An Empirical Evaluation of AXIOM as an Approach to Cross-platform
Mobile Application Development

Christopher Jones and Xiaoping Jia
DePaul University, College of Computing and Digital Media, 243 S. Wabash Ave, 60604, Chicago, IL, U.S.A.

Keywords:

Abstract:

Model-driven Development, Mobile Development, Domain-specific Modeling Languages.

AXIOM is a domain-specific modeling language for cross-platform mobile applications. AXIOM is based

on more general techniques such as Model-Driven Architecture and generates native code for the i0S and
Android platforms. Previous small-scale quantitative experiments suggested that AXIOM had the potential to
provide significant productivity benefits. We have since conducted a limited set of more complex, mid-scale
experiments and analyzed AXIOM’s capabilities using both quantitative and qualitative metrics to further
define AXIOM'’s ability to improve developer productivity when building cross-platform mobile applications.
In this paper we describe the methodology of our mid-scale experiments and present the findings from source
code and SonarQube analyses. We evaluate these findings and discuss what they mean to AXIOM in general.
Finally, we look at possible changes to AXIOM’s syntax and capabilities.

1 INTRODUCTION

As of July, 2015 there were, by some estimates (sta,
2015), over 1.6 million apps in the Google Play Store
and another 1.4 million apps available in Apple’s
App Store. The popularity of these platforms, and
the emergence of new platforms such as the Win-
dows Phone, makes it desirable for mobile application
providers to write cross-platform applications.
AXIOM (Jones and Jia, 2015) is an approach
to model-driven development (MDD) (Vaupel et al.,
2014) that uses the Groovy language as its modeling
notation. Rather than depending on approaches that
use cross-platform programming languages and vir-
tual machines such as HTMLS and JavaScript (Ap-
pcelerator, Inc., 2011; The Apache Group, 2015)
(e.g. Appcelerator, Apache Cordova, etc.), AXIOM
uses a domain-specific modeling language (DSML)
as its representation. Its models undergo a series of
transformations and translations during their lifecy-
cle. By using a dynamic DSML we hope to avoid
some of the shortcomings of MDD approaches such
as the Object Management Group’s MDA (Staron,
2006; Uhl, 2008; Whittle et al., 2014; Mussbacher
et al., 2014), such as the lack of first-class support
for user interface design, while still keeping the fo-
cus on writing models instead of code (Frankel, 2003;
Selic, 2003). By completely generating native code,
we hope to avoid the potential performance impacts

264

Jones, C. and Jia, X.

exhibited by many cross-platform, virtual machine-
based approaches (Charland and Leroux, 2011; Cor-
ral et al., 2012).

Our research attempts to answer questions about
model-driven development for mobile platforms us-
ing the AXIOM approach. Specifically, when com-
pared to native, handwritten code, we want to under-
stand AXIOM’s impact on developer productivity and
code quality.

2 THE AXIOM LIFECYCLE

The AXIOM lifecycle (Jia and Jones, 2013) has three
stages: Construction, Transformation, and Transla-
tion. As shown in Figure 1, each stage emphasizes a
different model that is gradually transformed into na-
tive source code.

During the Construction stage, business require-
ments, user interface, and application logic are cap-
tured in a platform-independent Requirements model
using AXIOM’s DSML. Applications are defined as
a set of related views. Views support both platform-
independent and platform-specific widgets. Transi-
tions are defined as attributes on the Ul controls that
trigger them and may have optional guard conditions
and actions. AXIOM provides an event model to help
deal with common mobile interactions such as screen
taps and orientation changes.

An Empirical Evaluation of AXIOM as an Approach to Cross-platform Mobile Application Development.

DOI: 10.5220/0005995902640271

In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 264-271

ISBN: 978-989-758-194-6

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

An Empirical Evaluation of AXIOM as an Approach to Cross-platform Mobile Application Development

o
-2 REQUIREMENTS o APPLICATION
(0] N
o % DSL & Annotations Buci)ldeer Platform-Independent
= Groovy | Libraries AMT

© |

5 v
~ g N] . IMPLEMENTATION
o ransformation .
55 Rules Transformation Platform-Specific
n 2 AMT

o

= |

i A 4
™ 9 Cod Cod NATIVE CODE
O @© oqae oqe -
g a Templates Generation Native Frameworks
n :_3 Native Languages

Figure 1: Evolution of AXIOM models.

Once the Requirements model has been defined,
it is transformed into an Application model using a
model builder. The model builder uses a preprocessed
representation of the iOS and Android APIs to expose
a platform-independent version of the most common
widgets between the two platforms. Platform-specific
widgets can still be used if needed.

A series of transformation rules converts the Ap-
plication model into an Implementation model. The
rules preserve the original APIs so that platform-
specificity may be used when appropriate, while ab-
stracting common features into the core DSML. The
Implmentation model contains information needed
to generate three key aspects of the application’s
organizational hierarchy: modules, the macro-
organizational aspects of the application; resources,
the source files for the modules; and fragments, snip-
pets of content used to construct the resources.

The Translation stage converts the Implementa-
tion model into native code for the target mobile plat-
forms. AXIOM’s code templates capture knowledge
and information about the target platform’s native lan-
guage and SDK. The code generation process uses
these templates, combined with information within
the Implementation model, to completely generate all
artifacts such as project, class, and resource files.

3 METHODOLOGY

A proof-of-concept prototype tool was developed to
demonstrate the feasibility of AXIOM. The prototype
tool transforms AXIOM models into native imple-
mentations for the Android and iOS platforms. The
design of the generated code follows the common
MVC architecture. While only a subset of the native
i0OS and Android APIs are currently supported, the

prototype tool adequately demonstrates the feasibility
and the potential benefits of the AXIOM approach.

Using the prototype tool, we conducted two kinds
of analyses: small-scale and mid-scale. The results
of the small-scale tests have been reported on be-
fore (Jones and Jia, 2014). The mid-scale tests com-
pared the code generated from the AXIOM model
to hand-written code provided by experienced soft-
ware developers. In these experiments, five mid-sized
applications were developed featuring a variety of
navigation and user interactions. Table 1 describes
the applications and some aspects of their structure
and complexity. These applications were designed
to include UI components common to their native
platforms, some platform-neutral, others platform-
specific. We did not test AXIOM against the more so-
phisticated components such as GPS. Each mid-scale
application was analyzed quantitatively, to gauge AX-
IOM’s relative power and impact on developer pro-
ductivity, and qualitatively, to gauge its source code
organization, issues and issue density, and overall
complexity. These metrics were then compared to
equivalent hand-written code.

Table 1: Description of Mid-Scale Applications.

App. Description Screens
CAR Shop cars by make and model. 6
CVT Various unit conversions. 8
EUC Data on EU member countries. 3
MAT A matching memory game. 1
POS A simple point-of-sale system. 8

265

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

4 QUANTITATIVE ANALYSIS

4.1 Relative Power

Relative power measures how much code in one lan-
guage is required to produce the same application in
another language. This provides a rough indication
of the relative effort expended by a developer to pro-
duce an application using different languages. Our
evaluation compared the source lines of code (SLOC)
of the AXIOM models to the generated SLOC for
both iOS and Android. For the comparative evalu-
ation of the SLOC, we used CLOC (Danial, 2013)
with Groovy as the source language for AXIOM. The
Android and iOS platforms were accounted for us-
ing Java and Objective-C respectively. The SLOC
counts do not include “non-essential” code such as
comments or block delimiters such as braces.

While SLOC is not ideal for representing appli-
cation complexity because of the potential size dif-
ferences introduced by developer ability, in this case
we felt the metric to be appropriate. First, the ap-
plications were straightforward enough that developer
ability was unlikely to be a significant factor. Second,
we had only a single developer perform the actual
coding, which controlled for the variation in ability.
Third, had we analyzed story or function points, we
would likely have seen clustering of the data because
of the comparative simplicity of the applications.

Kennedy’s relative power metric, pr, is based on
SLOC and measures the relative expressiveness of
one language to another (Kennedy et al., 2004):

_ I(MLO)
PL/t = (ML)

where (M) is the SLOC required to implement
model M in native code and I(My) is the SLOC re-
quired to implement M in AXIOM.

Table 2 shows the SLOC and relative power for
each of the mid-scale experiments. The results show
that the AXIOM-generated code can be comparable
to, if not smaller than, handwritten Android and 10S
code. In the cases of the CVT and POS applications,
there was much less handwritten code than generated
code.

In many cases the SLOC of the AXIOM-
generated and handwritten code are almost the same.
However, in two of the experiments there is a wide
divergence: CVT and POS. In both cases, the basic
difference was in the approach taken to model the
code. In the case of the CVT application, both the
AXIOM model and hand-written code used a series
of “if”” statements to perform the conversions. How-
ever, in the case of the AXIOM model, these cal-

)

266

Table 2: Comparison of relative powers.

Metric Application
CAR CVT EUC MAT POS
Source Lines of Code
AXIOM 66 365 46 64 165
Handwritten
Android 889 538 913 245 957
i0S 594 431 559 193 677
Generated
Android 488 1,125 506 311 1,849
i0S 435 1,384 726 293 1,953
Relative Power of AXIOM to
Handwritten
Android 14.34 1.47 19.85 3.83 5.80
i0S 9.58 1.18 12.15 3.02 4.10
Generated
Android 7.39 3.08 11.00 486 10.89
i0S 6.59 379 15.78 458 11.84

culations spanned multiple views — one-per-unit-type
(length, power, volume, etc.). This lead to a signif-
icant amount of redundant code. Some efforts were
made to optimize the model further, but this exposed
some architectural limitations in the AXIOM proto-
type. In the case of the POS application, a similar
approach was taken, where multiple redundant views
were generated where it was not actually necessary.
In the handwritten code, the developer took an ap-
proach that allowed the application to take better ad-
vantage of its data-driven nature.

4.2 Developer Productivity

Developer productivity is influenced by many factors
but, as shown by Jiang (Jiang et al., 2007) and oth-
ers (Fried, 1991; Maxwell et al., 1996; Pendharkar
and Rodger, 2007), the two most significant factors
in overall productivity are the average team size and
development language, accounting for approximately
25% of the variability in Normalized Productivity De-
livery Rate (PDR). PDR is the normalized work effort,
essentially the hours spent on the project, divided by
adjusted function points, which is the functional size
of the project in points multiplied by an adjustment
factor. In evaluating AXIOM’s ability to deliver on
its productivity goals, we focus on these two factors.

Jiang’s model was constructed by analyzing the
project database of the International Software Bench-
marking Standards Group (ISBSG) (ISBSG, 2015).
This database contains metrics and descriptive in-
formation about each of its over 6,700 development
and enhancement projects'. These projects include
100 types of applications across 30 industry verticals

1Jiang’s work was based on release 10 of the ISBSG data-
base, which held data on 4,100 projects.

An Empirical Evaluation of AXIOM as an Approach to Cross-platform Mobile Application Development

spanning 26 countries. This project database is the
basis for other analyses of software productivity such
as those done by Liu (Liu and Mintram, 2005), Jef-
fery (Jeffery et al., 2000), and Lokan (Lokan, 2000).
This breadth of projects makes Jiang’s model well-
suited for our analysis.

Jiang’s complete model captures several proper-
ties such as team size, the type of language (3GL,
4GL, Application Generator), the platform (mid-
range, multi-platform, or PC), development tech-
niques used (OOAD, event modeling, regression
testing, or business area modeling). Some multi-
technique factors were included as well, that is, the
factor applied only if both of a pair of techniques were
used. Except for team size, each factor, I(X), takes a
boolean value: 1 if X was used and 0 if it was not.

We held many factors constant in our experiments.
The team size was always 1 and we treated AXIOM
as a 4GL rather than an application generator since
it requires up-front development in the DSML first.
Furthermore, we did not use event or business model-
ing or formal regression testing. Finally, we consider
both Android and iOS to be for the “PC” platform, a
decision we justify in greater detail below. This re-
duces Jiang’s equation to that shown in equation 2:

In(PDR) = —0.463xI(3GL) 2)

(
— 1.049% I(4GL)
—0.269%1(PC)
—0.403%1(00)
+2.651

We emphasize that there is only one dominant and
variable factor remaining: the type of language be-
ing used to develop the application. For native de-
velopment we consider both Objective-C and Java as
3GL languages. When we apply the model for the
AXIOM and handwritten styles of development we
find that PDRyive 18 4.554 and PDRaxopm is 1.097.
We thus find that PDRyxjop is slightly more than
4-times greater than PDRyyiv.. However, there are
many factors that contribute to development produc-
tivity in Jiang’s model. What assurances do we have
that AXIOM is the single-most important contribut-
ing factor in our productivity analysis?

According to Jiang and others, the average team
size explains 17.3% of the variance in In(PDR). De-
velopment language explains another 7.8% of the
variance when the languages are of different gener-
ations, that is 3GL vs. 4GL. The fact that the team
size was held constant, as were the other key fac-
tors, suggests that the type of language, native code
or AXIOM, accounts for almost all 100% of the vari-
ability in In(PDR) in our analyses. We thus find that

20 —

=

z

z i |

o 15

]

z

=

= 10} .

R~

S sl |

=

i HI l

0__

= v =R %] = wn = wn =R %]
£8 tS B2 ES E9°
o =i = o =i
= 5} = = 5}
< < < < <

CAR CVT EUC MAT POS

Figure 2: Comparison of relative power.

PDRuxjoMm 1s approximately four times greater than
PDRpytive, suggesting that AXIOM can provide sig-
nificant increases in productivity compared to devel-
opment using existing tools for native platforms.

But does the actual, measurable output of the
mid-scale experiments agree with the expected re-
sult of Jiang’s model? If we compare the expected
PDRyxjom to the representational power metrics for
the handwritten code from Table 2, shown in Figure 2,
we find significant variance. The median representa-
tional power is 4.10 for iOS and 5.80 for Android,
which is consistent with Jiang’s model’s prediction of
4.554, shown as the horizontal line. One of the experi-
ments, CVT, required an amount of AXIOM code that
was only slightly less than the amount of hand-written
code needed to implement the application. That par-
ticular AXIOM model was naive, resulting in code
bloat. A more efficient, but semantically more com-
plex model was devised using arrays of closures, but
the AXIOM prototype was unable to interpret it, a
limitation of tool rather than of technique.

S QUALITATIVE ANALYSIS

For the qualitative analysis we used SonarQube?, an
open-source, static code quality analysis tool that is
popular with software developers. SonarQube per-
forms static source code analysis using common plu-
gins such as FindBugs (Hovemeyer et al., 2015).
Within SonarQube we used the Android Lint plugin
to analyze the Android code. It provides a more spe-
cialized analysis of the code and supporting files than
does the standard Java analysis, which was a reason-

2SonarQube was formerly called Sonar.

267

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

able second choice. For iOS we used an open-source
Objective-C analyzer called OCLint.

We eliminated from consideration ancillary files
such as XML files that are required to execute the ap-
plication, but which are often generated by IDEs and
supporting tools. We instead focus only on the Java
or Objective-C code, which is where most qualitative
issues will be found.

5.1 Issues and SQALE

SonarQube performs its analysis by applying indi-
vidual rules to the source code based on the lan-
guage being analyzed. For projects with multiple
languages, SonarQube can analyze each language ac-
cording to its own set of rules and then aggregate the
results. The rules are based on the SQALE Qual-
ity Model (Letouzey, 2012; Letouzey and Ilkiewicz,
2012), which organizes the non-functional require-
ments that relate to code quality and technical debt
into eight SQALE characteristics: Testability, Reli-
ability, Changeability, Efficiency, Security, Maintain-
ability, Portability, and Reusability. Each rule is given
a severity indicating how much of an impact its vio-
lation may have on the finished application. To some
extent these severities are arbitrary, but in general the
more severe the issue or rule violation, the greater
the chance that the code causing the issue contains
a latent defect. For example The most common issue
identified during our analysis, “Hardcoded Text”, is
considered a minor issue; it is undesirable and does
not represent a latent defect, but it does impact our
ability to update and maintain that code.

For our analysis we used only two categories of
issue severity: Major and Minor. Table 3 shows the
SonarQube and OCLint mappings to these categories.

Table 3: Mapping of issue severities.

Analysis SonarQube OCLint
Major Blocker, Critical, Major Major
Minor Minor, Info Minor, Info

Given the number of issues identified for an appli-
cation, and given the count of an application’s SLOC,
we calculate the number of issues per SLOC, or is-
sue density. Figure 3 shows the issue densities for
the handwritten (AND-H, I0S-H) and generated code
(AND-G, IOS-G).

In most cases, the AXIOM-generated code does
not fare as well as its handwritten counterpart. When
comparing the generated and handwritten code by ap-
plication for each platform, we find that at best the
AXIOM-generated code has an issue density that is

268

0.3

>

£ 02F

2]

=}

]

A

(5]

2

k2] 0.1
0
TOTYO TOTZY0 TOTXTVO TOTUV ZTOIXO

[72R7%] [7207%] [0 %] [72R7%] [7207%]

2288 2588 2288 2288 2288
<< << << << <<

CAR CVT EUC MAT POS

Figure 3: Comparison of issue densities.

138% that of the hand-written code while at worst it is
about 550% that of the handwritten code. This is con-
sistent with AXIOM’s template-based nature since
any issues present in the template, or in the translation
algorithm, will be injected into the generated code.
Issue density by itself is only one aspect of the
analysis. We must also consider the estimated time,
cost, and risk to remediate the issues once they have
been found. For the handwritten code we must ad-
dress each instance of the issue, and there is no guar-
antee that new instances of the issue will not be intro-
duced during subsequent development. Furthermore,
the fixes do not propagate to other applications, so
they must be updated separately. With AXIOM, the
remediation of a translation template will likely take
longer than with the handwritten code. However, once
the update to the template is complete, the fix will be
applied and the issue will not be re-introduced. Be-
cause the fixes are cumulative, AXIOM represents a
better long-term investment for the remediation effort.
As industry best practices evolve, those practices can
be incorporated into the code templates more readily
than if we must refactor each application by hand.

5.2 Complexity

The final set of qualitative metrics involve code com-
plexity. SonarQube provides an analysis of cyclo-
matic complexity for the overall application. While
this complexity is arguably not as important for gen-
erated code, since all maintenance is intended to be
done via the model rather than by changing the gen-
erated code directly, code that is more complex than
necessary will tend to be less performant than equiv-
alent, simpler code. The code generation templates
required to build such structures will typically be

An Empirical Evaluation of AXIOM as an Approach to Cross-platform Mobile Application Development

more complicated than equivalent, simpler templates,
which can make the maintenance and extension of the
templates more difficult as well as being more likely
to inject defects into the generated code.

Figure 4 shows that, in most cases, the AXIOM-
generated code has a much higher overall cyclo-
matic complexity. However, the raw SonarQube data
showed that at the function, class and file levels, the
complexity is often less than that of the handwritten
code. This disparity is explained because the AXIOM
prototype tends to generate more code than human
developers. It thus stands to reason that the overall
complexity would be consistently higher. Also, as has
been mentioned before, any complexity present in the
template from which the final, translated code is gen-
erated will be passed into the generated code. Thus
these complexity values can be improved by enhanc-
ing the translation templates and transformation rules
to be more parsimonious.

6 DISCUSSION

Based on the mid-scale experiments, AXIOM has
generally been observed to reduce the number of
SLOC to be written when compared to the equiva-
lent native application even though the final, gener-
ated SLOC might ultimately be greater, an admittedly
undesirable state. Our analysis suggests that AXIOM
significantly affects developer productivity, owing to
its cross-platform nature and DSML, which enables
a more concise representation of an application than
the native code can as well as the fact that its transfor-
mation rules and templates are reusable across appli-
cations. This is reflected in the comparative represen-
tational power values from Table 2. However, some

300

200 - =

100

Overall Cyclomatic Complexity

o
; |
AND-H []

AND -H
AND - G
I0S-H
I0S-G
AND - G
I10S-H
10S-G
AND - H
AND - G
I0S-H
10S-G
AND -H
AND - G
I0S-H
I0S-G
AND - H
AND - G
I10S-H
10S-G

CAR CVT EUC MAT POS

Figure 4: Comparison of cyclomatic complexities.

cautions are in order.

First, it is unclear if Jiang’s model scales effec-
tively to smaller applications such as those in our mid-
scale experiments. Second, Jiang’s model does not
explicitly deal with mobile applications. We treated
each platform as equivalent to general PC develop-
ment, but it is uncertain if this is the case. Regard-
less, we expect that the coefficients associated with
the platform would contribute equally in both cases
and thus not have a material impact on the overall
productivity difference described by Jiang’s model.
The coefficients in the model may be different today
than in 2007 when the model was developed. Ad-
vances in tools, such as IDEs, and techniques, such
as agile development, may have affected the impact
of those factors on the model, causing the variation
associated with the development language to be less
important relative to other factors. Third, this analy-
sis does not include the effort required to build either
the templates or transformation rules. Including those
factors would likely reduce the overall impact of AX-
IOM on productivity for our mid-scale tests. How-
ever, because the transformation rules and templates
are generally intended to be re-used across many ap-
plications, we think it likely that, over time, the cost
of their development would be amortized and the pro-
ductivity gains would approach the more ideal case
that we have outlined.

There are other reasons why actual developer pro-
ductivity might be different from that suggested by
Jiang’s model. First, as is the case with all such pro-
ductivity assessments, there exist significant differ-
ences between the capabilities of individual develop-
ers. In this evaluation, we had only a single devel-
oper, which eliminated that variability. However, the
fact that there was only a single set of trials obviously
makes our generalizations to the broader mobile de-
veloper population preliminary at best.

Second, the trials themselves did not exercise the
full suite of capabilities of many moderns mobile de-
vices including the position, direction, or motion sen-
sors. The focus was instead on the

Third, the DSML was in a state of flux when the
mid-scale evaluations were being conducted. This
meant that the developer who produced the AXIOM
models might have encountered problems that caused
them to produce a less optimal model. Similarly as
new features of the language were introduced, the
developer may not have gone back and incorporated
them into any already complete models. We found
evidence of this in two of the mid-scale experiments.
In an earlier version of the CAR application, the AX-
IOM model was significantly larger because the mod-
eler provided a naive model. Based on SonarQube

269

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

analysis, the resulting source code was approximately
1,300 lines long. After updating the AXIOM model to
use newer features of the DSML, the generated code
was reduced to its present level of closer to 500 lines
of code. A similar problem was discovered with the
EUC application with similar results.

This suggests that one of the challenges with this
kind of MDD approach is striking a balance between
model flexibility and model simplicity. By allowing
the full syntax of the Groovy language to be available
within the model, we increase the burden on the mod-
eler to apply intelligent software development best
practices to prevent bloating of the final code. While
AXIOM performs some initial pre-processing of the
model to eliminate as many sources of inefficiency as
possible, it cannot realistically compensate for a com-
pletely inefficient model while also guaranteeing that
the model’s semantics will be preserved after that op-
timization. This challenge is the same as that of many
compiler optimizers.

There are several ways in which AXIOM’s DSML
could be improved. For example, AXIOM is
platform-independent, but not particularly abstract.
Raising its level of abstraction is one important way
in which AXIOM could be extended. The goal is for
AXIOM to allow modelers to focus more on the struc-
ture and behavior of the application and less about
defining individual views and transitions. AXIOM
exhibits many of its Groovy roots, and much of the
code uses native Groovy syntax. AXIOM could also
incorporate common architectural and implementa-
tion patterns. At present AXIOM is limited by a one-
size-fits-all code generation strategy, which may be
fine for small-scale applications, but which will not
scale effectively to larger, more complex software.
It would be useful if common patterns and platform
idioms could be incorporated into its DSML, mak-
ing it resemble an Architecture Description Language
(ADL) (Medvidovic and Taylor, 2000). These tech-
niques would provide more power to the modeling no-
tation and enable modelers to avoid the use of Groovy
syntax for common modeling constructs.

7 CONCLUSIONS

AXIOM is an approach to model-driven development
in the mobile domain that seeks to improve devel-
oper productivity while maintaining a high degree
of code quality. AXIOM does this using a DSML,
a multi-pass transformation process, and template-
driven code generation.

The five mid-scale tests used to test AXIOM’s im-
pact on developer productivity and code quality were

270

designed with a combination of platform-neutral and
platform-specific widgets, but did not attempt to in-
clude all possible mobile widgets and capabilities.
Although only a single developer performed these
tests, the results of both our quantitative and quali-
tative analyses are suggestive.

Based on the analysis using Jiang’s productiv-
ity metric, AXIOM’s single, platform-independent
DSML can deliver productivity that is about four
times greater than producing the equivalent code by
hand. An analysis of the SLOC required for the
AXIOM models compared to hand-written code pro-
duced by native tools for each platform suggests a
wider range in terms of productivity. In the worst
cases AXIOM required only slightly less code than
the equivalent native applications while in the best
case AXIOM required only about 8% of the lines of
code of an equivalent iOS application and only 5%
of the lines of code of an equivalent native Android
application.

AXIOM’s impact on code quality is ambiguous.
The AXIOM prototype generally produces more code
and thus more issues than the equivalent hand-written
code. However, with further optimizations and bet-
ter templates, there is every reason to believe that
the AXIOM approach can indeed be comparable, and
perhaps even better, than hand-written code precisely
because any changes made to the template will be ren-
dered in the generated code everywhere that template
is used rather than requiring case-by-case fixes. The
analysis of the SonarQube data suggests that while
the native tools for each platform doubtless help pre-
vent some of the issues that can be introduced during
AXIOM’s Translation stage, they are not prevented in
their entirety. Those issues may be simple to elimi-
nate, but each issue requires at least some developer
time, which can be a drain on productivity.

The AXIOM DSML is young and can benefit from
optimization. In particular it would be useful to incor-
porate mobile application patterns and idioms directly
into the language itself. This would further reduce the
size of the AXIOM models while also making it eas-
ier to design and construct code generation templates
to produce efficient and optimized native code.

REFERENCES

(2015). Number of Apps Availabile in Leading App Stores
as of July 2015.

Appcelerator, Inc. (2011). Appcelerator. http://www.app
celerator.com/.

Charland, A. and Leroux, B. (2011). Mobile application
development: Web vs. native. Comm. of the ACM,
54(5):49-53.

An Empirical Evaluation of AXIOM as an Approach to Cross-platform Mobile Application Development

Corral, L., Sillitti, A., and Succi, G. (2012). Mobile mul-
tiplatform development: An experiment for perfor-
mance analysis. Procedia Computer Science, 10:736
—743. MobiWIS 2012.

Danial, A. (2013). CLOC. http://cloc.sourceforge.net/.

Frankel, D. S. (2003). Model-Driven Architecture: Apply-
ing MDA to Enterprise Computing. John Wiley &
Sons, New York, NY.

Fried, L. (1991). Team size and productivity in systems de-
velopment bigger does not always mean better. Jour-
nal of Inf. Systems Manage., 8(3):27-35.

Hovemeyer, D., Pugh, B., Loskutov, A., and Lea, K. (2015).
Findbugs. http://findbugs.sourceforge.net/.

ISBSG (2015). Int. software benchmarking standards
group. http://www.isbsg.org/.

Jeffery, R., Ruhe, M., and Wieczorek, I. (2000). A compara-
tive study of two software development cost modeling
techniques using multi-organizational and company-
specific data. Inf. and Softw. Technology, 42(14):1009
—1016.

Jia, X. and Jones, C. (2013). Cross-platform application
development using AXIOM as an agile model-driven
approach. In Software and Data Technologies, volume
411 of Communications in Computer and Information
Science, pages 36-51. Springer Berlin Heidelberg.

Jiang, Z., Naud, P., and Comstock, C. (2007). An investi-
gation on the variation of software development pro-
ductivity. International Journal of Computer and In-
Sformation Science and Engineering, pages 461-470.

Jones, C. and Jia, X. (2014). The AXIOM model frame-
work: Transforming requirements to native code for
cross-platform mobile applications. In 9th Annual Int.
Conf. on Evaluation of Novel Approaches to Software
Engineering, (ENASE 2014), pages 26-37, Lisbon,
Portugal.

Jones, C. and Jia, X. (2015). Using a domain specific
language for lightweight model-driven development.
In Evaluation of Novel Approaches to Software Engi-
neering, volume 551 of Communications in Computer
and Information Science, pages 46—62. Springer Intl.
Publishing.

Kennedy, K., Koelbel, C., and Schreiber, R. (2004). Defin-
ing and measuring the productivity of programming
languages. The International Journal of High Per-
formance Computing Applications, (18)4, Winter,
2004:441-448.

Letouzey, J.-L. (2012). The sqale method defini-
ton document. http://sqale.org/wp-content/uploads/
2010/08/SQALE-Method-EN-V1-0.pdf.

Letouzey, J.-L. and Ilkiewicz, M. (2012). Managing tech-
nical debt with the sqale method. [EEE Software,
29(6):44-51.

Liu, Q. and Mintram, R. (2005). Preliminary data analy-
sis methods in software estimation. Software Quality
Journal, 13(1):91-115.

Lokan, C. (2000). An empirical analysis of function point
adjustment factors. Information and Software Tech-
nology, 42(9):649 — 659.

Maxwell, K. D., Van Wassenhove, L., and Dutta, S.
(1996). Software development productivity of euro-

pean space, military, and industrial applications. /EEE
Trans. Softw. Eng., 22(10):706-718.

Medvidovic, N. and Taylor, R. N. (2000). A classifica-
tion and comparison framework for software architec-
ture description languages. IEEE Trans. Softw. Eng.,
26(1):70-93.

Mussbacher, G., Amyot, D., Breu, R., Bruel, J.-M., Cheng,
B., Collet, P., Combemale, B., France, R., Heldal,
R., Hill, J., Kienzle, J., Schttle, M., Steimann, F.,
Stikkolorum, D., and Whittle, J. (2014). The relevance
of model-driven engineering thirty years from now. In
Model-Driven Engineering Languages and Systems,
volume 8767 of Lecture Notes in Computer Science,
pages 183-200. Springer International Publishing.

Pendharkar, P. C. and Rodger, J. A. (2007). An empirical
study of the impact of team size on software develop-
ment effort. Inf. Technol. and Manag., 8(4):253-262.

Selic, B. (2003). The pragmatics of model-driven develop-
ment. IEEE Softw., 20(5):19-25.

Staron, M. (2006). Adopting model driven software devel-
opment in industry - a case study at two companies.
In Proc. of Model Driven Engineering Languages and
Systems, 9th Int. Conf., MoDELS 2006, Genova, Italy,
pages 57-72.

The Apache Group (2015).
https://cordova.apache.org/.

Uhl, A. (2008). Model-driven development in the enter-
prise. IEEE Softw., 25(1):46-49.

Vaupel, S., Taentzer, G., Harries, J. P., Stroh, R., Gerlach,
R., and Guckert, M. (2014). Model-driven develop-
ment of mobile applications allowing role-driven vari-
ants. In MODELS 2014, Valencia, Spain, September
28 - October 3, 2014. Proceedings, pages 1-17.

Whittle, J., Hutchinson, J., and Rouncefield, M. (2014). The
state of practice in model-driven engineering. IEEE
Softw., 31(3):79-85.

Apache cordova.

271

