across different 
smart environments. This causes end users to have to 
create similar applications from scratch for different 
environments. Software Product Line (SPL) methods 
address software reuse by explicitly analysing and 
developing the common and variable parts of a family 
of systems (Gomaa, 2005). However, existing SPL 
methods target software engineers instead of end 

users and their processes are rigid. In an end user 
environment, the process is more agile and end users 
are not familiar with SPL methods. Furthermore, 
product derivation in a traditional SPL environment 
is based on feature selection and products must be 
compliant with the SPL architecture. End user 
environments vary and are not guaranteed to match 
the SPL architecture.  

EU SPLs for smart spaces provide a lightweight 
approach for SPL development while addressing the 
dynamic nature of these environments. In particular, 
EU SPLs extend EU architectures to create a family 
of applications that are then customized for different 
smart environments (Tzeremes and Gomaa, 2016). 
Figure 1 shows the EU SPL process.  SPL designers 
create EU SPLs and end users derive applications for 
their smart spaces. SPL designers are technical end 
users or domain experts that develop software 
applications either for personal or commercial 
purposes. End users are ordinary users that want to 
create applications for their smart spaces. The XANA 
EU SPL framework provides an example of tool 
support for the implementation of EU SPLs. 

This research investigates the extension of EU 
architecture meta-models for supporting the creation 
of EU SPLs. In detail, this paper describes a meta-
modeling approach and framework for creating EU 
SPLs for smart environments. Our approach provides 
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platform independent and platform specific EU SPL 
modeling support. In the platform independent phase, 
EU SPL engineers create platform independent 
models that can be tailored to different EU 
architectures through an application derivation 
process. In the platform specific phase, EU SPL 
engineers create platform specific models that are 
bound to specific EU platforms. Platform specific 
models provide an additional capability, since they 
have access to platform specific functionality that is 
not available to the platform independent models. 

 

 

Figure 1: End User Software Product Line Process. 

This paper is organized as follows. Section 2 
discusses related work that this research builds on. 
Section 3 describes the overall EU SPL meta-
modeling approach for smart environments. Sections 
4 and 5 describe in detail the platform specific and 
platform independent meta-models respectively. 
Section 6 describes the XANA EU SPL process 
flows. Finally, section 7 provides conclusions and 
discusses future work. 

2 RELATED WORK 

Several middleware architectures have been proposed 
for implementing smart environments (Whitmore et 
al., 2015). Some of those initiatives are the ROS 
(Quigley et al., 2009), JCAF (Bardram, 2005) and the 
Smart Products (Mühlhäuser, 2008) projects. EU 
architectures extend middleware architectures by 
adding end user support. They provide user friendly 
interfaces for end users to be able to develop 
programs for their spaces. Some of the most 
important EU architectures are Puzzle (Danado and 
Paternò, 2012), PIP (Chin et al., 2010), FedNet 
(Kawsar et al., 2008) and TeC. This research presents 
an approach for extending EU architectures for smart 
spaces with product line concepts to promote reuse 
and application portability. 

Model  Driven  Architecture  (MDA)  is a software 

development framework based on automatic 
transformations of models (Debnath et al., 2008). 
MDA separates business and application logic from 
underlying platform technology, distinguishing the 
following models: Computation Independent Model 
(CIM), Platform Independent Model (PIM), Platform 
Specific Model (PSM) and code. The Common 
Variability Language (CVL) adds variability to MDA 
models. In particular CVL, is a Domain Specific 
Language (DSL) for modeling variability in models 
that are based on Meta Object Facility (MOF) 
standard defined by the Object Management Group 
(OMG) (Reinhartz-Berger et al., 2014). Our approach 
is influenced by the PSM, PIM and CVL concepts but 
was expanded to end user development for smart 
spaces. 

3 OVERVIEW OF THE EU SPL 
META-MODEL FOR SMART 
ENVIRONMENTS 

There are several common characteristics across EU 
architectures for smart spaces. For example all event 
driven EU architectures consist of components that 
are abstractions of devices, sensors, actuators, 
application, services etc. and connections between the 
components to create application logic. There is also 
significant variability between EU architectures. For 
example some EU architectures account for user-
context, location, temporal relationships while others 
do not. There is commonality and variability across 
EU SPLs for smart spaces. For example, a feature 
implementation of one EU architecture can be 
significantly different from one architecture to 
another. To capture the commonality and variability 
of EU architectures and EU SPLs, we propose the EU 
SPL meta-model. Figure 2 shows the EU SPL meta-
model for smart environments. This meta-model 
consists of platform independent and platform 
specific meta-models. The platform independent 
meta-model is composed of the Platform Independent 
Product Line (PIPL) and the Platform Independent 
Product (PIP) meta-models. PIPL captures product 
line metadata for creating software product lines for 
smart environments, in particular the product line 
features and the component architecture that 
implements each feature. The component architecture 
describes the smart environment components, 
connectors and other artefacts that are needed for the 
feature implementation. The PIP meta-model 
describes the structure of software applications that 
can be derived from the PIPL model. To derive PIP 
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models application engineers select product line 
features from the PIPL model. The selected features, 
combined with the application component 
architecture are used to create the PIP. Both PIPL and 
PIP models are platform independent models that can 
be instantiated for different platforms. 
 

 

Figure 2: End User SPL Meta-model. 

The platform specific meta-model consists of the 
Platform Specific Product Line (PSPL) and the 
Platform Specific Product (PSP) meta-models. The 
PSPL meta-model is used for creating EU SPL 
models for specific EU applications on specific 
platforms. Similar to the PIPL meta-model, the PSPL 
meta-model captures the product line features and 
their inter-dependencies, in addition to the component 
architecture that implements each feature. The PSPL 
meta-model is platform specific. PSPL models are 
derived from PIPL models. The PSP meta-model 
captures the application architecture. A shown in 
Figure 2, PSP models can be derived from PSPL 
models or alternatively from PIP models.  

There is a one-to-many relationship between the 
platform independent and the platform specific 
models. For instance, multiple PSPL models for 
different platforms can be created from the PIPL 
model. Product line engineers can model platform 
independent EU SPLs using the PIPL meta-model 
that can be converted to PSPL models for different 
platforms. Similarly, many PSP models can be 
generated from the PIP model. Application engineers 
can generate different PIP models that can then be 
converted to PSP models for different platforms.  

The PIPL to PIP and PSPL to PSP model 
relationships are also one-to-many. This implies that 
several PIP models can be created from one PIPL 
model. Although multiple PSP models can be derived 
from one PSPL model, the PSPL and PSP models 
need to be for the same target platform. For example 
a PSPL model designed for the TeC EU architecture 
can generate PSP models that apply only to the TeC 
platform. The following sections of this paper 
describe the platform specific and platform 
independent meta-models. 

4 PLATFORM SPECIFIC 
META-MODELS 

This section describes the platform specific meta-
models, in particular the PSL and PSPL meta-models 
for the Team Computing (TeC) EU architecture, 
before describing how they can be generalized into 
platform independent meta-models in Section 4. In 
particular, section 4.1 introduces TeC and presents its 
application (PSP) meta-model, section 4.2 discusses 
how we extended the TeC application meta-model to 
create the TeC PSPL.  

4.1 Platform Specific Product for TeC 

Team Computing (TeC) is an event driven generic 
architectural style that enables end users to design and 
deploy personalized software for their spaces. It 
provides a diagrammatic language for application 
creation of a collection of activities that work together 
to achieve a common goal. TeC applications, also 
called Teams, have no central control: elements play 
their roles autonomously and their behavior is 
emergent (Sousa et al., 2010). 

Figure 3 shows the application meta-model for 
TeC. In detail, the Team Design entity captures 
information about TeC teams. Team designs can be 
deployed to zero-or-more locations. For example one 
Team Design might apply to devices available to the 
family room of a smart home versus another one that 
applies to the entire house. A team design is realized 
by one-or-more Activity Sheets. Activities Sheets are 
software components, devices, and humans operating 
in ubiquitous computing environments. Activities 
Sheets have zero-or-more Inputs and Outputs. Inputs 
are component interfaces for receiving data. Outputs 
are also component interfaces but they are used for 
sending data. Outputs are bound by triggering 
conditions that when evaluated to true causes the 
output to be sent. In TeC, device connectivity can be 
achieved by having outputs from one Activity Sheet 
sent to inputs of another Activity Sheet. Inputs and 
Outputs can contain zero-or-more Payloads. Payloads 
capture data that are in the form of key-value pairs 
that are sent from Outputs to Inputs. The Activity 
Connector entity is responsible for capturing the 
Activity Sheet’s connectivity within a Team Design.  
The Activity Connector is composed by zero-or-more 
Inputs and Outputs. 
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Figure 3: TeC Application Meta-model (PSP). 

Figure 4 shows the Team Design of a “Flood 
Alert” team. The “Flood Alert” Team Design is 
composed of a flood detector and a Phone TeC 
Activity Sheets. The flood detector Activity Sheet 
represent moisture sensors deployed in the 
environment and the Phone Activity Sheet a house 
phone that supports landline messaging. The flood 
detector Activity Sheet has an Output called “alert” 
that sends flood notifications to the “text” Input of the 
Phone Activity Sheet. The Activity Connector entity 
for the Team Design is composed of the “alert” 
Output and the “text” Input. The “alert” output has a 
triggering condition that is evaluated to true when the 
flood detector detects moisture. When moisture is 
detected, “alert” sends two Payloads to the “text” 
input. The keys of the payloads are phone_number 
and message. The Phone Activity Sheet will interpret 
the phone_number payload value as the number to 
text and the message payload value as the contents of 
the message to send. An Activity Sheet can have zero-
or-more Activity Parameters. Activity Parameters 
capture internal parameters of Activity Sheets. An 
example of an Activity Parameter in the “Flood 
Alert” example can be moisture threshold values for 
the flood detector Activity Sheet. When the moisture 
threshold values are exceeded then the sensor can 
report moisture. 

 

 

Figure 4: Flood Alert – TeC Team. 

4.2 Platform Specific Product Line for 
TeC 

We extended the TeC PSP model with product line 
support to create the TeC PSPL meta-model shown in 
Figure 5. The objective of the TeC PSPL meta-model 
is to be able to derive multiple TeC PSP models from 
one TeC PSPL model. The TeC PSPL meta-model is 
composed of the feature and the component meta-
models. The feature meta-model is platform 
independent and describes the relationship of the EU 
SPL with features and the dependency among 
features. The component meta-model is specific to 
the TeC platform and describes the relationships 
between product line features and the TeC Product 
Line component architecture that realizes each 
feature.  

As shown in Figure 5, an EU SPL is composed of 
one or more features. Each feature describes a 
specific functionality that the EU SPL supports. 
Features can be common, optional, alternative, 
default, or parameterized. Common features are 
features that exist in all products derived from the 
product line. Optional features are features that can be 
found in only some products derived from the product 
line. Alternative features are features that are 
mutually exclusive. Default features are one of a 
group of alternative features that the EU SPL designer 
has pre-selected for product derivation. 
Parameterized features are features that can be 
parameterized by end users during application 
derivation. Features can belong to feature groups. 
Feature groups can be thought as a set of features that 
share a common set of constraints. The Feature 
Dependency entity captures the dependency among 
features. A feature condition is used to identify 
whether a given feature is selected or not in a derived 
architecture. 
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Figure 5: TeC Platform Specific Product Line (PSPL) Meta-model. 

The TeC PL component architecture extends the 
TeC application meta-model with product line 
support. In particular, EU SPL features are realised 
by one-or-more PL Activity Sheets and are connected 
to zero-or-more PL Activity Connectors. PL Activity 
Sheets can be common, optional or variant. Common 
PL Activity Sheets are available to all PSPs derived 
from the PSPL. Optional PL Activity Sheets might be 
available only to some PSPs. Variant PL Activity 
Sheets are mutually exclusive PL Activity Sheets. PL 
Activity Sheets can have zero-or-more PL Inputs and 
PL Outputs. PL Inputs and PL Outputs can have zero-
or-more PL Payloads. PL Activity Connectors can 
also be common, optional or variant. A feature is 
parameterized by zero-or-more PL Activity 
Parameters. Finally, features can be deployed in zero-
or-more PL Locations. 

The application derivation process from the TeC 
PSPL to the PSP model involves a set of model 
conversions. The PSPL component model for each 
derived feature is converted to the PSP component 
model and is added to the TeC application 
architecture. PL Activity Sheets in the PSPL model 
are converted to Activity Sheets in the PSP model. 

Similarly, PL Activity Connectors are converted to 
Activity Connectors, PL Activity Parameters are 
converted to Activity Parameters and PL Locations 
are converted to Location entities. 

5 PLATFORM INDEPENDENT 
META-MODELS 

We further extended the PSPL and PSP meta-models 
to create the Platform Independent Product Line 
(PIPL) and the Platform Independent Product (PIP) 
meta-models, which do not depend on any particular 
EU platform. The platform independent models apply 
to all EU architectures that support component and 
connector architectures. 

5.1 Platform Independent Product 
Line (PIPL) 

Similar to the PSPL, the PIPL meta-model is 
composed of the feature and the component meta-
models.  The  feature  meta-model  is  the  same as the 
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Figure 6: Platform Independent Product Line (PIPL) Meta-model. 

PSPL shown on Figure 5. The component meta-
model is designed to support common component 
connector functionality across different EU 
architectures. Figure 6 shows the PIPL component 
meta-model. In particular, each feature in the PIPL is 
realised by one-or-more PL Components, is 
connected by zero-or-more PL Component 
Connectors, and is parameterized by zero-or-more PL 
Component Parameters. PL Components are similar 
to PL Activity Sheets of the TeC PSPL. PL 
Components are generic components that represent 
software and hardware entities that are part of the 
smart environment. PL Components can be common, 
optional or variant and they have zero-or-more PL 
Inputs and PL Outputs. PL Component Connectors 
indicate how PL Components are connected. PL 
Component Connectors can be common, optional or 
variant. PL Component Parameters are used to 
parameterize PL Components.  

5.2 Platform Independent Product 
(PIP) 

The Platform Independent Product (PIP) meta-model 
describes the structure of models derived from PIPL 
models. Figure 7 shows the PIP meta-model. End user 
applications in the PIP meta-model are represented by 
the Product entity in PIP. Products are members of the 
product line. The Product is composed of one-or-
more Components, is connected by zero-or-more 
Component Connectors, and is configured by zero-or-
more Component Parameters. Components can have 
zero-or-more inputs to receive input and zero-or-
more outputs to send data. 

To  derive  a  PIP  model  from  PIPL  features  the 

following conversion must occur: 1) Each PL 
Component that is part of the feature realization must 
be converted to a Component in the PIP model 2) PL 
Component Connectors must be converted to 
Component Connectors and 3) PL Component 
Parameters must be converted to Component 
Parameters in the PIP model. 

6 XANA EU SPL FRAMEWORK 

To validate our approach we used the proposed EU 
SPL meta-models to implement the XANA EU SPL 
framework for smart spaces. The XANA framework 
enables EU SPL designers to create EU SPLs and end 
users to derive applications for their smart spaces. 
Figure 8 shows XANA’s product line creation and 
application derivation process flows.  

XANA is a platform specific EU SPL framework 
for TeC. The EU SPL is created using the TeC PSPL 
meta-model and derived applications (PSPs) are TeC 
application models that can be deployed to different 
TeC environments. To validate this research, we 
implemented the XANA prototype, developed EU 
SPLs for smart spaces, and deployed derived 
applications to the TeC Android simulator. 

6.1 EU SPL Creation 

The uppermost part of Figure 8 shows the EU SPL 
creation process in XANA. During product line 
creation, EU SPL designers define the product line 
features and create the product line architecture. The 
XANA prototype SPL creation user interface is 
divided  into  four  sections: 1) Feature Model, 2) Fea-
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Figure 7: Platform Independent Product (PIP) Meta-model. 

ture Component Architecture Editor 3) Component 
Selector and 4) Feature Parameter table.  

The Feature Model organizes product line features 
in a tree structure. Each feature is decorated with a 
feature symbol to indicate the feature type. The 
Feature Component Architecture Editor captures the 
component and connector architecture that realizes 
each feature. The component selector section lists the 
available TeC components that can be used to realize 
a feature. The Parameter table captures connection 
details between connected TeC components.  

After SPL designers complete creating the 
product line features they submit the EU SPL to the 
XANA’s SPL Creation subsystem for storage. The 
SPL Creation subsystem stores the XANA EU SPL 
visual representation shown on step “1.1” in Figure 8. 
Then the SPL Creation subsystem transforms the EU 
SPL visual representation to a Java object structure 
representing the product line. The Java objects are 
serialized to JSON objects in the file system for long 
term storage shown on step “1.2” in Figure 8. Both 
the Java and JSON representations are based on the 
TeC PSPL meta-model shown in Figure 5.  

6.2 Application Derivation 

The bottom part of Figure 8 shows the EU application 
derivation process in XANA. During application 
derivation, end users are presented with the end user 
view of the feature model and the feature parameter 
table. End users, based on their requirements, select 
features from the feature model, configure the feature 
parameter table, and submit their selections to the 
XANA’s Application Derivation subsystem as shown 
on step “2 Feature Selection” in Figure 8. 

The Application Derivation subsystem extracts 
the component architecture of the selected features 
from the PSPL shown on step “2.1” in Figure 8 and 
composes the TeC App (PSP). The TeC App is 

serialized to JSON in the file system shown on step 
“2.2” in Figure 8. The Application Derivation 
subsystem distributes the JSON representation of the 
TeC App to the target TeC platform shown on step 
“2.3” in Figure 8. The TeC platform will store the 
TeC App as shown on step “2.4” in Figure 8 and 
deploy it to the smart space devices. 
 

 

Figure 8: XANA EU SPL Creation and Application 
Derivation Process flow. 

7 CONCLUSIONS 

As EU architectures for smart spaces expand, end 
users will be faced with the challenge of having to 
develop the same types of applications for different 
environments. EU SPLs for smart spaces enable end 
users to derive and port software applications 
developed for individual spaces. In this paper we 
presented an EU SPL meta-model for creating end 
user product lines. The EU SPL meta-model is 
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composed of platform independent and platform 
specific meta-models. The platform specific meta-
model was discussed in the context of the TeC EU 
architecture. The platform independent meta-model is 
a meta-model for creating product lines for EU 
applications that support component and connector 
architecture. The paper also presented the XANA EU 
SPL framework, which is based on the EU SPL 
platform specific meta-model, that was developed to 
validate this work.  

The benefits of our approach are a) the EU SPL 
meta-model is used to add product line support to end 
user architectures defined for smart spaces b) product 
lines are designed to be platform independent and are 
adapted for different platforms. Currently we are 
investigating expanding the platform independent 
product line meta-model to directly derive 
applications for different platforms. Furthermore, 
additional work is needed in the evolution and 
validation of end user product lines. In particular, 
processes need to be defined to handle EU SPL 
evolution that involve new requirements, defect 
reporting, and product line versioning etc. In addition, 
a validation framework needs to be investigated for 
verifying the end user product lines. 
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