
Practical Improvements to the Minimizing Delta Debugging Algorithm

Renáta Hodován and Ákos Kiss
Department of Software Engineering, University of Szeged, Dugonics tér 13, 6720, Szeged, Hungary

Keywords: Test Case Minimization, Delta Debugging, Parallelization.

Abstract: The first step in dealing with an input that triggers a fault in a software is simplifying it as much and as
automatically as possible, since a minimal test case can ensure the efficient use of human developer resources.
The well-known minimizing Delta Debugging algorithm is widely used for automated test case simplification
but even its last published revision is more than a decade old. Thus, in this paper, we investigate how it
performs nowadays, especially (but not exclusively) focusing on its parallelization potential. We present new
improvement ideas, give algorithm variants formally and in pseudo-code, and evaluate them in a large-scale
experiment of more than 1000 test minimization sessions featuring real test cases. Our results show that with
the help of the proposed improvements, Delta Debugging needs only one-fourth to one-fifth of the original
execution time to reach 1-minimal results.

1 INTRODUCTION

Triggering faults in a software is one (undoubtedly
important) thing, but once one is triggered, someone
has to find and understand its root cause before the
correction could even be considered. And the time
and effort of that someone are precious. Assuming
that the fault is deterministically triggered by a given
input, the first step to ensure the efficient use of devel-
oper resources is to simplify the input by removing
those parts that don’t contribute to the failure. This
is especially true for those inputs, which are not only
large but also hard to comprehend by a human soft-
ware engineer, e.g., the results of fuzzing or some
other random test generation (Takanen et al., 2008).
Of course, the more this simplification process can
be automated the better. The more than a decade
old idea of Delta Debugging from Zeller and Hilde-
brandt (Zeller, 1999; Hildebrandt and Zeller, 2000;
Zeller and Hildebrandt, 2002) is oft-cited and used
for exactly this purpose.

Unfortunately, we found that all available generic
– i.e., target language-independent – implementations
of delta debugging (e.g., the one incorporated into
HDD (Misherghi and Su, 2006), the clean-room im-
plementation of the Lithium tool1, and even the refer-
ence implementation provided by Zeller2) realize the
idea as a sequential algorithm. As multi-core and even

1http://www.squarefree.com/lithium/
2http://www.st.cs.uni-saarland.de/dd/DD.py

multi-processor computers are widespread nowadays,
this looked like a suboptimal approach.

This first impression has led us to take a closer
look at the original formalization from Zeller and
Hildebrandt: we have been looking for ways of im-
proving the performance of the algorithm. Interest-
ingly, parallelization was not the only opportunity for
enhancement.

In this paper, we present algorithm variants, which
can result as small (i.e., 1-minimal) test cases as those
produced by the original formalization but can use re-
sources considerably better. We also present a large-
scale experiment with the algorithm variants to prove
their usefulness in practice.

The rest of the paper is structured as follows: Sec-
tion 2 gives a brief overview of the minimizing Delta
Debugging algorithm and related concepts. Section 3
discusses our observations on the original algorithm
and presents improved variants. Section 4 introduces
the setup of our experiments and details the results
achieved with a prototype tool implementing all algo-
rithms. Section 5 surveys related work, and finally,
Section 6 concludes the paper.

2 A BRIEF OVERVIEW OF
DDMIN

In order to make the present paper self-contained, we
give Zeller and Hildebrandt’s latest formulation of

Hodován, R. and Kiss, Á.
Practical Improvements to the Minimizing Delta Debugging Algorithm.
DOI: 10.5220/0005988602410248
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 241-248
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

241

Algorithm 1: Zeller and Hildebrandt’s.
Let test and c7 be given such that test(0/) = 3 ∧ test(c7) = 7 hold. The goal is to find c ′7 = d dmin(c7) such that c ′7 ⊆ c7,
test(c′7) = 7, and c′7 is 1-minimal. The minimizing Delta Debugging algorithm ddmin(c) is

ddmin(c7) = ddmin2(c7,2) where

ddmin2(c′7,n) =

ddmin2(∆i,2) if ∃i ∈ {1, . . . ,n} · test(∆i) = 7 (“reduce to subset”)
ddmin2(∇i,max(n−1,2)) else if ∃i ∈ {1, . . . ,n} · test(∇i) = 7 (“reduce to complement”)

ddmin2(c′7,min(|c′7|,2n)) else if n < |c′7| (“increase granularity”)

c′7 otherwise (“done”).

where ∇i = c′7−∆i, c′7 = ∆1∪∆2∪ . . .∪∆n, all ∆i are pairwise disjoint, and ∀∆i · |∆i| ≈ |c′7|/n holds. The recursion invariant
(and thus precondition) for ddmin2 is test(c′7) = 7∧n≤ |c′7|.

Delta Debugging (Zeller and Hildebrandt, 2002) ver-
batim in Algorithm 1.

The algorithm takes a test case and a testing func-
tion as parameters. The test case represents the
failure-inducing input to be minimized, while the test-
ing function is used to determine whether an arbitrary
test case triggers the original failure (by signaling fail
outcome, or 7) or not (by signaling pass outcome, or
3). (Additionally, according to its definition, a test-
ing function may also signal unresolved outcome, or
?, but that outcome type is irrelevant to the algorithm.)

Informally, the algorithm works by partitioning
the input test case to subsets and removing as many
subsets as greedily as possible such that the remain-
ing test case still induces the original failure. The al-
gorithm and the partitioning is iterated until the sub-
sets become elementary and no more subsets can be
removed. The result of the algorithm is a 1-minimal
test case, where the definition of n-minimality is:
Definition 1 (n-minimal test case). A test case c⊆ c7

is n-minimal if ∀c′ ⊂ c · |c|−|c′| ≤ n⇒ (test(c′) 6= 7)
holds. Consequently, c is 1-minimal if ∀δi ∈ c ·
test (c−{δi}) 6= 7 holds.

Although the original definition of the algorithm
is more of a recursive math formula, all known im-
plementations realize it as a sequential non-recursive
procedure, as we already mentioned in Section 1.
Therefore, we give an equivalent variant of ddmin2
– the key component of the minimizing Delta Debug-
ging algorithm – in a sequential pseudo-code in Algo-
rithm 2.

3 PRACTICAL IMPROVEMENTS
TO DDMIN

If we take a closer look at the minimizing Delta De-
bugging algorithm, as introduced in the previous sec-
tion, we can make several observations that can lead
to practical improvements. In the next subsections we
discuss such improvement possibilities.

Algorithm 2: Non-recursive sequential pseudo-code.

1 procedure ddminσ
2 (c′7 , n)

2 begin
3 out:
4 while true do begin
5 (∗ reduce to subset ∗)
6 forall i in 1..n do

7 if test(∆
(c′7 ,n)
i) = 7 then begin

8 c′7 = ∆
(c′7 ,n)
i

9 n = 2
10 continue out
11 end
12 (∗ reduce to complement ∗)
13 forall i in 1..n do

14 if test(∇
(c′7 ,n)
i) = 7 then begin

15 c′7 = ∇
(c′7 ,n)
i

16 n = max(n − 1, 2)
17 continue out
18 end
19 (∗ increase granularity ∗)
20 if n < |c′7| then begin
21 n = min(|c′7|, 2n)
22 continue out
23 end
24 (∗ done ∗)
25 break out
26 end
27 return c′7
28 end

3.1 Parallelization

The first thing to notice is that although the imple-
mentations tend to use sequential loops to realize the
“reduce to subset” and “reduce to complement” cases
of ddmin2, as exemplified in Algorithm 2, the poten-
tial for parallelization is there in the original formu-
lation, since ∃i ∈ {1, . . . ,n} does not specify how to
find that existing i. Since n can grow big for real
inputs and test is often expected to be an expensive
operation, we propose to make use of the paralleliza-
tion potential and rewrite ddmin2 to use parallel loops.
The pseudo-code of the parallelized version is given
in Algorithm 3.

In the pseudo-code we intentionally do not specify
the implementation details of the parallel constructs
but we assume the following for correctness and max-
imum efficiency:

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

242

Algorithm 3: Parallel pseudo-code.

1 procedure ddminπ
2 (c′7 , n)

2 begin
3 while true do begin
4 (∗ reduce to subset ∗)
5 found = 0
6 parallel forall i in 1..n do

7 if test(∆
(c′7 ,n)
i) = 7 then begin

8 found = i
9 parallel break

10 end
11 if found 6= 0 then begin

12 c′7 = ∆
(c′7 ,n)
f ound

13 n = 2
14 continue
15 end
16 (∗ reduce to complement ∗)
17 found = 0
18 parallel forall i in 1..n do

19 if test(∇
(c′7 ,n)
i) = 7 then begin

20 found = i
21 parallel break
22 end
23 if found 6= 0 then begin

24 c′7 = ∇
(c′7 ,n)
f ound

25 n = max(n − 1, 2)
26 continue
27 end
28 (∗ increase granularity ∗)
29 if n < |c′7 | then begin
30 n = min(|c′7|, 2n)
31 continue
32 end
33 (∗ done ∗)
34 break
35 end
36 return c′7
37 end

• First of all, assignments to a single variable are
expected to be atomic. I.e., if found = i gets par-
allelly executed in two different loop bodies (with
values i1 and i2) then the value of found is ex-
pected to become strictly either i1 or i2. (See
lines 8 and 20.)

• The amount of parallelization in parallel forall
is left for the implementation, but it is expected
not to overload the system, i.e., start parallel loop
bodies only until all computation cores are ex-
hausted. (See lines 6 and 18.)

• parallel break is suggested to stop/abort all par-
allelly started loop bodies even if their computa-
tion hasn’t finished yet (in a general case, this may
cause computation results to be thrown away, vari-
ables left uninitialized, etc., which is always to be
considered and taken care of, but it causes no is-
sues in this algorithm). (See lines 9 and 21.)

3.2 Combination of the Reduce Cases

To improve the algorithm further, we have to take a
look again at the original formulation of ddmin2 in
Algorithm 1. We can observe that although ddmin2
seems to be given with a piecewise definition, the

Algorithm 4: Parallel pseudo-code with combined reduce
cases.

1 procedure ddminκ
2 (c′7 , n)

2 begin
3 while true do begin
4 (∗ reduce to subset or complement ∗)
5 found = 0
6 parallel forall i in 1..2n do
7 if 1 ≤ i ≤ n then

8 if test(∆
(c′7 ,n)
i) = 7 then begin

9 found = i
10 parallel break
11 end
12 else if n + 1 ≤ i ≤ 2n then

13 if test(∇
(c′7 ,n)
i−n) = 7 then begin

14 found = i
15 parallel break
16 end
17 if 1 ≤ found ≤ n then begin

18 c′7 = ∆
(c′7 ,n)
f ound

19 n = 2
20 continue
21 end else if n + 1 ≤ found ≤ 2n then begin

22 c′7 = ∇
(c′7 ,n)
f ound−n

23 n = max(n − 1, 2)
24 continue
25 end
26 (∗ increase granularity ∗)
27 if n < |c′7 | then begin
28 n = min(|c′7 |, 2n)
29 continue
30 end
31 (∗ done ∗)
32 break
33 end
34 return c′7
35 end

pieces are actually not independent but are to be con-
sidered one after the other, as mandated by the else if
phrases. However, we can also observe that this se-
quentiality is not necessary. There may be several ∆i
and ∇i test cases that induce the original failure, we
may choose any of them (i.e., we don’t have to prefer
subsets over complements), and we will still reach a
1-minimal solution at the end.

We cannot benefit from this observation as long
as our implementation is sequential but we propose
to combine the two reduce cases, and test all subsets
and complements in one step when parallelization is
available. This way the algorithm does not have to
wait until all subset tests finish but can start testing the
complements as soon as computation cores become
available.

Algorithm 4 shows the pseudo-code of the algo-
rithm variant with the combined reduce cases.

The pseudo-code in earlier sections – i.e., Algo-
rithms 2 and 3 – are consistent with the original for-
mal definition of Zeller and Hildebrandt, as shown in
Algorithm 1. They specialize the formalization and
differ from each other only in the way how the exis-
tency check ∃i ∈ {1, . . . ,n} is implemented (i.e., se-
quentially or parallelly). However, the idea of com-
bining the reduce cases as presented in Algorithm 4,
although still yields 1-minimal results, deviates from

Practical Improvements to the Minimizing Delta Debugging Algorithm

243

the original formalization.

3.3 De-prioritization or Omission of
“Reduce to Subset”

Once we have observed that there is no strict need
for sequentially investigating the two reduce cases of
ddmin2, we can also observe that the “reduce to sub-
set” case is not even necessary for 1-minimality. It is
a greedy attempt by the algorithm to achieve a signifi-
cant reduction of the test case by removing all but one
subsets in one step rather than removing them one by
one in the “reduce to complement” case. However,
there are several input formats where attempting to
keep just the “middle” of a test case almost always
gives a syntactically invalid input and thus cannot in-
duce the original failure. (C-like source files with the
need for correct file and function headers and mandat-
ing properly paired curly braces are a typical example
of such inputs.) For such input formats, the “reduce
to complement” case may occur significantly more of-
ten, while the “reduce to subset” case perhaps not at
all. Thus, we argue that it is worth experimenting with
the reordering of the reduce cases, and also with the
complete omission of the “reduce to subset” case, as
it may be simply the waste of computation resources.

The idea of reordering the reduce cases can be
applied to all previously introduced algorithm vari-
ants. However, presenting the modified algorithms
again would be unnecessarily verbose for little ben-
efit. Thus, we only refer to the algorithms shown in
previous sections and mention those parts that need to
be changed to test complements first:

• in Algorithm 2, lines 5–11 and 12–18 should be
swapped,

• in Algorithm 3, swapping lines 4–15 and 16–27
achieves the same, while

• in Algorithm 4, lines 8–11 have to be swapped
with lines 13–16, lines 18–20 with lines 22–24,
and the subscript indices of ∆s and ∇s have to be
updated so that the −n element is applied to ∆s.

The idea of omitting the “reduce to subset” case com-
pletely can reasonably be applied to the sequential
and parallel variants only, as leaving the testing of
subsets from the algorithm with combined reduce
cases would be no different from the parallel variant.
Thus, the changes to be applied for testing comple-
ments only are as follows:

• in Algorithm 2, lines 5–11 are to be deleted, while

• in Algorithm 3, lines 4–15 are superfluous.

4 EXPERIMENTAL RESULTS

During the investigation of the minimizing Delta De-
bugging algorithm, we created a prototype tool3 that
implemented our proposed improvements. At the
very beginning, it was based on Zeller’s public do-
main reference implementation but as new ideas got
incorporated into it, it was rewritten several times
until only traces of the original source remained.
The tool was written in Python 3, and the parallel
loop constructs of the algorithm variants were imple-
mented based on Python’s mutiprocessing module.

For the evaluation platform of our tool and
our ideas, we have used a dual-socket Supermicro
X9DRG-QF machine equiped with 2 Intel Xeon E5-
2695 v2 (x86-64) CPUs clocked at 2.40 GHz and
64 GB DDR3 RAM at 1600 MHz. Each CPU had 12
cores and each core was hyper-threaded, which gave
24 physical cores and 48 processing threads (or log-
ical CPUs seen by the kernel) in total. The machine
was running Ubuntu 14.04 with Linux kernel 3.13.0,
and the native compiler was gcc 4.9.2.

As primary software targets to trigger failure in
and minimize tests for (also known as system under
test, or SUT), we have chosen two real-life web en-
gines – from the WebKit4 and Chromium5 projects
–, for which a large number of test cases were avail-
able. The WebKit project was checked out from its of-
ficial code repository at revision 192323 dated 2015-
11-11 and built in debug configuration for its GTK+
port, i.e., external dependencies like UI elements were
provided by the GTK+ project6. The SUT was the
WebKitTestRunner program (executed with the --no-
timeout command line option), a minimalistic web
browser application used in the testing of layout cor-
rectness of the project. The Chromium project was
checked out from its official code repository at revi-
sion hash 6958b6e dated 2015-11-29 and also built
in debug configuration. The SUT from that project
was the content shell tool (executed with the --single-
process --no-sandbox --run-layout-test options), also
a minimal web browser. As a secondary target, we
have implemented a mock SUT, a parametrized tester
function that can unit test the algorithm implemen-
tations for correctness by working on abstract arrays
as inputs and allowing an explicit control of what is
accepted as failure-inducing or passing, and also al-
lows experimenting with various test execution times
(since the time required for the evaluation of the fail-
ure condition is negligible and the tester can lengthen

3https://github.com/renatahodovan/picire
4https://webkit.org/
5https://www.chromium.org/
6http://www.gtk.org/

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

244

Table 1: Test cases, sizes, and their interestingness condition.
Test Case Size Condition
Chromium A (html) 31,626 bytes / 1,058 lines ASSERTION FAILED: i < size()
Chromium B (html) 34,323 bytes / 3,769 lines ASSERTION FAILED: static cast<unsigned>(offsetInNode)

<= layoutTextFragment−>start()
+ layoutTextFragment−>fragmentLength()

Chromium C (html) 48,503 bytes / 1,706 lines ASSERTION FAILED: !current.value()−>isInheritedValue()
WebKit A (html) 23,364 bytes / 959 lines ASSERTION FAILED: newLogicalTop >= logicalTop
WebKit B (html) 30,417 bytes / 1,374 lines ASSERTION FAILED: willBeComposited == needsToBeComposited(layer)
WebKit C (html) 36,051 bytes / 3,791 lines ASSERTION FAILED: !needsStyleRecalc() || !document().childNeedsStyleRecalc()
Example A (array) 8 elements {5,8} ⊆ c∧ (2 ∈ c∨7 6∈ c)
Example B (array) 8 elements {1,2,3,4,5,6,7,8} ⊆ c
Example C (array) 8 elements {1,2,3,4,6,8} ⊆ c∧{5,7} 6⊆ c
Example D (array) 100 elements {2x|0≤ x < 50} ⊆ c

its running time arbitrarily).
For each of the two browser engine targets, we

have selected 3 fuzzer-generated test cases – HTML
with a mixture of SVG, CSS, and JavaScript – that
triggered various assertion failures in the code. The
average size of the tests was around 2000 lines, with
the shortest test case being 959 lines long and the
longest one growing up to 3769 lines. For the mock
SUT, we have used 4 manually crafted test cases,
which consisted of an array of numbers and a con-
dition to decide about the interestingness of a certain
subset. Three of them were small tests imported from
Zeller’s reference examples, while the larger fourth
(with 100 elements) was specially crafted by us for
a corner case when reduction becomes possible only
when granularity is increased to the maximum. Ta-
ble 1 details the sizes and the interestingness condi-
tions of all test cases.

In the evaluation of the algorithm variants that we
have proposed in the previous sections, our first step
was to check the sizes of the minimized test cases.
The reasons for the investigation were two-fold: first,
as the manually crafted test cases have exactly one 1-
minimal subset, they acted as a sanity check. Second,
as 1-minimal test cases are not necessarily unique in
general, we wanted to see how the algorithm variants
affect the size of the result in practice, i.e., on the real
browser test cases.

We have examined the effect of the reduce step
variations (“subsets first”, “complements first”, and
“complements only”; as described in Section 3.3) on
the algorithm and the effect of the two parallelization
approaches (“parallel” and “combined”; as described
in Sections 3.1 and 3.2) independently. It turned out
that all reduce variants of the sequential algorithm
gave exactly the same result not only for the examples
tests but for the real browser cases as well. Detailed
investigations have revealed that “reduce to subset” is
a very rare step in practice (it happened in the first
iteration only, with n = 2, when subsets and comple-
ments are equal anyway) and because of the sequen-
tial nature of the algorithm, the “reduce to comple-
ment” steps were taken in the same order by all algo-
rithm variants. Parallel variants – executed with the

loops limited to 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48,
and 64 parallel bodies – did not show a big impact on
the result size either, although 0–3 lines of differences
appeared. (Clearly, there were multiple failing com-
plements in some iterations and because of the paral-
lelism, the algorithms did not always choose the same
step as the sequential variant.) Since those 0–3 lines
mean less than 1% deviation in relative terms, we can
conclude that none of the algorithm variants deterio-
rate the results significantly. As a last step of this first
experiment, we have evaluated all algorithm variants
as well (i.e., parallel algorithms with reduce step vari-
ations), and their results are summarized in Table 2.
The numbers show that not only did not get the results
significantly worse, but for WebKit B parallelization
variants found a smaller 1-minimal test case than the
sequential algorithm.

In our second experiment, we have investigated
the effect of the algorithm variants on the number
of iterations and test evaluations needed to reach 1-
minimality. In Table 3(a), we can observe the effects
of the variation of the reduce steps in the sequential al-
gorithm on all test cases. Although the number of iter-
ations never changed, the number of test evaluations
dropped considerably everywhere. Even if we used
caching7 of test results, the “complements first” vari-
ant saved 12–17% of test evaluations on real browser
test cases, while “complements only” saved 35–40%.
The test cases of the mock SUT show a bit more
scattered results with the “complements first” variant
(0–23% reduction in test evaluations), but “comple-
ments only” achieves a similar 36–41%. As test re-
sults are re-used heavily by the original “subsets first”
approach, if we would also interpret those cache hits
as test evaluations then that could mean a dramatic
90% reduction in some cases. Table 3(b) contains the
results of parallelizations – yet again with 1, 2, 3, 4,
6, 8, 12, 16, 24, 32, 48, and 64 parallel loop bodies
allowed. These results might look disappointing or

7In the context of Delta Debugging, caching is the memo-
rization and reuse of the outcomes of the testing function
on already investigated test cases. The caching mechanism
is not incorporated in the definition of the algorithm, since
it can be left for the test function to realize.

Practical Improvements to the Minimizing Delta Debugging Algorithm

245

Table 2: Size of 1-minimal test cases.
Test Case Sequential Parallel Combined
Chromium A 31 (2.93%) 31–34 (2.93–3.21%) 31–34 (2.93–3.21%)
Chromium B 34 (0.90%) 34–37 (0.90–0.98%) 34–37 (0.90–0.98%)
Chromium C 9 (0.53%) 9 (0.53%) 9 (0.53%)
WebKit A 11 (1.15%) 11 (1.15%) 11 (1.15%)
WebKit B 21 (1.53%) 19–23 (1.38–1.67%) 19–23 (1.38–1.67%)
WebKit C 46 (1.21%) 46 (1.21%) 46 (1.21%)
Example A 2 (25.00%) 2 (25.00%) 2 (25.00%)
Example B 8 (100.00%) 8 (100.00%) 8 (100.00%)
Example C 6 (75.00%) 6 (75.00%) 6 (75.00%)
Example D 50 (50.00%) 50 (50.00%) 50 (50.00%)

Table 3: The number of iterations and test evaluations needed to reach 1-minimality. First numbers or intervals in each column
stand for evaluated tests, the second numbers or intervals in parentheses with + prefix stand for cache hits, while the third
numbers or intervals in brackets stand for iterations performed.

(a) Comparison on the effects of reduce step variations (performing all tests sequentially).
Test Case Subsets First Complements First Complements Only
Chromium A 531 (+1589) [76] 466 (+54) [76] 343 (+24) [76]
Chromium B 560 (+1931) [83] 489 (+9) [83] 356 (+3) [83]
Chromium C 263 (+388) [56] 218 (+5) [56] 159 (+2) [56]
WebKit A 265 (+479) [53] 222 (+7) [53] 161 (+3) [53]
WebKit B 503 (+1674) [84] 430 (+21) [84] 319 (+7) [84]
WebKit C 831 (+5127) [129] 714 (+14) [129] 509 (+5) [129]
Example A 22 (+22) [8] 17 (+5) [8] 14 (+1) [8]
Example B 26 (+2) [3] 26 (+2) [3] 14 (+0) [3]
Example C 30 (+16) [5] 28 (+3) [5] 18 (+1) [5]
Example D 472 (+3237) [57] 422 (+16) [57] 276 (+0) [57]

(b) Comparison on the effects of parallelization (testing subsets first).
Test Case Sequential Parallel Combined
Chromium A 531 (+1589) [76] 531–2476 (+1568–2389) [76–89] 531–2933 (+1574–2386) [76–89]
Chromium B 560 (+1931) [83] 560–2016 (+1614–1936) [76–83] 560–2947 (+468–1932) [76–83]
Chromium C 263 (+388) [56] 263–589 (+388–394) [56] 263–958 (+22–388) [56]
WebKit A 265 (+479) [53] 265–675 (+477–486) [53] 265–708 (+452–483) [53]
WebKit B 503 (+1674) [84] 503–2116 (+1668–1771) [84–85] 503–2132 (+1623–1762) [84–85]
WebKit C 831 (+5127) [129] 831–5670 (+5127–5136) [129] 831–5697 (+5115–5132) [129]
Example A 22 (+22) [8] 22–35 (+22–23) [8] 22–53 (+5–22) [8]
Example B 26 (+2) [3] 26 (+2) [3] 26–28 (+0–2) [3]
Example C 30 (+16) [5] 30–38 (+16) [5] 30–51 (+3–16) [5]
Example D 472 (+3237) [57] 472–3398 (+3237–3251) [57] 472–3440 (+3009–3249) [57]

controversial at first sight as the number of evaluated
tests increased, sometimes by a factor of 6 or even
more. However, as we will soon see, this increase is
the natural result of parallelization and is not mirrored
in the running time of the minimizations.

In our third and last experiment, we have investi-
gated the effect of the algorithm variants on the run-
ning time of minimization. First, we have taken a
closer look at the WebKit A test case. We found that
even without parallelization, varying the reduce steps
could decrease the running time by 14% and 35%,
well aligned with the results presented in Table 3(a).
However, when we enabled parallelization (e.g., 64
parallel loop bodies), we could reduce the running
time by 73–75%. Unfortunately, by combining paral-
lelization and reduce step variants, we couldn’t sim-
ply multiply these reduction factors. E.g., with 64-
fold parallelization, the effect of “complements first”
became a 2–5% gain in running time, and the effect
of “complements only” also shrank to 7–15%. Never-
theless, that is still a gain, the combined parallel loops
with complements tests performed only gave the best
results, and reduced the time of the minimization to
72 seconds from the original 316, achieving an im-
pressive 77% reduction.

However, we did not only focus on the WebKit

A test case, but we have taken all 6 real browser tests,
plus parametrized the 4 artificial test cases to run for 0
seconds, 1 second, and randomly between 1 and 3 sec-
onds. That gave 18 test cases in practice, for 3×3 al-
gorithm variants, on 12 different levels of paralleliza-
tion. Even though we skipped the re-evaluation of
duplicates (e.g., “complements first” is the same for
“parallel” and “combined” variants, or sequential al-
gorithms run unchanged independently of the avail-
able computation cores), we got the results of 1098
minimization executions, all of which would be hard
to picture within the limits of this paper. Thus, we
present only the best results for each test case in Ta-
ble 4.

The results clearly show that for most of the cases
(12 of 18) the “parallel complements only” variant
gave the highest running time reduction – as expected.
Perhaps it is worth discussing those elements of the
table, which are a bit less expected: first of all, it
might be surprising that parallelization did not always
work best at the highest level used (64). However,
we have to recall that the machine used for evalu-
ation has 24 real cores only (and 48 logical CPUs
seen by the kernel, but those are the result of hyper-
threading), and it should also be considered that the
browser SUTs are inherently multi-threaded or even

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

246

Table 4: Algorithm variants giving the highest reduction in running time of minimization.
Test Case Best Algorithm (Parallelization Level) Best/Original Time Reduction
Chromium A Parallel Complements-Only (24) 231s / 904s 74.42%
Chromium B Parallel Complements-Only (16) 180s / 890s 79.78%
Chromium C Parallel Complements-Only (8) 102s / 413s 75.28%
WebKit A Parallel Complements-Only (12) 70s / 316s 77.63%
WebKit B Parallel Complements-Only (12) 127s / 584s 78.26%
WebKit C Parallel Complements-Only (12) 192s / 915s 78.97%
Example A (0s) Sequential Complements-Only (1) 0.0020s / 0.0023s 13.79%
Example A (1s) Combined Subsets-First (64) 7s / 22s 67.79%
Example A (1–3s) Combined Subsets-First (32) 11s / 45s 75.34%
Example B (0s) Sequential Complements-Only (1) 0.0011s / 0.0014s 23.58%
Example B (1s) Parallel Complements-Only (16) 3s / 26s 88.29%
Example B (1–3s) Parallel Complements-Only (16) 7s / 50s 85.91%
Example C (0s) Sequential Complements-Only (1) 0.0016s / 0.0020s 20.80%
Example C (1s) Parallel Complements-Only (24) 5s / 30s 83.13%
Example C (1–3s) Parallel Complements-Only (16) 8s / 53s 84.78%
Example D (0s) Sequential Complements-Only (1) 0.0436s / 0.0762s 42.76%
Example D (1s) Parallel Complements-Only (64) 58s / 472s 87.69%
Example D (1–3s) Parallel Complements-Only (64) 79s / 939s 91.48%

multi-process, thus even a single instance may occupy
more than one cores. It may also come as a surprise
that a sequential algorithm turned out to perform best
for some artificial test cases. These were the cases
when the evaluation of the interestingness of a test
was so quick that the overhead of the parallelization
implementation became a burden. (In practice, test
implementations rarely run so fast.)

As a summary, we can conclude that all proposed
variants of the Delta Debugging algorithm yielded a
measurable speed-up, with best combinations gaining
cca. 75–80% of the running time on real test cases,
i.e., needing only one-fourth to one-fifth of the origi-
nal execution time to reach 1-minimal results. More-
over, on manually crafted test cases, even higher run-
ning time reduction could be observed.

5 RELATED WORK

The topic of test case reduction is an almost two
decades old research area. Many of the works in this
subject are based on Zeller and Hilldebrand’s pub-
lication (Hildebrandt and Zeller, 2000), which gave
a general, language independent and greedy solution
for the 1-minimal test case reduction problem. Al-
though the approach works well, but due to its gen-
erality it can be sub-optimal in performance and this
fact gives room for optimizations or specializations.

Misherghi and Su experimented with replacing
the letter and line based splitting with code units de-
termined by language grammars (Misherghi and Su,
2006). Running Delta Debugging on code units could
avoid the generation of large amounts of syntactically
incorrect test cases that would have been thrown away
anyway.

Another approaches used static and dynamic anal-
ysis, or slicing to discover semantic relationships
in the code under inspection and reduce the search
space where the failure is placed (Leitner et al.,

2007; Burger and Zeller, 2011). Few years later,
Regehr et al. used Delta Debugging as one possible
method in their C-Reduce test case reducer tool for
C sources. This system contains various source-to-
source transformator plugins – line-based Delta De-
bugging among others – to mimic the steps that a hu-
man would have done.

Regehr also experimented with running the plu-
gins of C-Reduce in parallel. His initiative results
were promising but, to our best knowledge, he hadn’t
performed extensive evaluations later. The write-
up about this work is available on his blog (Regehr,
2011).

6 SUMMARY

In this paper, we have taken a close look at the mini-
mizing Delta Debugging algorithm. Our original mo-
tivation was to enable the algorithm to utilize the
parallelization capabilities of multi-core and multi-
processor computers, but as we analyzed it, we found
further enhancement possibilities.

We have realized the parallelization potential im-
plicitly given in the existency checks of the original
definition of the algorithm (although never exploited
by its authors), but we have also pointed out that the
same original definition unnecessarily prescribed se-
quentiality elsewhere, for its “reduce to subset” and
“reduce to complement” steps. Moreover, we have
argued that the “reduce to subset” step of the origi-
nal algorithm may even be omitted completely with-
out losing its key property of resulting 1-minimal test
cases but being more effective for some types of in-
puts. Each observation has led to an improved algo-
rithm variant, all of which are given in pseudo-code.

Finally, we presented an experiment conducted on
4 artificial test cases and on 2 wide-spread browser
engines with 3 real test cases each. All test cases
were minimized with all presented algorithm variants

Practical Improvements to the Minimizing Delta Debugging Algorithm

247

and with 12 different levels of parallelization (rang-
ing from single-core execution – i.e., no paralleliza-
tion – to 64-fold parallelization on a computer with
48 virtual cores). The results of the 1098 success-
fully executed test case minimizations prove that all
presented improvements to the Delta Debugging algo-
rithm achieved performance improvements, with best
variants reducing the running time on real test cases
significantly, by cca. 75–80%.

For future work, we still see improvement possi-
bilities and research topics. We plan to investigate
how the best algorithm variant can be selected for a
given hardware and SUT, and which order of subset
and complement tests work for different input formats
the best.

ACKNOWLEDGMENTS

This work was partially supported by the European
Union project “REPARA”, project number: 609666.

REFERENCES

Burger, M. and Zeller, A. (2011). Minimizing reproduction
of software failures. In 2011 International Symposium
on Software Testing and Analysis, pages 221–231.

Hildebrandt, R. and Zeller, A. (2000). Simplifying failure-
inducing input. In 2000 International Symposium on
Software Testing and Analysis, pages 135–145.

Leitner, A., Oriol, M., Zeller, A., Ciupa, I., and Meyer, B.
(2007). Efficient unit test case minimization. In 22nd
International Conference on Automated Software En-
gineering, pages 417–420.

Misherghi, G. and Su, Z. (2006). HDD: Hierarchical delta
debugging. In 28th International Conference on Soft-
ware Engineering, pages 142–151.

Regehr, J. (2011). Parallelizing delta debugging.
http://blog.regehr.org/archives/749.

Takanen, A., DeMott, J., and Miller, C. (2008). Fuzzing
for Software Security Testing and Quality Assurance.
Artech House.

Zeller, A. (1999). Yesterday, my program worked. Today,
it does not. Why? In 7th European Software Engi-
neering Conference/7th International Symposium on
Foundations of Software Engineering, pages 253–267.

Zeller, A. and Hildebrandt, R. (2002). Simplifying and iso-
lating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2):183–200.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

248

