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Abstract: Autists may exhibit difficulty in interaction (social and communication) with others and also stereotyped
gestures. Thus, autists have difficulty to recognize and to express emotions. Human-Robot Intéd&itjon (
researches have contributed with robotic devices able to be mediator among autist, therapists and parents. The
stereotyped behaviors of these individuals are due to their defense mechanism from of their hypersensitivity.
The affective state of a person can be quantify from poses and gestures. This paper proposes a system is able
to infer the defense level of autists from their stereotyped gestures. This system is part of the socially assistive
robot project calledHiBot. The proposed system consist of two cognitive subsystems: Hidden Markov Models
(HMM ), in order to determine the stereotyped gesture, and Fuzzy Inference Si8ntd infer activation
level of these gestures. The results of these simulations show this approach is able to infer the defense level
for an task or the presence of the robot.

1 INTRODUCTION non-verbal, such as face, body and voice (Zeng et al.,
2009). Researches have focused on face expression,
Autism Spectrum DisorderASD) belongs to the  butstudies have also shown body cues are as powerful
group of pervasive developmental disorders which is as facial cues in conveying and recognizing of emo-
characterized by deficits in social interaction, com- tions. The quantification of the human affective state
munication, and stereotyped (or unusual) behaviors from the poses and gestures (Camurri et al., 2003) has
(Levy et al., 2009). The autist has difficulty to express been proposed as a way to recognize emotions. In ad-
and to recognize social cues, as emotion through fa-dition, (Kuhn, 1999) assumesereotyped gestures
cial and body expression and gaze eyes. The majorare defense mechanisms of autists due to their hyper-
treatments folASD rely on psychiatric medications, —sensitivity.
therapies and behavioral analysis (or both). For these reasons, we propose a system to affec-

Both software (Parsons et al., 2004) and robotic tive state recognition from thstereotyped gestures
devices (Goodrich et al., 2012) have been developedof autists in this paper. The gestures are recognized
to aid the treatment of autism. The design of such using Hidden Markov ModelsHMM ). A Fuzzy In-
robotic devices is naturally demand for multidisci- ference SystemHS) is used to infer the affective
plinary teams, because they may involve different state (defense level) of the autist from the gesture rec-
fields of health, engineering and computing. ognized and kinetic of joint groups.

The use of robots as social partners for autis- This paper is organized as follows. In Section 2,
tic children has already been proposed (Dautenhahn,we define affective state, body expression, and the re-
2003; Goodrich et al., 2012) within the field of Hu- lationship between autism. Classification and infer-
man Robot InterfaceHRI). Theses devices can be- ence tools are described in Section 3. Details of the
have as mediators among autists, therapist, parentsproposed system architecture is presented in the Sec-
The affective state recognition of a person is essentialtion 4. Experiments of proposed model and their re-
for a social partner robot. sults are discussed in Section 5. Finally, a general

A human can express himself through verbal and discussions about the contributions of this paper and
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future works are present in Section 6. 2.3 Autism Spectrum Disorders

Autism Spectrum DisorderASD) is a neuropsychi-
2 BACKGROUND atric disorder characterized by severe damage in the
socialization and communication processes. Gener-
ally, autist may also have a unusual pattern or stereo-
typed behaviors (Levy et al., 2009). Novel researches
. . have been indicated that several factors are associated
Although the human emotional state is present only with theautism. Some of these known factors are ge-

:n mmd,t a’.‘ﬂsome uncogsc;oui S|?nals f:jorln body al- netic, neurological anomalies and psychosocial risks
ow us to infer the mood. Particular models are es- (Levy et al., 2009).

sential to define the human affective state. There are

2.1 Affective State

(Kuhn, 1999) assumes that the stereotypic behav-
iors in autists are defense mechanism due to their hy-
rlpersensitivity. Sometereotyped gestureghat can

. . e noted are: (iBody Rocking (repetitive move-
piness, sadness, fear, anger, surprise and tendernes% (IBody g (rep

. . . . ent to forward and backward of the upper torso); (ii)
and these emotions are basic anq_expe_rlme_nted '”de'Top Spinning (walk in a circle); (iii) Hand Flapping
pendently from each other; and (a)‘feptlve dimen- (swing motion of the hands up and down); (h¥ad
sionsapproach, also calleGore _Affectlveby (Rus? Banging (hitting head on the floor or wall). Théead
sell, 2003), assumes that emotions are appropriately,

ted i tional ol fval A | Banging was not considered in this papers specially
represented in an emotional plan ot valence/arousal. pecqse the trajectory of their movement is similar to

Body Rocking.

be expressed by a small set of emotioagy( hap-

2.2 Body Expressions

Studies on body language have advanced, though they,

are still few if compared with researches on facial ex- 3 CLASSIFICATION AND

pressions or voice. Two properties about emotional INFERENCE TOOLS

quality from body expression are considered (Wall-

bott, 1998): (i)static configuration (postureand (ii) In this paper, we propose the use of two cognitive
dynamic or movement configuration (gesturgpw- tools for recognizing thetereotyped gestureand in-
ever, most of body cues may indicate only activation ference of autist defense leveHMM (Subsection
level of the person. Thus, these cues just work to 3.1) andFIS (Subsection 3.2), respectively. Figure
differentiate emotions. The energy (power) of move- 1 (B) shows this proposed model.

ments is of these cues. The highest values related to

hot anger, elated joy and terror emotions, the lowest 3.1 Hidden Markov Models

values corresponded to sadness and boredom.

A way to get relevant emotional features from the Hidden Markov ModelsiMM ) are doubly stochas-
full-body movements is through the Quantity of Mo-  tic models, because they have an underlying Markov
tion (QoM) (Camurri et al., 2003). QoM canrevel ac- chain and to transit their stochastic states symbols
tivation level, for example, during dance performance need to be emitted. This emitting process is itself
showed that movements of the limbs associated with 3 stochastic process, once it has a probability dis-
anger and joy are significantly high values of QOM.  tribution over the states and to following the timing

Now, letvi(f) denote the module of velocity of  of the transitions. Since the symbol output probabil-
each limbl at time framef as ity distribution of a continuou$iMM is given by a

vi(f) =X (6 +w(H)+a(f), (1) mixture of Gaussians, HMM can be expressed as
A= (Ac,u,U), where: A is the matrix of transition
probabilities; c is a set of coefficients (weights for
each Gaussian in the mixture of Gaussiansyep-
resents the averages of each Gaussian in the mixture

1N andU also represents the covariance matrices of the
Ewot(f) = > S my ()2, (2) Gaussians.

=1 The HMM can be applied for supervised learn-

wherem is the approximated of the limb mass based ing pattern recognition tasks. The training process of
on biometrics anthropometric tables (Dempster and theHMM consists of the presentation of sequences of
Gaughran, 1967). outputs (training sequences) from a particular system.

wherex (), yi(f) andZ (f) are cartesian velocities.

The body kinematic energB:t(f), can be an ap-
proximated by sum of the kinematic energy of each
limb as
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A training algorithm adjusts thelMM ’s parameters A Gaussian membershipg, represents a s&,

in such a way that when a new observation sequencewhereG is a gaussian curve, and it is defined by aver-
from the system being modelled is given as input to ageX and standard deviatiom,

theHMM , the probability that the model was gener- D

ated will be presented in output. This discussion leads _ (x=X)

to the three basic problems of thMM (Rabiner, He(X) =e 202 | (4)

1989; Fink, 2008): .
. ._ A S-shape memberships, represents a se3,
Problem 1 - To find the probability that theIMM A whereSis a “S” curve, and it is defined two parame-
generated a given sequence of observation sym-tersag andps such that,

bolsO = 04,0,,...,01, whereT is the length of

the sequenceé?(O|A)); 0 X< Ols
Problem 2 - To find the underlying optimal state se- X—ds \? as+Ps

quenceQ = 1,0y, ...,qr of A that was needed to (Bs—ds> ; ds<X<—5—

generate;, Oy, ...,O1 (P(Q|O,\)); Hsl) = x—Bs \* as+Ps - ®
Problem 3 - To adapt the model parameters in order 1-2 (Bs—as> ’ 2 sx<Ps

to maximizeP(OJA). 1, x> PBs

A Z-shape membershigyz, represents a se,
3.2 Fuzzy Inference System whereZ is a “Z” curve , and it is defined two param-
etersoz andfz such that,

Fuzzy Inference System#&IS) are widely used for
problems what the variables of the real worlds are 1 x<az
complex or unclear. These systems are knowledge- 1 o X-O 2 cx< oz +Bz
based (or rule-based) and such knowledge can be ob- T ([32 —Olz) o Oz=Xs o 6
tained from human experts. It can be defined by fuzzy bz (%) x—B \? az+Pz - (6)
rules of IF — THEN type. EachlF — THEN rule is Z(Bz_az) 5 =x=Pz

a statement in which some words are represented by 0, x> Bz
continuous membership functions (Wang, 1997). The
value of the membership function informs the degree

of membership into a fuzzy set.
(Wang, 1997) indicates three types of fuzzy sys- 4 SYSTEM OVERVIEW

tems. They differ basically about how they deal with . . . . .
. ; f This paper is part of the robotics project calldiBot
Inputs and outputs variables of the system: (see Figure 1 (A)). TheliBot has been developingin

Pure Fuzzy System -It is a generic model with in- the laboratory of robotics at the Electrical Engineer-
puts and outputs based on words of natural lan- ing Department, Federal University of Bahia. It aims

guage, to be a platform for experiments on Human Robot In-
TSK (Takagi-Sugeno-Kang) Fuzzy System 4t has  teraction tRI). _

input variables combine words of natural lan- The HiBot has a sets of affective actuators and

guage and Real values, but output variables areSensors. These sets are arranged by modules. The

0n|y real values; affective actuators aim to promote interaction with

through social protocols (face and voice expressions).
That way, we define two modules: (i) Voice Synthe-
sis Module (VSM) and (ii) Facial Expression Module
(FEM). The affective sensors aim to get affective cues
Fuzzyfier and Defuzzifier are based on member- conveyed by different modais, such as face, body,
ship functions. The membership functions translate voice and electroencephalography (EEG). Thiis,
variable values from one universe to another. There bot has four affective sensory modules: (i) Facial
are different membership functions, such as Single- Expression Recognition Module (FERM); (ii) Body

Mamdani - Both Fuzzifier and Defuzzifier asso-
ciates translate real input to output variables into
natural language.

ton, Gaussian, S-Shape and Z-Shape. Expression Recognition Module (BERM); (iii) Voice
A Singleton membershipy, represents a set Expression Recognition Module (VERM); and (iv)
which is associated to a crisp numbey such that, EEG Recognition Module (EEGRM). We focus on
) the BERM in this paper.
W (x) = {17 if x=ay 3) The BERM gets stereotyped gesturesfrom
0, otherwise autists to recognize his affective stare (defense level).
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Figure 1: (A) General model of HiBot project and (B) Body Eagsion Recognition Module architecture.

The architecture of this module is shown in of Figure (stress) level of target autist.

1(B). The camera sensor is a Kin&ct This device

has a set of sensors (RGB and IR cameras, accelerom4.1 Feature Extraction

eter, and microphone array) and also a motorized tilt

(Microsoft, 2013). We used the RGB and IR cameras The joint orientation data are computed by a algo-

in this paper. The IR camera provides depth infor- rithm of feature extractions. This procedure was ap-

mation of environment and objects. The IR Emitter plied in order to both reduce the dimensionality (from

projects on the environment (and objects) several in- 4 to 3) of the acquired input data and obtain a mean-

frared lasers. The IR Sensor captures the IR lasersingful representation of this data. Results from this

projected. Due to this, Kine8tis able to infer the algorithm are the input telMM subsystem.The fol-

distance (depth) between objects and IR sensor. lowing subsections describe the step-by-step this al-
OpenNI/NITE frameworks are used for develop- gorithm.

ment of 3D sensing middleware and applications. ]

Currently, they are maintained by Structure Sensor 4-1.1 Merging

(Structure, 2013). These software extract information _ _ _ _

about position and orientation of the joint of an at- The fII’S.t step of feature extractions algo_rlthm consist

tending person. The joint considered in this paper are: in merging the four quaternion streams into only one

head, neck, shoulders, elbows, hands (wrists), trunk,Stream. This was achieved by averaging the compo-

hips, knees and foots (ankles). nents. So, le, for 1 < ilg 4,.deno.te thé.Lth quater-
The joint data (orientation and position) from 40 Nion stream. The resulting signal is given by

frames are stored inBuffer. Joint orientation data are _ yh,8

processed by feature extraction algorithm (Subsection =T (7)

4.1). Likewise, Quantity of Motion (Equation 2) is

applied on the joint position data. 4.1.2  Frequency Spectrum

The feature extraction algorithm results are used
by HMM Subystem (Subsection 4.2). Thus, the in- After the merging step, the frequency spectrum of the
puts of FIS Subsystem are the stereotyped gesture recSignal s, evaluated from the Fast Fourier Transform
ognized by HMM Subsystem and the QoMs of each (FFT)algorithm, is appendedto it, to generate the sig-
joint group. FIS Subsystem must infer the defense Nals=[S FFT(8)].

200



Recognition of Affective State for Austist from Stereotyped Gestures

4.1.3 Short-Time Analysis 4.3 FIS Subsystem Setup

The Short-Time Analysis is performed with the signal FIS Subsystem infers the state of defense from the
sdivided in segments having = M1 + My samples  stereotyped gesturerecognized byHMM Subsys-
centered at the-th sample, given b (m) = s(A+ tem. Model of FIS subsystem has 5 inputs: (i) Stereo-
m), with —M1 < m < M. This segment is further typed Gesture, (ii) QoM Head/Neck, (iii) QoM Upper
multiplied (element-wise) with a Hamming window Limbs, (iv) QoM Lower Limbs and (v) QoM Trunk.
function given by The output of this model iDefense Level
The first input of the fuzzifies is thstereotyped
omy B gesturerecognized byHMM subsystem. Thus, this
w(n) = {8'54 0-46cod577), g;fmciséeM 1, (8) fuzzifier has 3 linguistic variables: (Body Rocking
’ (BR), (ii) Hand Flapping (HF) and (iii) Top Spin-
. : ; . ning (TS. These linguistic variables are defined by
of 3%%219 the segments obtained with an overlapping Singletormembership function (Equation 3). The pa-
' rametersn, for these linguistic variables are respec-

The energy of each segmesytis then calculated tively 1, 2 and 3. Figure 2 (A) shows these linguistic

as

My variables and its values.
Ei= ZM s()), (9) The processing of QoM (see Equation (2)) is exe-
j==M; cuted in the following joint groupstHead/NeckUp-

that is the first component of the observation vectors. Per LimbsLower LimbsandTrunk Thus, the inputs
Second and third components are respectively the first QoM Head/NeckQoM Upper Limbs QoM Lower
and second derivatives of this energy with respect to LimbsandQoM Trunkmaps QoM of joint groups.

A. Figure 2(B)-(E) show 4 inputs dfIS Subsystem
with three linguistic variabled:ow, MiddleandHigh.
4.2 HMM Subsystem Setup Linguistic variableLow is defined byZ-Shapemem-

bership function (see Equation (6)). The values of pa-

In this work, theHMMs is applied to recognize ges- ametersiz andpz are as follows,

tures from sequences of joint orientation acquired Y

with sensor camera Kiné8tand stored irBuffer of _ (02, Bz] = [Xow, MaX_ou], (11)
size 40. The features are extracted (see SubsectiorwhereX ow, Max ow are average and maximum val-
4.1) from these sequences to generate arrays of feaues of low subgroup related to the training samples.
ture vectors. These arrays, in turn, will represent the  Linguistic variable Middle is represented by
sequence of observation symb@s Each gesture is  Gaussiarmembership function. The values of its pa-

associated with MM . rameterss andX are defined as,
The training procedure is given by the solution il —
to the third problem. Leh; = (A, G, 1,U;) denote [0, X] = [OLH, XLH], (12)

theHMM associated to thieth gesture, with a given  whereo,y, Xy are standard deviation and average

initial condition, the training procedure should adapt related to high and low subgroups of the training sam-

these parameters using enough (typically several) ob-pjes.

servation symbols sequend@g,;, from thei-th ges- Finally, linguistic variableHigh is defined byS-

ture such that the likelihood that the reSUlting model Shapgnembership function (Equation (5)) The val-

is given by - ues of the parametees; andps are as follows,
)\i:(AhCiaMan)~ (10) . vi

The mechanism to evaluate the aforementioned [as, Bs] = [Minkigh, Xeignl, (13)
likelihood is given by the solution to the first problem.  where Minyigh and Xuigh are respectively minimum
The HMM training uses 200 samples Siereotyped and average values of high subgroup related to the
gesture(100 for each activation group). training samples.

Each gesture has afMM whereBody Rocking FIS Subsystem is based ddamdani. That way,
andHand Flapping have 3 states, antbp Spinning we define 15 weighted rules. Table 1 shows these
has 4 states. The number of Gaussian mixtures wasrules and their respective weights.
the same in all three case is 3. Body Rocking andHand Flapping are defined

respectively byhead/neckand upper limbs Top
Spinning is defined bylower limbsandtrunk. Be-
sides that, a weight is assigned to each rule. The last
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Table 1: Defining the rules and their weights (W.) with
Defense Level (D. Level) for stereotyped gestures (Ge.):
Body Rocking (BR), Hand Flapping (HF) and Top Spinning
(TS). Linguistic variables HIGH (HI.), MIDDLE (MI.) and
LOW (LO.) are defined according to each QoM (Q.) of joint
groups Head/Neck (H/N), Upper Limbs (UL), Lower Limbs
(LL) and Trunk.

Low  Middle

(O

Middle

Ge.| Q. Q. | Q. Q. D. W.
H/N | UL | LL | Trunk | Level

BR | HI. | any | any | any HI. 1.00
BR | Ml. | any | any | any MI. | 1.00
BR | LO. | any | any | any LO. | 1.00
HF | any | HI. | any | any HI. 1.00
HF | any | MI. | any | any MI. | 1.00
HF | any | LO. | any | any LO. | 1.00
TS | any | any | HI. HI. HI. 1.00
TS | any | any | HI. MI. HI. | 0.50
TS | any | any | HI. LO. MI. | 0.25
TS | any | any | MI. HI. HI. | 0.50
TS | any | any | MI. MI. MI. | 1.00
TS | any | any | MI. LO. LO. | 0.50
TS | any | any | LO. HI. MI. | 0.25
TS | any | any | LO. | MI. LO. | 0.50
TS | any | any | LO. | LO. LO. | 0.50

0 0s 1 15 2 25

&
=10

Figure 2: Input of FIS Subsystem: (A) Gesture, (B) QoM
of Head and Neck, (C) QoM of Upper Limbs, (D) QoM of
Lower Limbs, and (E) QoM of Trunk.

column @V.) in Table 1 define the values of weight of

level between joint groupspper limbandtrunk. It
is assigned to the maximum, medium ad minimum
differentiation, 0.25, 0.50 and 1.00, respectively.

The output of thé=IS Subsystem has three Gaus-
sian membership functionLow, Middle and High
(see Figure 3). The defuzzifier uses Centroid method,
aggregationMaximum and implication Minimum
These membership functions are equally distributed
on the universe of values. The output of defuzzifier
represents the defense level of a person waittism.

T T T T T T T T T
Ldw Hiddle Hiph

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tefenselevel

Figure 3: Defuzzifier (defense level) with 3 Gaussian mem-

rules. The weight is a real value that can be 0.25, 0.50 Pership function: Low, Middle or High.

or 1.00.

The value 1.00 is assigned to the weights of the
rules related tdody Rocking andHand Flapping
gestures. The weight values for rules of the gesture
Top Spinning depends on the difference of activation
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5 EXPERIMENTS Results of these simulations present the defense
level for each gesture. In this way, we analyze
Simulations of the BERM allow us to analyzing its whether these results coincided with expected defense

behavior and also expected results. MATLREnd level. These results are discussed in the following sec-
HMM/FIS toolboxes (Murphy, 1998) were used to 0N

simulate the BERM. MATLAE® is a high-level lan- . .

guage and interactive environment well known by the 9.2 Results and Discussion

community of scientists and engineers. o ) )
In order to represent the statistics of the simulations

results, we use the confusion matrix. Simulation
results show theHMM Subsystem recognized all
stereotyped gesturésand Flapping and Top Spin-
For each gesture, we defined two simulation scenar-ning. Although the results foBody Rocking lower
ios: high andlow activation. In this way, an actor than the other gestures, their performance was 86%
performed repeatedly each scenarios of shereo- hit (see Table 2). The efficiency of théMM is due
typed gestures These gestures were recorded us- to two reasons: (istereotyped gesturesare well-
ing Kinect® device and OpenNI/NiTE frameworks. defined and distinct from themselves. (i) tH&IM
Thus, the RGB-D image frames were stored together Subsystem should not differentiate among subgroups
with position and orientation metadada of each joint. of gestures (high or low activation).
Figure 4 shows RGB-D images atereotyped

gestures Body Rocking (A.1 and A2),Hand Flap- Table 2: Confusion matrix of recognition stereotyped ges-
ping (B.1 and B.2) andop Spinning (C.1 and C.2).  ture by HMM Subsystem.

Body Hand Top
Rocking | Flapping| Spinning

5.1 Methodology

Body Rocking| 86% 0% 14%
Hand Flapping] 0% 100% 0%
Top Spinning 0% 0% 100%

Tables 3, 4, 5 show the performancefd& Sub-
system for eaclstereotyped gesture We consider
defense level is high for values above or equal to 0.5.
Therefore, the defense level is low for values below
0.5.

Table 3 shows the defense level for gestoaly
Rocking presents better adjustments values for high
activation (98%) than for low activation (82%).

Table 3: Confusion matrix of activation level for Body

Rocking.
High | Low
Gl . High | 98% | 2%
Figure 4: RGB-D images of stereotyped gestures performed Low | 18% | 82%

by an actor.

However, Table 4 shows gesturand Flapping
After that, the samples were manually extract. presents better adjustments values of defense level for
Each sample has data about joints (position and ori- low activation (100%) than for high activation (96%).
entation) of 40 image frames. The scenarios of each
stereotyped gesturénave 150 samples of which: 100  ;
samples were used to training and other 50 were used”"%

Table 4: Confusion matrix of activation level for Hand Flap-

to simulation. High | Low
The parameter values of QoM membership func- High | 96% | 4%
tion high (Equation (13)), middle (Equation (12)) and Low | 0% | 100%
low (Equation (11)) were defined from the training
samples of HMM. The defense level for the gestufep Spinning
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