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Abstract: Storing highly confidential data and carrying out security-related operations are crucial to many systems. Start-
ing from an industrial use case we propose a generic architecture based on secret sharing which address critical
operation authorization. By comparing and benchmarking different scheme from the literature we analyze the
different trade-offs (security, functionality, performance) which can be achieved. Finally by providing an open
source .NET implementation of several secret sharing schemes, this paper aims to rise awareness regarding
the capabilities of such algorithms to increase security in industrial setting.

1 INTRODUCTION

Storing highly confidential and sensitive data, such
as encryption keys, is a challenging task. Under-
standably, any accidental or other incidental disclo-
sure of these classified data could be catastrophic.
However, counting on a single copy of a secret in-
creases the risk of losing data in case of failure. On
the other hand, preserving multiple copies of a secret
increases resilience to failures, while it downgrades
security, because it widens the attack surface and thus
increases the probability of secret exposure. Conse-
quently, there is a trade-off between resilience to fail-
ure and preserving confidentiality.

One way to address this problem is to use secret
sharing (Shamir, 1979; Benaloh and Leichter, 1990;
Blakley et al., 1979; Schoenmakers, 1999; Feldman,
1987). This technique offers redundancy by splitting
the secret in a way that each share on its own carries
no information about the actual secret. At the same
time, certain authorized sets of these copies would,
together, reveal the secret. This approach makes the
secret recoverable when confronting disasters, while
at the same time, it does not increase the risk of secret
leakage. Compared to the classic approach in which a
single mistake causes secret exposure, this technique
can tolerate multiple breaches.

Likewise, there exist security-related operations
that are so critical for a system, that resemble the sit-
uation of highly confidential data. Such operations
inevitably require redundancy (multiple users could

carry them out) and security (guarantees that no mis-
use could occur). For instance, altering the system
wide security policies should be considered as a crit-
ical operation. In this case, overly trusting multi-
ple users (say admins) to perform such operations in-
creases the risk of insider attacks. At the same time,
paranoid settings such as only enabling a single super
trusted user to perform highly critical operations may
result in availability issues.

Therefore, one way to deal with the authoriza-
tion of security-related operations is to require the
agreement of multiple users (similar to the four eyes
principle) before the operations can be carried out.
Such setting lowers the likelihood of misuse by sin-
gle users, and increases the availability of the system.

Problem: In this paper, we conduct a case study
that is inspired by Brainloop, a secure cloud storage
provider for document collaboration. For their com-
mercial solution, they use symmetric encryption with
different keys for each client. In addition to that, their
cloud storage offers document processing and collab-
oration features. Thus, their servers need to access all
encryption keys on demand. However, these keys are
encrypted with another key, known as the master key
(a 256 bit AES key).

On the one hand, loss or damage of the master key
is disastrous, since it leaves all clients with no possi-
bility to recover their data. On the other hand, Brain-
loop considers altering the master key and changing
hardware configuration as critical operations, which
are only permitted after agreement of all the trusted
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parties. It means that if such incidents occur, the sys-
tem stops functioning until the parties approve the
changes. Therefore, it is desired to let an authentic
subgroup of trusted parties to approve the legitimacy
of a critical operation. This subgroup could be for in-
stance any k persons out of all n participants or even
an arbitrary subset of the trusted parties, e.g. a well-
defined subset, such as (party1 and party2) or (party3
and party4). Brainloop’s use case clearly resembles
the secret sharing scenario.

Proposed Solution: Our proposed solution com-
bines these two separate requirements via the use of
secret sharing. The core idea is to set an authentica-
tion framework, based on a token shared among sev-
eral trust parties via secret sharing. A critical opera-
tion is authorized if the trust parties are authenticated
in this framework, i.e. if the system is able to re-
construct the token from the shares sent by the trust
parties. Additionally this token consists in the most
valuable information which is best protected against
malicious admin (either in or out of the system) and
for which there is redundancy need. This way we
achieve: a) redundancy of the most secret data, with-
out enlarging the attack surface and b) in order for a
malicious admin to run a critical operation, he would
have to obtain first the most secret data, which is ei-
ther not in the system or in the most secure place
(e.g. secured by means of orthogonal technology such
as trusted computing (Garfinkel et al., 2003; Santos
et al., 2009; Neisse et al., 2011)).

Implementing our Approach: Having distribu-
tively secure shares and flexibility in defining security
parameters makes secret sharing a potentially good
solution for Brainloop’s problem. However, the effec-
tiveness and applicability of various schemes to real-
istic use cases (i.e., Brainloop) are vague. Similarly,
the trade offs between security features and perfor-
mance with real world parameters (when number of
parties increase) have not been thoroughly studied in
practice. Therefore, as part of our contribution, we
explore the most prominent schemes from the litera-
ture, study their applicability to our use case and dis-
cuss the trade offs, as a guideline for future applica-
tions.

Additionally, we provide an open source imple-
mentation for the selected schemes, in order to foster
the adaptability of our solution. For instance, standard
libraries of two popular software development frame-
works (Microsoft .Net version 4.5 and Java version
8.0) have not implemented secret sharing schemes,
which make it difficult for practitioners to adopt them
or experiment with them.

We use our library to evaluate performance of
various different schemes with reasonable parameters

for an authorization system. These implementations
serve as guideline to practitioners to choose an ac-
ceptable security vs. performance trade off. Summa-
rizing:

Contributions: a) Starting from an industrial use
case, we propose an architecture, based on secret
sharing as a building block, for enforcing multi-user
agreement as well as secret data redundancy b) we
study the applicability of the most prominent schemes
in the secret sharing research: (Shamir, 1979), Gener-
alized Access Structure (Benaloh and Leichter, 1990)
and (Schoenmakers, 1999) to our critical operation
authorization system (i.e Brainloop) c) we study the
efficiency of these schemes with real world parame-
ters d) we provide an open source implementation for
the aforementioned secret sharing schemes.

Organization: The rest of the paper is organized
as follows: Preliminaries on secret sharing in Sec-
tion 2 are discussed. Then we describe details of our
authorization system and present benchmarks in Sec-
tion 3. In Section 4 we review Brainloop’s case study
and apply our authorization system to it. Later, we
discuss in Section 5 our benchmark results and shed
light on applicability of the implemented schemes in
real world problems . We review related works in Sec-
tion 6. Lastly, we conclude in Section 7.

2 PRELIMINARIES

Secret sharing is a technique in which a dealer se-
curely divides a secret among a group of players (par-
ticipants). Later, the secret can only be reconstructed
if an authentic subset of participants agree on provid-
ing their possessed shares, otherwise it remains un-
computable. Since the seminal work of Shamir and
Blakley (Blakley et al., 1979), many secret sharing
schemes were designed. Based on the main feature,
we roughly categorize secret sharing schemes into
three subcategories.

Threshold Schemes. This group of schemes di-
vides a secret among n parties, and enables k, 0 < k≤
n, of them to compute the secret. Also, they are the
most optimal in terms of execution time and (short)
share length. For instance, (Shamir, 1979) is a thresh-
old scheme. Nevertheless, these schemes are not so
flexible in terms of handling more complex use cases.

Generalized Access Structures. These schemes
allow for full customization in determining authen-
tic sets. For example, one can take into account par-
ties’ roles and/or department in the share distribution
and secret reconstruction. A particular business use-
case may require shares from at least one member of
departmentA and one member of departmentB to re-
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cover the secret. Hence, they are flexible enough to
handle all complex business requirements. (Benaloh
and Leichter, 1990) is a scheme that realizes general-
ized access structures.

Verifiable Schemes. Beside typical sharing and
reconstruction operations, these schemes provide a
mathematical guarantee that the shares are consis-
tent. In exact words, players and the dealer can verify
the integrity of the shares on demand. For example,
(Feldman, 1987; Schoenmakers, 1999) are samples of
verifiable schemes.

In this paper, we opt for the secret sharing
schemes which we view as the most prominent within
each category. Shamir as a candidate for thresh-
old schemes, Benaloh-Leichter for generalized ac-
cess structure and finally Schoenmakers as verifiable
secret sharing scheme. These schemes are selected
for further implementation and performance analy-
sis. Due to space constraints, we refer the reader to
(Shamir, 1979; Benaloh and Leichter, 1990; Schoen-
makers, 1999) for the schemes’ details.

3 IMPLEMENTATION AND
BENCHMARKS

Employing secret sharing schemes in the industrial
context requires mindful identification of certain un-
avoidable trade-offs. In other words, we need to thor-
oughly find out the efficiency compromises one has
to make for a particular security (integrity check, en-
cryption and collusion) or functional (threshold vs.
non-threshold) feature. This also supports our case
study by shedding light on the performance differ-
ences.

To the best of our knowledge, there is no pub-
licly available implementation for most of the se-
cret sharing schemes discussed previously in mod-
ern programming languages such as Java and .NET.
Not only does this make difficult to decide whether
certain trade-offs are acceptable in practice (although
there are some published benchmarks in the litera-
ture (DSouza et al., 2011) and complexity-theoretical
bounds are known (Beimel, 2011)), but ultimately, it
makes it very hard for practitioners to actually inte-
grate secret sharing into their solutions, since they
would have to implement the algorithms themselves.
This is a daunting task, since it requires a non-trivial
cryptography background and additional cost and ef-
fort. Therefore, as a first contribution, and in order
to derive concrete performance bounds, we imple-
mented ∗ Shamir, Benaloh-Leichter and Schoenmak-

∗ available at (Ahmadvand, 2015)

ers in .NET † (which is the standard used by Brain-
loop).

3.1 Benchmarks

To choose the appropriate scheme for our case study,
runtime performance plays an important role. As
mentioned earlier complexity-theoretical bounds for
the practitioner are helpful but insufficient. Plus we
need concrete implementations (for system integra-
tion) which to the best of our knowledge for some
schemes are not publicly available. Therefore, we im-
plemented all three reviewed schemes and performed
benchmarks on a Windows 7 computer with the fol-
lowing configuration: Intel core i5 processor and 8
GB memory. The key sizes of 128, 256 and 512
bits were used in the experiment of the Shamir and
Benaloh-Leichter scheme. For Schoenmakers, since
the scheme security relies on the difficulty of the dis-
crete logarithm problem, we evaluated our implemen-
tation with 1024 and 2048 bit fields, which are known
to be secure to handle 128 bit and 256 bit keys (BSI,
2015).

The main operations Share Generation, Secret Re-
construction and Share Verification (only for Schoen-
makers) operations have undergone experiments for
the keys sized 128, 256 bits. Each operation is iterated
100 times to find a reliable performance. To filter out
random prime generation noises from our evaluation,
we generate 1000 prime numbers per each field size,
later, at the execution time, we randomly choose an
element from the prepared list. We show mean aver-
age diagrams for various key sizes. The performance
results are depicted in Figures 1 to 3.

4 Brainloop CASE STUDY

Background. Brainloop provides a secure SaaS
storage and collaboration platform. Data are stored
encrypted with an AES key specific to each client.
In order for the system to provide collaborative fea-
tures, those AES keys are stored in a DB, encrypted
with another AES key known as the master key. This
master key is the most important key. It ensures (di-
rectly and indirectly) the security of all user data. So
on the one hand, it is very important not to lose it,
on the other hand no malicious person (including a
malicious administrator) should have access to it. To
prevent its loss (due to defective hardware) the master
key is split into chunks and distributed to various trust

† to accelerate our implementation we are using the (C lan-
guage) NTL library which is an open source number theory
library (Shoup, 2016).
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Figure 1: Shamir benchmark results for share generation
and secret reconstruction for a 256 bit key.

Figure 2: Benaloh-Leichter generation and reconstruction
benchmark results for a 256 bit secret.

parties a.k.a VIPs∗. The ownership of the master key
chunks is also used within system workflows in which
VIPs must agree on before starting critical operations.
The importance of these operations prohibits admin-
istrators from starting them.

The first critical operation which requires VIPs’
agreement is changing the master key, since any cryp-

∗ C-level people of Brainloop

Figure 3: Schoenmakers benchmark results for share gener-
ation and secret reconstruction in a 2048 bit field.

tographic key should be periodically rotated. Once
the master key is changed it needs to be re-distributed
to selected VIPs and of course administrators should
not be able to control this action (and to which indi-
viduals the key parts are sent). The other critical oper-
ation is when hardware needs to be changed. In order
to prevent a malicious hardware replacement, a hard-
ware fingerprint is stored (encrypted) in the system
and regularly checked. If a fingerprint mismatch hap-
pens there are two possibilities: either the hardware is
broken and needs to be changed, or a malicious per-
son tried to changed it. When a mismatch occurs the
system turns into a ”failed state” and the VIPs need to
“agree” in order to reset the system back to the ”nor-
mal state”.

For these two critical operations, the VIPs agree in
that they upload (securely) their key parts to the sys-
tem. The system accepts this “agreement” if it is able
to reconstruct the master key from the different key
parts. This architecture relates the most valuable data
with the ability to start the most critical operations,
however it has two drawbacks: on the one hand, the
VIPs get to know a part of the master key, so if 2 out 3
VIPs were malicious they could collude and recover
2/3 of the master key, which lets the last third open
to brute-force. On the other hand, all the VIPs must
be present to start a critical operation, this is not con-
venient at all considering that a hardware failure can
happen any time and the system needs to be recovered
as soon as possible.

Solution. By using secret sharing in this context
it is possible to improve both the overall security and
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flexibility of the system. Indeed, by giving shares (us-
ing secret sharing) and not parts of the master key, the
VIP can still perform the agreement process, but with-
out knowing a part of the key. Moreover, they do not
need all to be present and upload the key parts in case
of critical operations.

Note that the master key is meant to be accessible
by the server at any time. This may raise the concern
about its security when confronting malicious host ad-
ministrators. We believe this protection (against an
admin) is an orthogonal problem that requires a set
of security policy enforcements at various levels, in-
cluding operation, infrastructure and software (Haldar
et al., 2004; Garfinkel et al., 2003; Neisse et al., 2011;
Rocha and Correia, 2011; Santos et al., 2009; Chou,
2013; Rocha et al., 2013). Therefore, the rogue in-
sider threat is excluded from our case study.
Following this study, the solution was implemented in
Brainloop product.

5 DISCUSSION

Our benchmark results indicate that the collusion-
prevention security feature alone does not have
performance drawbacks. However, handling non-
threshold use cases using Benaloh-Leichter grows ex-
ponentially in the number of parties in the worst
case. Furthermore, supporting share integrity verifi-
ability along with encryption, which is offered by the
Schoenmakers algorithm, slowed the runtime execu-
tion into the order of seconds with upper bound of 25
seconds when n = 100 and k = 60. Thus, for a given
context, one should decide upon a set of trade-offs at
scheme selection phase.

Although in principle all three considered
schemes are suitable to solve the master key sharing
problem, it is not obvious which one would precisely
yield the best trade-off between efficiency, security
and functionality. For this reason, it is crucial to first
define the relevant factors, then have a reliable set of
benchmarks and salient features per schema as docu-
mented in the previous subsections.

We have identified the three following aspects,
that in our experience generalize to several similar
scenarios and thus constitute another contribution of
this work: authorized subsets, integrity check and
scheme efficiency. In the following, we study these
features in the context of our use case.

Authorized Subsets. First we need to identify
which secret sharing category (according to our cat-
egorization in section 2) can address our secret recov-
ery scenario. Trusted parties need to define the recov-
ery policy by answering: ”Which parties are needed

to recover the secret and under which conditions?”.
We conducted a set of interviews at Brainloop with
the operation and security teams, along with man-
agers, to answer this question. It turned out that a
subgroup of a certain size of trusted parties should be
able to recover the secret. Similarly, the main concern
after preventing a collusion attack is to cope with fail-
ures and disasters such as share loss. If one party is
not available or has lost her share, still an authentic set
of the players can recover the secret. Subsequently,
threshold schemes such as Shamir or Schoenmakers
seem to be appropriate in this case. On the other
hand, defining a complex set of users like in Benaloh-
Leichter was not a desired functionality.

Share’s Integrity Check. Some schemes lack
verifiability of the shares’ integrity, thus it is neces-
sary to understand the importance of the verifiability
in our use case. Here we question: ”In what cases
does the scheme security benefit from the share’s in-
tegrity checks?”. In Brainloop setting, since the mas-
ter key is available on the server inside the secure
storage, receiving tampered shares for secret recon-
struction will automatically result in rejection of the
shares. Thus, an extra integrity check is unnecessary.

Efficiency. Algorithm runtime complexity, usage
frequency and integration costs are also playing an
important role in scheme selection for industrial use
cases. Our goal is to find the cheapest integration
cost with the best performance. As a matter of fact,
Shamir’s scheme does not require further infrastruc-
tural supports such as PKI as opposed to Schoenmak-
ers’ scheme. Therefore, it is low cost and easy to in-
tegrate to the ongoing production system.

6 RELATED WORKS

Complexity-theoretical bounds of different secret
sharing schemes are surveyed by (Beimel, 2011).
Also, applications of secret sharing as a primitive has
been explored by many individual researchers for var-
ious sort of problems. (Hadavi et al., 2015) proposes
a policy enforcement mechanism for outsourced data
to untrusted servers using Shamir secret sharing and
Chinese remainder theorem. Their protocol enforces
access policies by spreading the over multiple servers.
More on the multiparty computation ground, (Bog-
danov et al., 2008) developed a secure multiparty
computation framework based on additive secret shar-
ing scheme. In addition to that, they actually pro-
totyped a secure solution for Estonia tax fraud de-
tection process based on their framework (Bogdanov
et al., 2015). In our case study we are given a situ-
ation that can leverage secret sharing security guar-
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antees. Since a secret is used to authorize security-
related operations, we use secret sharing as a medium
to grant actions when dealing with critical operations
on a server.

7 CONCLUSION

Secret sharing can be used to solve challenging key-
management issues (DSouza et al., 2011). However,
due to a lack of public implementations and unclear
functionality, efficiency and security trade-offs, it has
not found its way into industrial use cases.

Based on the example of Brainloop ∗ we showed a
concrete and generic architecture, using secret shar-
ing, which securely perform critical operations as
well as secret key redundancy.

We highlighted the different criteria that need to
be taken into account for the secret sharing algo-
rithm selection. To help selection we also carried
out benchmarks over an open source .NET imple-
mentation (Ahmadvand, 2015) of three of the most
prominent secret sharing schemes from the literature:
Shamir, Benaloh-Leichter and Schoenmakers.

As part of future work, we would consider com-
bining both custom access structure (non-threshold)
and share integrity verification. For this purpose,
Schoenmakers scheme can be modified to handle gen-
eralized access structures. Besides, it would be inter-
esting to measure Schoenmakers’ performance when
elliptic curves are used.
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