
Management of Data Quality Related Problems
Exploiting Operational Knowledge

Mortaza S. Bargh1, Jan van Dijk1 and Sunil Choenni1,2
1Research and Documentation Centre, Ministry of Security and Justice, The Hague, Netherlands

2Research Centre Creating 010, Rotterdam University of Technology, Rotterdam, Netherlands

Keywords: Data Quality Issues, Data Quality Management, Knowledge Mapping, User Generated Inputs.

Abstract: Dealing with data quality related problems is an important issue that all organizations face in realizing and
sustaining data intensive advanced applications. Upon detecting these problems in datasets, data analysts often
register them in issue tracking systems in order to address them later on categorically and collectively. As
there is no standard format for registering these problems, data analysts often describe them in natural
languages and subsequently rely on ad-hoc, non-systematic, and expensive solutions to categorize and resolve
registered problems. In this contribution we present a formal description of an innovative data quality
resolving architecture to semantically and dynamically map the descriptions of data quality related problems
to data quality attributes. Through this mapping, we reduce complexity – as the dimensionality of data quality
attributes is far smaller than that of the natural language space – and enable data analysts to directly use the
methods and tools proposed in literature. Furthermore, through managing data quality related problems, our
proposed architecture offers data quality management in a dynamic way based on user generated inputs. The
paper reports on a proof of concept tool and its evaluation.

1 INTRODUCTION

Organizations and enterprises that realize and
operationalize data intensive applications spend a lot
of efforts and resources to deal with imperfections
flaws, and problems in the (large and heterogeneous)
datasets that they use as raw materials. For example,
in our research center of the Dutch Ministry of
Security and Justice, advanced applications are
designed and deployed to produce insightful reports
on judicial processes and crime trends for legislators,
policymakers and the public. Example applications
include Public Safety Mashups (Choenni and
Leertouwer, 2010) and Elapsed Time Monitoring
System of Criminal Cases (Netten et al., 2014). These
applications rely on various datasets – as collected
and shared by our partner organizations – that are
integrated by using data warehouse and data space
architectures (van Dijk et al., 2013). Often such
datasets contain inconsistent, imprecise, uncertain,
missing, incomplete, … data values and attributes.
Such problems in datasets may cause inaccurate and
invalid data analysis outcomes, which can mislead
data consumers eventually.

Upon detecting these problems in datasets, data
analysts often report them in Issue Tracking Systems
(ITSs) in order to address them later on categorically
and collectively. There is no standard format for
registering these problems and data analysts often
describe them in natural languages in a quite freestyle
form. For example, in a dedicated ITS, the data
analysts in our organization have registered the
following observed dataset problems: Not being able
to process criminal datasets at a regional scale
because the datasets were delivered at a national
scale, not being able to carry out trend analysis due to
lack of historical criminal data records, or not being
able to run concurrent queries due to temporary
datasets being distributed across various locations, a
problem also reported in (Birman, 2012).

Because data analysts register observed dataset
problems in natural languages, categorization of the
registered problems based on their freestyle
descriptions becomes tedious and challenging. On the
one hand, problem descriptions belong to a “natural
language space” of high dimensionality and
complexity. On the other hand, finding some
meaningful categories for these problem descriptions
becomes another concern for data analysts. Having

Bargh, M., Dijk, J. and Choenni, S.
Management of Data Quality Related Problems - Exploiting Operational Knowledge.
DOI: 10.5220/0005982300310042
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 31-42
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

31

meaningful categories means that the problems in
every category have similar solutions and can be
resolved collectively. In practice, currently data
analysts come up with ad-hoc, non-systematic, and
expensive solutions to categorize and resolve
registered problems.

Problems observed in datasets are generally
related to Data Quality (DQ) issues. For instance, the
problems in our datasets mentioned above are related
to the DQ attributes of completeness and consistency.
DQ is a field that is extensively studied in recent
years, having a sound theoretical foundation and a
rich set of solutions proposed in literature. It seems,
therefore, promising to map the registered dataset
problems to DQ issues. Hereby one can reduce
complexity – as the DQ space dimensionality is far
smaller than that of the natural language space – and
make use of the DQ methods and tools proposed in
literature directly. Mapping the registered problems
to DQ issues, nevertheless, is not straightforward.

In this contribution, we aim at managing and
resolving the dataset problems detected by data
analysts through mapping them to DQ issues and
making use of DQ management tools. (Note that we
shall use terms “DQ related problems” and “DQ
issues” to refer to dataset problems as described in
natural language space and to refer to DQ issues as
described in the DQ space, respectively.) To this end,
we propose a functional architecture for

a) Semantically mapping the linguistic descriptions
of such problems to DQ issues,

b) Automatically prioritizing the severity levels of
DQ issues,

c) Automatically categorizing DQ related problems
according to the priority levels of the
corresponding DQ issues, and

d) Resolving DQ related problems based on their
categories, which depend on the severity levels
of the corresponding DQ issues.

When data analysts resolve these DQ related
problems, they also carry out DQ management. As a
by-product, therefore, the proposed architecture
provides organizations with insight into their DQ
issues in a dynamic (i.e., real-time) way, relying on
user-generated inputs (i.e., the problem descriptions
inserted by data analysts). From this perspective, our
proposed architecture to map high-dimensional DQ
related problems into low-dimensional DQ issues is
inspired by (Davenport and Glaser, 2002) that aims
“to bake specialized knowledge into the jobs of
highly skilled workers” in order to take advantage of
the rich body of knowledge in a field. By mapping the
DQ related problems to DQ issues, we can look up
the literature and tools that pertain to resolving the

mapped DQ issues. Subsequently, the DQ related
problems are solved according to the latest insights
and tools. The current work extends our early results
(Bargh et al., 2015b; Bargh et al., 2015c) by (a) a
formal description and (b) some extended functions
for the problem solving part. We evaluate the
proposed architecture functionally and practically,
the latter by design and realization of a proof-of-
concept.

The paper starts with providing some background
about DQ management and the related work in
Section 2. Subsequently the motivations for and
principles of our problem solving architecture are
presented in Section 3 formally. The proposed
architecture is validated by a proof-of-concept, as
described in Section 4, where also some performance
aspects are evaluated. Our conclusions are drawn and
the future research is sketched in Section 5.

2 BACKGROUND

This section gives some background information on
the functional components of DQ management,
outlines the motivations of the work, and provides an
overview of the related work. For an overview of DQ
management methodologies the interested reader is
referred to (Batini et al., 2009).

2.1 Data Quality Management

DQ can be characterized by DQ attributes, which
correspond to DQ issues in our notation mentioned
above. DQ attributes are defined as those properties
that are related to the state of DQ (Wand and Wang,
1996). DQ Management (DQM) is concerned with a
number of business processes that ensure the integrity
of an organization's data during its collection,
aggregation, application, warehousing and analysis
(AHIMA, 2012). As mentioned in (Knowledgent,
2015): “DQM is the management of people,
processes, technology, and data within an enterprise,
with the objective of improving the measures of Data
Quality most important to the organization. The
ultimate goal of DQM is not to improve Data Quality
for the sake of having high-quality data, but to
achieve the desired business outcomes that rely upon
high-quality data.” DQM can be decomposed into DQ
assessment and DQ improvement functional
components, as described below.

2.1.1 DQ Assessment

This component deals with determining which DQ

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

32

Figure 1: Functional components of DQ management.

attributes are relevant and the degree of
theirrelevancy for an organization. As shown in
Figure 1 (i.e., the top half) DQ assessment
encompasses identification, measurement, ranking,
and categorization of the DQ attributes that are
relevant for an organization’s data, see (Wang and
Strong, 1996) or (Price and Shanks, 2004), where the
latter reference provides a systematic approach to
define DQ attributes. ‘DQ attribute identification’ is
concerned with collecting possible DQ attributes
from various sources like literature, data experts and
data analysts. ‘DQ measurement’ and ‘DQ attribute
ranking’ cover those processes that are for measuring
and rating the importance of the identified attributes
for the organization. ‘DQ attribute categorization’
deals with structuring the ranked attributes into a
hierarchical representation so that the needs and
requirements of the stakeholders like data managers,
data experts, data analysts, and data consumers can be
satisfied (Wang and Strong, 1996).

2.1.2 DQ Improvement

This component deals with continuously examining
the data processing in an organization and enriching
its DQ, given the relevant DQ attributes obtained
from the DQ assessment. As shown Figure 1 (i.e., the
bottom half), the functional components of DQ
improvement include ‘reference DQ attribute
determination’, ‘activity planning and execution’,
and ‘DQ attribute reviewing’ (partly adopted from
(Woodall et al., 2013)). ‘Reference DQ attribute
determination’ identifies the organization’s
requirements related to the related DQ attributes, i.e.,
the desired DQ levels. ‘Activity planning and
execution’ plans and carries out the activities required
for improving the relevant DQ attributes to the

desired level through, for example, executing a ‘data
cleansing’ activity. Subsequently, one should also do
‘DQ attribute reviewing’ to validate these activities
based on their dependency and measure the improved
DQ attribute levels. The latter aspect of measurement
can be seen as part of DQ assessment, see also
(Woodall et al., 2013).

2.2 Motivation

There are software products called Issue Tracking
Systems (ITSs) to manage and maintain the lists of
issues relevant for an organization; issues like
software bugs, customer issues, and assets. Also in
our organization, i.e., the Research and
Documentation Centre (abbreviated as WODC in
Dutch) of the Dutch Ministry of Security and Justice,
we use such an ITS to keep track of the existing DQ
related problems. The WODC systematically
collects, stores and enhances the Dutch judicial
information directly or via its partner organizations
(Bargh et al., 2015a). Considering the diversity and
distribution of our data sources, we often receive the
corresponding datasets containing inconsistent,
imprecise, uncertain, missing, incomplete, etc. data
records and attributes. Our objective for registering
DQ related problems is to keep track of how and
whether (other) data analysts resolve these problems
based on their severity and urgency.

Data analysts write down an encountered problem ௡ܲ by a number of parameters denoted by ௡ܲ(ܺ௡,ܵܦ௡,ܵܯ௡, ܷܲ௡); ݊: 1…ܰ. Here ܺ௡ is a text
describing the problem, ܵܦ௡ is the desired problem
severity level, ܵܯ௡ is momentary problem severity
level, and ܷܲ௡ represents problem urgency. The
momentary problem severity level ܵܯ௡ can be

Management of Data Quality Related Problems - Exploiting Operational Knowledge

33

Figure 2: A framework for resolving the DQ related problems registered at the ITS.

determined subjectively as perceived by the data
analyst or objectively as measured based on some
data specific parameters, by using for example the
approach proposed in (Jiang et al., 2009). The data
analyst determines the desired problem severity level ܵܦ௡ subjectively. Both ܵܦ௡ and ܵܯ௡ are expressed in
a real number between 0 and 1, where 1 means the
problem severity is the highest. We assume that 0 ௡ܵܦ≥ ≤ ௡ܵܯ ≤ 1 and the problem is resolved when ܵܯ௡ = ௡ܵܯ ௡ orܵܦ = 0, which in this case the
problem can be removed from the ITS. Problems can
have various impacts comparatively. Therefore the
weigh factor ܷܲ௡ – a real value between 0 and 1
where 1 means the highest urgency – is inserted by
data analysis subjectively. Variable ܷܲ௡ conveys the
level of the problem’s urgency compared with other
reported problems. Let’s denote the set of problems
registered at the ITS by: ሼ ௡ܲ(ܺ௡, ,௡ܵܯ,௡ܵܦ ܷܲ௡) |	0 ≤ ௡ܵܦ ≤ ≥௡ܵܯ 1ሽ

(1)

where ݊: 1…ܰ.
Figure 2 shows the functional components of a

typical problem resolving system, status of which can
be maintained in an ITS. Technical staffs, normally
data analysts themselves, analyse the causes of a
problem and its possible solutions in order to choose
a solution based on some trade-offs. Before, during
and after the realization of a solution some Key
Performance Indicators (KPIs) are used to measure
the momentary problem severity levels so that the
impact of devised solutions can be determined via the
feedback loop. Although registered problems are
related to DQ attributes, the textual definitions of
problems are not specified in terms of DQ attributes
due to lack of knowledge or interest about DQ
concepts by data analysts.

2.3 Related Work

As mentioned in Subsection 2.2, ITSs are widely used
for tracking and managing various issues relevant for

an organization. The tracked issues range from
software bugs in software development houses like
Bugzilla (Bugzilla Website, 2015) and JIRA (JIRA
Software Website, 2015), customer issues in
customer support call-centres/helpdesks like H2desk
(H2desk Website, 2015), and assets in asset
management companies like TOPdesk (TOPdesk
Website, 2015). Software developers, customers, and
employees of organizations use ITSs to report on the
issues they face. These issues are reported in terms of
the (detailed) description of the problem being
experienced, urgency values (i.e., the overall
importance of issues), who is experiencing the
problem (e.g., external or internal customers), date of
submission, attempted solutions or workarounds, a
history of relevant changes, etc. Sometimes an issue
report is called ticket due to being a running report on
a particular problem, its status, and other relevant data
with a unique reference number (as ITSs were
originated as small cards within a traditional wall
mounted work planning). Based on these reports,
organizations take appropriate actions to resolve the
corresponding problems. While there are many
applications of ITSs for collaborative software
development, including also management of
announcements, documentation and project website,
there are no applications of such systems for DQ
management as we present in this contribution.

A possible feature that can be registered in ITSs
is a user assigned label/tag in order to facilitate
identifying and managing observed issues. In
(Canovas Izquierdo et al., 2015), for example, a
visualization tool is devised for facilitating the
analysis and categorization of issues in open source
software development projects, based on such
registered labels. Labelling, when it is done
appropriately, can reduce the semantic space of
registered issues and facilitate mapping these issues
to DQ attributes. This means that labels and tags can
be used complementary to our approach for an
improved mapping of DQ problems to DQ issues.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

34

Figure 3: Functional architecture of the proposed system for resolving DQ related problems based on DQ management.

DQ management approaches proposed in
literature, on the other hand, often rely on offline
estimation of DQ issues and/or offline inquiries of
DQ requirements. Wang and Strong (1996) propose a
two-stage survey and a two-phase sorting method for
identifying, ranking, and categorizing of DQ
attributes in a given context. The authors developed a
survey to produce a list of potential DQ attributes by
a group of the participants of a workshop. Using
another survey, the authors asked another group of the
participants to rate the potential DQ attributes. In
most organizations (including ours) gathering such a
number of participants, i.e., data analysts, for
surveying and sorting of DQ attributes is almost
impossible due to being time consuming or having
too few participants to produce valid results.

Woodall et al. (2013) propose a so-called hybrid
approach for DQ management. For a set of relevant
DQ attributes, the approach assesses the required
level of DQ improvement by comparing the current
state to a reference state. The DQ management and
improvement according to the hybrid approach
remains very abstract because DQ diagnostics are
based on some high level strategic concepts.
Similarly to the hybrid approach, our DQ
management is intertwined with operational level
practices of data analysts who observe and resolve
(DQ related) problems. Establishing this link in our
proposal, however, delivers a pragmatically dynamic
DQ management, which is not the case in the hybrid
approach.

All researches related to DQ assessment depend
on some DQ objectives, based on which a set of

relevant DQ attributes are sought. For example, the
Environmental Protection Agency (EPA) approach
(EPA, 2006) relies on, among others, a review of DQ
objectives, a preliminary review of potential
anomalies in datasets, and a statistical method to draw
quantitative DQ related conclusions from the data.
Our study uses the idea of translating DQ problems
into the DQ issues and objectives, but by considering
‘all reported’ problems in the datasets and not just a
few reported anomalies as (EPA, 2006) does.
Moreover, unlike (EPA, 2006) we don’t rely on
statistical methods exclusively and incorporate also
the domain knowledge of data analysts. Pipino et al.
(2012) use the EPA methods and additionally
incorporate a subjective DQ assessment. To this end,
the authors use a questionnaire to measure the
perceptions of the stakeholders (e.g., database
administrators) on DQ attributes. Subsequently, the
approach of (Pipino et al., 2012) determines the root
causes of data discrepancies and tries to improve DQ
by solving these discrepancies. Also our proposal
combines both subjective and objective perceptions
of the stakeholders on DQ related problems, but we
combine these perceptions at an operational level by
using a problem solving system, and not on a DQ
attribute or strategic level as (Pipino et al., 2012)
does. Eppler and Witting (Eppler and Wittig, 2000)
use the EPA methods and adds some extra attributes
to evaluate how pragmatic every DQ attribute can be
realised. Unlike (Eppler and Wittig, 2000) we do not
use any additional attribute to determine how
pragmatic the DQ attributes are.

Management of Data Quality Related Problems - Exploiting Operational Knowledge

35

Figure 4: An illustration of the hierarchical structure of semantic fields, related terms and phrase sets; and their relation to
problems (the texts in grey blocks are intentionally abbreviated).

3 PROPOSED APPROACH

Figure 3 shows our proposed system architecture,
whose key functional building blocks, those marked
with a *, are described in the following formally.

3.1 Data Quality Assessment

DQ assessment starts with a literature study by data
specialists to enlist potential DQ attributes and ends
up with categorizing the selected and ranked DQ
attributes. The ranking of DQ attributes, which we
innovatively base on the set of problems registered in
the ITS, will be described in the following.

3.1.1 Semantic Field Processing

A semantic-field is a set of conceptually related terms
(Kornai, 2010). Every semantic-field, which
corresponds to only one DQ attribute in our setting,
comprises a number of ‘related terms’. Every related
term, in turn, corresponds to a number of ‘phrase
sets’. Every phrase set comprises a number of phrases
that appear in problem descriptions. The set of
semantic-fields, related terms and phrase sets are
summarized in a so-called ‘Semantic-Field
Processing Table (SFPT)’. Formally, every DQ
attribute ܳܦ௠ (where ݉: can be described by (ܯ…1
a distinct semantic field ܵ௠ that consists of some
semantic field attributes called related terms ܴ ௠ܶ,௜. In
other words, ܳܦ௠ ≡ ܵ௠ = ൛ܴ ௠ܶ,௜|݅: ௠ൟ, (2)ܯ…1

where ݉ : ܴ In turn, every related term .ܯ…1 ௠ܶ,௜ can
be described by some phrase sets ܲܵ௠,௜,௝ as

ܴ ௠ܶ,௜ = ൛ܲܵ௠,௜,௝ห݆: (3)													௠,௜ൟ,ܯ…1

where ݉: ;ܯ…1 	݅: ௠. Every phrase set ܲܵ௠,௜,௝ܯ…1
comprises some set members / short phrases ܲܪ௠,௜,௝,௞
as ܲܵ௠,௜,௝ = ൛ܲܪ௠,௜,௝,௞ห݇: ௠,௜,௝ൟ. (4)ܯ…1

Domain experts define these semantic-fields,
related terms, phrase sets, and short phrases in a way
that the short phrases can be found in problem
descriptions of data analysts; any related term can be
related to only one semantic-field / DQ attribute; and
any phrase set can be related to only one related term.
Thus, as illustrated in Figure 4, we assume that there
is a tree structure among ‘semantic fields’, ‘related
terms’, and ‘phrase sets’. Due to the tree structure
depicted above, there are no related terms that are
common among semantic-fields / DQ attributes, and
there are no phrase sets that are common among
related terms. ܴ ௠ܶ,௜ ് ܴܶ௠ᇲ,௜ᇲ 									∀	݉ ് ݉ᇱ	or		݅ ് ݅ᇱ						(5) ܲܵ௠,௜,௝ 	് ܲܵ௠ᇲ,௜ᇲ,௝ᇲ 			∀	݉ ് ݉ᇱ	or		݅ ് ݅ᇱ	or	݆ ് ݆ᇱ.

Note that short phrases in phrase sets may appear
in multiple phrase sets.

3.1.2 Problem to DQ Attribute Mapping

When a problem description contains all short phrases
of a phrase set, one can map the problem to the
corresponding related term and, in turn, to the
corresponding DQ attribute uniquely. Based on
condition (5), phrase sets are unequal (see also the
illustration in Figure 4). This property and the
hierarchical relation among phrase sets, related terms

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

36

and semantic fields guarantee that every phrase set
can identify only one related term, thus one semantic
field / DQ attribute. As a problem description ܺ ௡ may
include more than one phrase sets, however, the
corresponding problem ௡ܲ can be associated with
more than one related term and thus to more than one
DQ attribute.

Assume that the semantic fields identified for
problem ௡ܲ are denoted by set ܵ(௡ܲ) ⊆ 	 ሼ ଵܵ, ܵଶ,⋯ , ܵெሽ; 		݊: 1…ܰ.									 (6)

Then, problem ௡ܲ can be mapped to DQ attributes ܳܦ௠ if ܵ௠ ∈ ܵ(௡ܲ), where ݉: :݊ ௠ whereܳܦ For problems ௡ܲ and DQ attributes .ܯ…1 1…ܰ and ݉:1…ܯ, one can define the problem to DQ attribute
mapping in terms of a association matrix as ܣ = ൣܽ௡,௠൧ே×ெ

where ܽ௡,௠ = ቄ1											if ܵ௠ ∈ ܵ(௡ܲ), 0																		otherwise. 										(7)

Note that if ܽ௡,௠ = 0 for all ݉:)ܵ i.e., when ,ܯ…1 ௡ܲ) = ∅, then problems ௡ܲ cannot be mapped to
any DQ attribute. In this case we say that the mapping
for this problem has resulted in a miss. The number
of such miss outputs should be zero ideally.

For improving DQ attributes, as we will see in the
following sections, we need to take into account the
momentary and desired severity levels of problems,
i.e., the ܵܦ௡ and ܵܯ௡ parameters of problem ௡ܲ
registered in the ITS. Therefore, we define the
weighed association matrix as ܣ௪ = 	 ௡,௠ݓܽ	௡,௠൧ே×ெ whereݓܽൣ = 	ܽ௡,௠ ∙ ௡ܵܯ) 	− (8)						௡).ܵܦ

The problems registered in the ITS, furthermore,
can have various urgency and importance levels,
denoted by weight ܷܲ௡ for problem ௡ܲ with a real
value between 0 and 1 (remember that low or zero
urgency issues are minor and should be resolved as
time permits). Such a factor can be applied to
Relation (8) by replacing ܵܯ௡	–ܵܦ௡ with ܲܧ௡. to obtain the extended weighed (௡ܵܦ–	௡ܵܯ)
association matrix as ܣ௘௪ = 	 ௡,௠ݓ݁ܽ	௡,௠൧ே×ெ whereݓ݁ܽൣ = 	ܽ௡,௠	∙ 	ܷܲ௡ ∙ 	 (9) .(௡ܵܦ–	௡ܵܯ)

3.1.3 DQ Attribute Ranking

This functionality determines the priority values of
DQ attributes based on the (extended weighted)
association matrix, which is in turn derived from the
problem descriptions, problem desired and actual

severity levels, and/or problem urgencies. Given the
(extended) weighted association matrix in Relation
(8) or (9), the dynamic DQ rank of attribute ܳܦ௠	for ݉:1…ܯ is defined as: ܴ௠ௗ = ∑ ௔௪೙,೘೙ಿసభ∑ ∑ ௔௪೙,೘ಾ೘సభ೙ಿసభ 	or	 ∑ ௔௘௪೙,೘೙ಿసభ∑ ∑ ௔௘௪೙,೘ಾ೘సభ೙ಿసభ . (10)

As the elements of the (extended) weighted
association matrix (i.e., ܽݓ௡,௠ or ܽ݁ݓ௡,௠) are
dependent of the momentary problem severity level ܵܯ௡, which changes as problems are resolved by data
analysts, the DQ rank in Relation (10) is a dynamic
value depending on the problem resolving process.
As a special case of DQ ranking in relation (10), we
define the static DQ rank based on the association
matrix in (7) for ݉:1…ܯ by: ܴ௠௦ = ∑ ௔೙,೘೙ಿసభ∑ ∑ ௔೙,೘ಾ೘సభ೙ಿసభ .									 (11)

The static DQ rank defined in relation (11) is just
dependent of having a problem in the ITS or not. The
underlying assumption is that a problem is removed
from the ITS as soon as it is resolved. This static DQ
rank is called static because it does not change as the
resolving of a problem progresses unless it is
removed from the ITS.

3.2 Data Quality Improvement

Our DQ improvement largely corresponds to the
problem-resolving system, as shown in Figure 3. By
solving the registered problems, data analysts also
improve the corresponding DQ attributes and
therefore carry out DQ management. DQ
improvement comprises a number of functions, as
shown in Figure 3, which are elaborated upon in the
following.

3.2.1 Problem Clustering

Registered problems can be clustered according to
some criteria in order to reuse those solutions that
address similar problems and, consequently, to yield
efficiency and optimization. Our proposal for
problem clustering is to use the associations among
problems and DQ attributes because the resulting
clusters can benefit from those DQ specific
knowledge and solutions proposed in the literature.
As defined in Relations (7-9), the problem to DQ
attribute mapping results in some (weighed)
association values between pairs of (problem ௡ܲ, DQ
attribute ܳܦ௠) as follows: (௡ܲ	, (௠ܳܦ =																														(12)

Management of Data Quality Related Problems - Exploiting Operational Knowledge

37

ቐ 	ܽ௡,௠																																																																						see (7)ܽݓ௡,௠ = 	ܽ௡,௠ ∙ 	 ௡ܵܯ) 	− ௡,௠ݓ݁ܽsee (8)																						௡)ܵܦ = 	ܽ௡,௠	∙ ௡ܧܲ	 ∙ 	 ௡ܵܯ) 	− .see (10)							௡)ܵܦ
We specify every problem ௡ܲ by the vector ൫(௡ܲ	, ,(ଵܳܦ (௡ܲ	, ⋯,(ଶܳܦ , (௡ܲ	, ܯ in)൯	ெܳܦ

dimensional DQ attribute space, where its elements
are defined in Relation (12) for ݉: We call .ܯ…1
these vectors as ‘association vector’, ‘weighed
association vector’, or ‘extended weighed association
vector’ of problem ௡ܲ, respectively.

The ((extended) weighed) association vectors are
fed as inputs to the component ‘problem clustering’
as shown in Figure 3. In order to find similarity
between problems one can calculate the distance
between every pair of such vectors, using for example
the hamming distance or Euclidian distance. The
pairwise distances can be used to cluster the
corresponding problems. The resulting clusters
encompass those problems that share similar
behaviours in terms of DQ attributes. In order to
address registered problems one can prioritize
problem clusters, for example based on their sizes and
weighs, and apply (and/or develop new) solutions that
address these problem clusters according to the
priority of the problem clusters.

Alternatively, one can classify problems in terms
of existing solutions, instead of clustering them based
on some behavioural similarity in the DQ attribute
spaces. For example, assume a software tool
resolves/addresses a specific subset of DQ attributes.
Availability of such tools that are specific to a subset
of DQ attributes inspires us to consider classifying the
registered problems in terms of the DQ attributes that
are addressed by some powerful software tools. In the
following, we propose a method for choosing
appropriate solutions, which resembles such a
classification case.

3.2.2 Problem Resolving

Resolving of problems requires applying solutions,
each of which encompasses a number of activities.
Previously we specified problems in the DQ attribute
space, i.e., by mapping problems to DQ attributes
using the ((extended) weighed) association vectors
and Relation (12). On the other hand, most solutions
– including software tools and DQ improvement
processes – can be characterized in terms of those DQ
attribute issues that they address/resolve. Therefore,
we propose to specify such solutions based on the DQ
attributes that they address. To this end, assume every
solution ܵ௞ is represented by a solution association

vector ܵ௞ = ൫ݏ௞,ଵ,⋯ , ⋯,௞,௠ݏ , ௞,ெ൯ where forݏ
 ݉: 1… ,M we have ݏ௞,௠ = ቄ1				if ܵ௞	addresses DQ attribute ܳܦ௠0																																														otherwise.			 (13)

Here we assume solution ܵ௞ either addresses DQ
attribute ܳܦ௠ or not, i.e., ݏ௞,௠ takes a binary value.
One can alternatively assume a real value for
parameter ݏ௞,௠ in interval 0 ≤ ௞,௠ݏ ≤ 1, denoting the
fraction that solution ܵ௞ can (potentially) resolve the
DQ attribute issue ܳܦ௠ in the organization. Hereto,
for example, the approach of (Jiang et al., 2009) can
be used. Considering the dynamic or static rank of
every DQ attribute, see Relations (10) and (11)
respectively, one can define the normalized benefit of
solution ܵ௞ for the organization as: ܨܤ௞ = ଵெ ቊܵ௞ ∙ ܴௗ = ∑ ௞,௠ݏ ∙ ܴ௠ௗெ௠ୀଵ 		dynamic ܵ௞ ∙ ܴ௦ = ∑ ௞,௠ݏ ∙ ܴ௠௦ெ௠ୀଵ 					static,	 (14)

where upper scripts d and s demote dynamic and
static DQ management, respectively.

On the other hand, one must balance the benefits
of a solution, as characterized in Relation (14),
against its costs. Various solutions inflict various
costs on an organization. Let weight ܵܥ௞ denote the
normalised cost of solution ܵ௞ for the organization,
by normalised we mean taking a real value between 0
and 1, where low or zero values represent those low
or zero cost solutions. The cost benefit value of a
solution can be defined as ܤܥ௞ = ௞ܥܵ 	− :݇	for							௞ܨܤ 1…K. (15)

Ideally one should prioritize solutions based on
Relation (15) and apply those solutions that yield the
lowest cost benefit values as defined in Relation (15).

3.2.3 Problem Severity Measurement

KPIs can be defined and used to measure the
momentary severity of problems. As shown in Figure
3, this functional block closes the loop of our current
problem-resolving system and provides a feedback
about the momentary status of registered problems,
i.e., enables our dynamic DQ management.

In order to create objective KPIs we observe that
often in practice DQ related problems are detected
because some phenomena, for example the number of
crimes committed per a time interval, are quantified
differently from two (or more) data sources. Assume ܺ௧ = 	⋯ , ,௧ିଵݔ ,௧ݔ ௧ାଵ,⋯ and ௧ܻݔ =	⋯ , ,௧ିଵݕ ,௧ݕ ௧ାଵ,⋯ are time series that denote theݕ
measures of the same phenomenon using two
different sources/datasets at consequent time

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

38

intervals (yearly, monthly, daily etc.). Ideally, ݔ௧ but due to DQ issues the data analyst ,ݐ	all	for	௧ݕ=
observe discrepancies between these readings and
reports the problem in the ITS. The difference time
series ܼ௧ = ܺ௧ − ௧ܻ = 	⋯ , ௧ିଵݔ − ,௧ିଵݕ ௧ݔ ,௧ݕ− ௧ାଵݔ − ௧ାଵ,⋯ can be a KPI in time intervals, asݕ
shown in Figure 5. For our DQ management one can
normalize the difference time series to derive problem
severity level at a given moment ݐ by ݖ௧,		norm = |௫೟	ି௬೟|max(௫೟,	௬೟) ,	 max(ݔ௧, (௧ݕ	 ൐ 0.				 (16)

Figure 5: Visualizations of two time series.

Sometimes it is more realistic to base problem
severity level on the last ݈ differences observed, i.e.,
on a history of measurements. Therefore, a smoothed
problem severity level at a given moment ݐ can be
defined by ݖ௧̅,		norm = ∑ |௫೔	ି௬೔|೟೔స೟ష೗శభ∑ (௠௔௫(௫೔,	௬೔)	ି	௧೓)೟೔స೟ష೗శభ 	, (17)

where ݐ௛ is an appropriate threshold value – for
example, it can be set as the possible minimum value
for amount ݉ܽݔ)ݔ௜, ݅ (for example, when	over	௜)ݕ	
counting objects, this could be zero; for financial
variables, the minimum could be negative).

The momentary or smoothed problem severity
levels defined in Relations (16) and (17) can be
visualized by a Gauge or Dial chart as shown in
Figure 6. Subjective measurements, where data
analysts assign a problem severity level according to

Figure 6: Visualizations of the resulting-ratio dashboard.

their insight at a given moment, can be another
method for determining KPIs. Such a subjective
measurement can be useful when, for example,
combining multiple and heterogeneous measures as
defined in Relations (16) and (17).

4 PROOF OF CONCEPT

In this section we describe a proof of concept
prototype for the proposed DQ management that is
realized in our organization. Moreover, we shall
elaborate on performance evaluation of its problem to
DQ attribute mapping.

4.1 Implementation

Our realization of the proposed architecture includes
problem registration, semantic field processing,
problem to DQ attribute mapping, DQ attribute
ranking, problem clustering, problem resolving, and
problem severity measuring.

We used the Team Development environment of
Oracle APEX as our ITS to enable data analysts to
register the arising DQ related problems. The data log
is stored in an Oracle DBMS (Database Management
System). Currently, there are 334 problems registered
together with their desired and momentary problem
severity levels.

In order to determine the ‘semantic-field
processing table’ for the registered problems, we use
a heuristic as described below. Given a DQ attribute,
the current implementation carries out two steps of (a)
determining a list of the related terms for the
semantic-field corresponding to the DQ attribute, and
(b) syntactical decomposing of every related term to
some phrases of smaller sizes that appear in problem
descriptions. We assume that every phrase set ܲܵ௠,௜,௝
comprises at most two short phrases, i.e., ܯ௠,௜,௝	 ≤ 2
in Relation (4). Therefore, we shall sometimes use the
term ‘phrase pair’ instead of ‘phrase set’.

Assume that we have some potential DQ
attributes derived from literature and that we have the
actual problems descriptions registered in the ITS. In
the first step of the heuristic we analyze every pair of
(problem description, potential DQ attribute). When
a problem description is conceptually related to a DQ
attribute, then the conceptual formulation of the
problem description is recorded as a related term.
This related term has a smaller size than the
corresponding problem description size. Iteration of
this step results in two columns of the ‘related terms’
and the corresponding ‘DQ attributes’ in a semantic-
field processing table. Lines (5) and (7) in the pseudo

Management of Data Quality Related Problems - Exploiting Operational Knowledge

39

code below refer to this process. In the second step,
every related term is decomposed into sets of smaller
phrases that syntactically appear in problem
descriptions. This results in another column ‘phrase
pair’ in the semantic-field processing table. Lines (6)
and (7) in the pseudo code below refer to this process. ⊳ SFP is set of rows of the semantic-
field processing table ⊳ rt is a related term
(1) SFP ← ∅
(2) for each problem description x do
(3) for each potential DQ attribute
dq do

(4) if x refers to dq then
(5) define rt as a conceptual
 formulation of dq
(6) decompose x into (p1, p2)
(7) if (p1, p2, rt, dq) ∉ SFP then
 SFP ←		SFP ∪ (p1, p2, rt, dq)

Note that here some problems cannot be readily
mapped to a DQ attribute. Moreover, the related
terms obtained from the first stage are natural
language terms. The syntactical decomposition of
such natural language terms into phrase pairs can
have more than one parsing tree (Mooney, 2007). For
example, related term ‘missing data’ can be
decomposed to phrase pairs {Is, Missed}, {Are,
Missed}, {Is, Missing} or {Are, Missing}.

Due to a prototype character of the current
implementation, the clustering of problems and
resolving problems according to their impacts / costs
are currently based on a manual process. The
measuring of the momentary severity level of
problems is based on the described KPIs. The KPIs of
complementary measurements, as defined in
Relations (16) and (17), are defined in SQL terms and
visualized by a dynamic PHP website. Currently, the
ITS is deployed in another server and it is loosely
coupled to the other components (as problem logs are
downloaded as files). This slows down the
communication between these two systems. In the
future we intend to mitigate the communication speed
of the current implementation.

4.2 Evaluation

Generic DQ management functionalities, which are
identified in (Woodall et al., 2013), are also
represented in the proposed DQ management in this
contribution. The proof of concept system has been
realized, deployed, and used in our organization since
early 2014. All functionalities of the realized system

work as described in this contribution.
For performance evaluation here we report on the

performance of our heuristic for the problem to DQ
attribute mapping as the key system component in our
problem solving system. Our heuristic cannot target
all problems in the ITS because we start with DQ
attributes and look at the problem descriptions in the
ITS to identify the semantic-field of every DQ
attribute (i.e., the related terms). Based on related
terms our proof of concept seeks out the phrase pairs
in a problem statement. As a result, this process may
overlook some problems if for them no related term
can be identified, thus failing to map such problems
to DQ attributes. This overlooking could be due to not
exhaustively searching the space of registered
problems and DQ attributes or not describing
problems expressively. Our search of related terms
and phrases stops at a certain point due to practical
reasons, for example, after finding a certain number
of phrase-pairs.

Those problems that are (not) mapped to DQ
attributes are called (un)targeted problems. In order
to reduce the number of untargeted problems we
iterated the heuristic described above to come up with
the (new) related terms corresponding to some
(potential) DQ attributes. These iterations reduced the
number of untargeted problems sharply, as shown in
Figure 7. After a certain number of iterations,
however, the number of untargeted problems did not
decrease much. We suspect this is because the
descriptions of the remaining problems are poorly
written, which makes it difficult to associate them
with any related term based on the syntax of these
problem descriptions.

Figure 7: Number of untargeted problems (vertical) in terms
of the number of related terms.

4.3 Discussion and Limitations

In this contribution we proposed to measure the
severity level of the reported problems and map them
to the corresponding DQ attribute levels. A way to

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

40

measure the severity level of registered problems is to
measure KPIs, which faces some challenges like
defining effective, valid, and standardized
performance indicators. For instance, a KPI based on
measuring the hamming distance of 2 words can be
ineffective. For instance, the words “Netherlands”
and “Holland” are semantically closer than their
Hamming distances when considering the cultural
background of both words. Measuring semantic
distances, on the other hand, is more challenging than
measuring hamming distances.

An underlying assumption in our proposal is that
data analysts of an organization register encountered
problems in an ITS. In practice, users are not eager to
register problems effectively and expressively.
Organizations should encourage and train their
employees to fill in such logging system so that the
benefits of the proposed system can be harvested.
Using tags and labels to mark DQ problems, see
(Canovas Izquierdo, et al., 2015), can further be
explored to this end.

We proposed a data quality management
approach to utilize user-generated inputs about DQ
problems to carry out DQ management. For each
functional component, furthermore, we proposed
some simple (and heuristic) methods to realize the
component’s functionality. Due to modular property
of the proposed DQ management approach, one can
replace these methods by defining customized
methods suitable for own organization and problem
domain.

5 CONCLUSIONS

In this contribution we presented the formal
description and the system architecture of an
integrated system for resolving the problems
observed in datasets based on DQ management. The
proposed architecture, moreover, results in a dynamic
DQ management system, which relies on user
generated data (i.e., data users/analysts who describe
the DQ related problems they encounter in their daily
practice). By managing DQ related problems
encountered in an organization at an operational
level, our proposal manages also the organization’s
DQ issues (i.e., realizes DQ management). To this
end, we semantically and dynamically map the
descriptions of DQ related problems to DQ attributes.
The mapping provides a quantitative and dynamic
means to determine the relevant DQ attributes and the
level of their relevancy, given the operational setting
(i.e., the desired and momentary problem severity
levels).

The realization of the proposed DQ management
in our organization has given us insightful feedback
on its advantages and limitations. As we envisioned,
the solution bridged successfully the gap between the
operational level (e.g., data analysts) and strategic
level (e.g., managers) DQ stakeholders within our
organization. To fully benefit from the potentials of
the proposed architecture, however, it is necessary to
encourage the users of datasets (i.e., data analysts) to
provide their inputs about the DQ related problems
that they encounter proactively and expressively.
Through improving the problem registration process
one can reduce the number of untargeted problems
and guarantee their influence on dataset problem
resolution and DQ management processes. It is for
our future research to explore, for example, user
awareness and training solutions, and to develop
objective KPIs and problem resolving techniques
(e.g., to determine the capabilities and costs of
candidate solutions).

REFERENCES

AHIMA, 2012. Data Quality Management Model
(Updated). In Journal of American Health Information
Management Association: AHIMA. Vol. 83, No.7, 62-
67.

Bargh, M. S., Choenni, S., Meijer, R., 2015a. Privacy and
Information Sharing in a Judicial Setting: A Wicked
Problem. In Proceedings of DG.O, 97-106, ACM.

Bargh, M. S., van Dijk, J., Choenni, S., 2015b. Dynamic
data quality management using issue tracking systems.
In the IADIS International Journal on Computer
Science and Information Systems (IJCSIS, ISSN: 1646-
3692), ed. P. Isaias and M. Paprzycki, Vol. 10, No. 2,
pp. 32-51.

Bargh, M. S., Mbgong, F., Dijk, J. van, Choenni, S., 2015c.
A framework for Dynamic Data Quality Management.
In Proceedings of ISPCM, Las Palmas, de Gran
Canaria, Spain.

Batini C, Cappiello C, Francalanci C, Maurino A., 2009.
Methodologies for Data Quality Assessment and
Improvement. ACM Computing Surveys, Vol. 41, No.
3, Article 16, ACM.

Birman, K. P., 2012. Consistency in Distributed Systems.
Book Chapter in Guide to Reliable Distributed Systems,
457-470.

Bugzilla Website, 2015. https://www.bugzilla.org
(retrieved on 31/10/2015).

Choenni, S., Leertouwer, E., 2010. Public Safety Mashups
to Support Policy Makers. In Electronic Government
and the Information Systems Perspective (EGOVIS),
Bilbao, 234-248, Springer.

Canovas Izquierdo, J. L., Cosentino, V., Rolandi, B.,
Bergel, A., Cabot, J., 2015. GiLA: GitHub Label
Analyzer. In IEEE 22nd International Conference on

Management of Data Quality Related Problems - Exploiting Operational Knowledge

41

Software Analysis, Evolution and Reengineering
(SANER), 479-483. Montreal, Canada.

Davenport, T. H., Glaser, J., 2002. Just-in-time delivery
comes to knowledge management. Harvard business
review, 80(7), 107-11.

Dijk, J. van, Choenni, R., Leertouwer, E., Spruit,
Brinkkemper, S., 2013. A Data Space System for the
Criminal Justice Chain. In Proceedings of ODBASE,
Graz, Austria, Springer, 755-763.

EPA, 2006. Environmental Protection Agency. Data
Quality Assessment: A Reviewer’s Guide, Technical
Report EPA/240/B-06/002, EPA QA/G-9R.

Eppler, M. J., Wittig, D., 2000. Conceptualizing
Information Quality: A Review of Information Quality
Frameworks from the Last Ten Years. In Proceedings
of the Conference on Info Quality, 83-96.

H2desk Website, 2015. https://www.h2desk.com (retrieved
on 31/10/2015).

Jiang, L., Barone, D., Borgida, A., Mylopoulos, J. 2009.
Measuring and Comparing Effectiveness of Data
Quality Techniques. van Eck, P., Gordijn, J., Wieringa,
R. (Eds.), International Conference on Advanced
Information Systems Engineering (CAiSE), LNCS
5565,171–185, Springer-Verlag Berlin Heidelberg.

JIRA Software Website, 2015. https://www.
atlassian.com/software/jira (retrieved on 31/10/2015).

Knowledgent 2015. White Paper Series: Building a
Successful Data Quality Management Program,
http://knowledgent.com/whitepaper/building-
successful-data-quality-management-program/
(retrieved on 31/10/2015).

Kornai, A. 2010. The Algebra of Lexical Semantics. In:
Mathematics of Language, 174-199, Springer.Mooney
R. J., 2007. Learning for Semantic Parsing. In
Proceedings of Computational Linguistics and
Intelligent Text Processing, Mexico City (invited
paper), A. Gelbukh (Ed.), 311-324, Springer.

Netten, N., van den Braak, S., Choenni, S., Leertouwer, E.,
2014. Elapsed Times in Criminal Justice Systems. In
Proceedings of ICEGOV, 99-108, ACM.

Pipino, L. L. et al., 2012. Data Quality Assessment. In:
Communications of the ACM. Vol. 45, No. 4, 211-218.

Price, R., Shanks, G., 2004. A Semiotic Information
Quality Framework. In Proceedings of International
Conference on Decision Support Systems (DSS), 658-
672.

TOPdesk Website, 2015. http://www.topdesk.nl (retrieved
on 31/10/2015).

Wand, Y., Wang, R. Y., 1996. Anchoring Data Quality
Dimensions in Ontological Foundations. In
Communications of the ACM, Vol. 39, No. 11, 86-95.

Wang, R. Y., Strong, D. M. 1996. Beyond Accuracy: What
Data Quality Means to Data Consumers. In: Journal of
Management Information Systems. Vol. 12, No. 4, 5-
33.

Woodall, P., Borek, A., Parlikad, A. K., 2013. Data Quality
Assessment: The Hybrid Approach. In Information &
Management, Vol. 50.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

42

