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Abstract: This paper presents a learning model for obtaining global inverse statics solutions for redundant soft robots. 
Our motivation begins with the opinion that the inverse statics problem is analogous to the inverse 
kinematics problem in the case of soft continuum manipulators. A unique inverse statics formulation and 
data sampling method enables the learning system to circumvent the main roadblocks of the inverting 
problem. Distinct from previous researches, we have addressed static control of both position and 
orientation of soft robots. Preliminary tests were conducted on the simulated model of a soft manipulator. 
The results indicate that learning based approaches could be an effective method for modelling and control 
of complex soft robots, especially for high dimensional redundant robots.  

1 INTRODUCTION 

Continuum soft robots are a class of robots made of 
soft materials that exhibit highly dexterous and 
adaptive behaviour. Not a lot is known about the 
dynamic behaviour of continuum robots. They are 
inherently difficult to control, due to their 
compliance. However, they have some 
characteristics which make certain tasks easier for 
them. Their compliant nature makes them 
frontrunners for applications involving interactions 
with delicate or unstructured environment (Rus et al., 
2015).  

As a growing field in robotics, there are 
numerous challenges restricting the application of 
soft robots. One of them is the construction of 
inverse models for their kinematic and dynamic 
behaviour. IK models have the advantage that their 
solutions are load independent. However, our 
interest lies on modelling the inverse steady state 
dynamics (statics) of these robots, specifically for 
redundant soft manipulators. We believe that hybrid 
controllers with coupled inverse kinematic solvers 
and inverse statics (IS) solvers would be exciting for 
soft robotics applications. They can be used in 
tandem for position control and force/stiffness 
estimation.  

Theoretically, due to their continuous nature, soft 
robots have an infinite number of degrees of 

freedom, making them under-actuated. Assuming 
that there are no external forces, we can still develop 
a mapping between the applied internal forces and 
the configuration of the robot very much like the 
case of kinematics. However, developing an inverse 
model poses more difficulties. Similar to the inverse 
kinematic formulation of rigid redundant robots, the 
inverse statics solution is not unique and the solution 
set forms a non-convex set (D’Souza at al., 2001). 
Furthermore, analytical or numerical methods 
appear to be very complex unless developed with 
simplified models (Marchese e al., 2014). We are, 
therefore, adopting a method based on machine 
learning for estimating these models. 

Inverse statics models are meaningful only for 
soft manipulators and parallel robots because of the 
existence of a stable zero velocity fixed point. 
Essentially, the IS model is analogous to the IK 
model for rigid robots. Therefore, numerous 
approaches developed for IK problem of redundant 
rigid robots can be directly used for our case. 
Among the learning based approaches, a common 
theme is the use of locally linear models and 
stitching them together to form a global estimate. 
This can be done in the velocity level and has been 
widely used (D’Souza et al., 2001; Susumu et al., 
2001; DeMers et al., 1992). However, differential IK 
methods involve integration over time to obtain 
position estimates which can lead to accumulation of 
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errors. Alternatively, a position level IK solution 
was proposed using goal babbling (Rolf et al., 
2013a). However, this method generates only a 
particular global solution and requires lot of sample 
data. Inverting a learned forward model was carried 
out by distal supervised learning by few researchers 
(Jordan et al., 1992; Melingui et al., 2014). However, 
these methods have not scaled well for higher 
dimensional systems. Position level IK solution has 
been proposed using modular learning architectures 
by few other researchers (Vannucci et al., 2014; 
2015), but it involves very complex constructions. 

In this paper we propose an approach for 
learning the global inverse statics model for a 
continuum robot. Our method is also based on the 
locally linear and convex properties of the IS 
solution. However, we further utilize the fact that 
these local models can be scaled and used as a 
decent approximation of the global solution. This 
can be achieved by appropriate biasing and selection 
of the input/output representation of the learning 
system. We are using neural networks to 
approximate the proposed IS mapping. Giorelli et al., 
(2015), were one of the first researchers to propose 
the learning of the inverse statics of soft arm. They 
were successfully able to learn the inverse statics for 
the position control of a soft robot. However, their 
study was limited to the case of a non-redundant 
manipulator and further restricted to only position 
control (three Degrees of Freedom). Therefore, this 
paper proposes a method for obtaining the global 
solutions for both position and orientation of a soft 
redundant robot. We have tested and validated the 
proposed method on a simulated steady state model 
of a 12 Degrees of Freedom (DoF) soft manipulator. 
We have tried to show by simulations that the 
proposed method performs soundly even with the 
issues of redundancy and high dimensionality. 
Further, we try to investigate the underlying form of 
the learned system and compare it with the 
commonly used inverse Jacobian based method. 

2 PROPOSED METHOD 

The forward static model or steady state model can 
be represented by: 
 

࢞ ൌ ݂ሺሻ (1)
 

Where, ࢞ ∈ 	Ը  is the position and orientation 
vector;  ∈ 	Ը is the vector containing the actuator 
tensions; and ݂  is some surjective function. This 
particular representation is not invertible when	m ൏
n (redundant). As mentioned before, we can develop 

local representations by linearizing the function at a 
point (), thereby obtaining; 
 

࢞ߜ ൌ (2) ߜሻሺܬ

Here, ܬሺሻ is the Jacobian matrix at the point	; 
 and ࢞ are infinitesimally small changes in	ߜ and ࢞ߜ
 respectively. The differential IK method involves 
generating samples of (࢞ߜ,  and learning the (	,ߜ
mapping (,࢞ߜ	) →ߜ.	 The	 learning	 is	 feasible	
since	 the	differential	 IK	 solutions	 form	a	 convex	
set	 and	 therefore	 averaging	 multiple	 solutions	
still	 results	 in	 a	 valid	 solution	 ሺD’Souza	 et	 al.,	
2001ሻ.	 The	 method	 we	 have	 proposed	 involves	
expanding	 Eq.	 2	 and	 expressing	 it	 in	 terms	 of	
absolute	positions,	as	shown	below:	
	

ାଵሻሺܬ ൌ ାଵ࢞ െ ݂ሺሻ  (3) ሻሺܬ
 

Here, ାଵ  is the next actuator configuration for 
reaching a point  ࢞ାଵ  from the present 
configuration	. Note that Eq. 3 is only valid when 
the configurations are infinitesimally close. 
However, for practical purposes this can be a good 
approximation for larger regions. The analytical 
solution for Eq. 3 can be written as: 
 

ାଵ ൌ ାଵ࢞ሺܩ െ ݂ሺሻ  ሻܬ  ሺܫ െ (4) ࢠሻܬܩ
 

Where,ܩ, is a generalized inverse of ܬሺሻ and ܫ is 
the identity matrix and ࢠ  is an arbitrary n-
dimensional vector. The first component represents 
the particular solution to the non-homogenous 
problem prescribed in Eq. 3 and the second 
component represents the infinite homogenous 
solutions. It can be proved that the solution space 
still forms a convex set. Therefore, any universal 
function approximator can be used for learning the 
mapping (, →(ାଵ࢞ ሺାଵሻ. Setting the vector ࢠ to 
zero and using the Moore-Penrose pseudoinverse 
provides us with the minimum norm ( ∥ ାଵ ∥ ) 
solution to the linear eq. 3. 

The samples (,ାଵ,  ାଵ) generated are such࢞
that	∣ ାଵ െ  ∣	൏ ϵ. An appropriate value of ϵ	is 
between 10% െ 5% of the maximum actuator range. 
The advantage of this reformulation is in the simple 
detail that the input/ output domain of the learning 
system is now same as the actuator space and task 
space configuration and not a subset of it, unlike the 
differential IK method. We predict that this way our 
proposed method will behave exactly like the 
differential IK method at local regions and at farther 
points they will automatically provide approximate 
configurations that will bring the end effector 
configuration closer to the target. Therefore if we 
repeat the process for a fixed target, we can expect 
the process to converge near the target position. 

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

304



Therefore, by our method we can get global 
solutions for the IS problem. We can further add 
constraints during the iteration process to develop 
particular solutions for the IS problem according to 
our requirement.  

2.1 Reachability and Workspace 
Considerations 

Since, the IS solution will provide the actuator 
configuration to take the end effector to a particular 
position and orientation, it is important to know if 
the input arguments (࢞ାଵ) given to the system is 
reachable. For the case of end effector position, the 
reachable workspace will describe the volume in 
which the end effector position can reach. The 
reachable workspace can be estimated easily either 
by analytical, numerical or experimental methods. 
However, the dexterous workspace, which describes 
the volume in which the end effector can reach with 
all orientations, is much more difficult to find. 
Nonetheless, the calculation of the dextrous 
workspace is not of significance for soft robots. 
Dextrous workspace is a property introduced 
primarily for rigid robots with spherical joints. For 
soft robots, the manifold of reachable orientation 
varies according to the end effector position.  

Interestingly, there exists a single unique 
manifold for each position, unlike the case of rigid 
robots which can have multiple disjoint manifolds 
(Kapadia et al., 2013). This is attributed to the fact 
that for soft continuum robots, singular 
configurations arise only when the manipulator has 
zero curvature. Singularities at boundaries can be 
ignored since the manipulator can, theoretically, 
extend or contract to any length. Furthermore, in our 
formulations, we are neglecting rotations along the 
backbone of the robot (roll). So, our robot can be 
visualized as a ‘pointing’ robots (rotations in 
	ܱܵሺ3ሻ	are replaced by directions in 	ܵଶ ). By this 
process our formulation is theoretically devoid of 
singularities. This implies that given a current 
positon and orientation ( ࢞

, ࢞
 ), there exists a 

continuous path in the actuator space, which can 
bring the end effector to a different orientation 
࢞)

, ଵ࢞
), without affecting the position. Learning the 

null space solution for each end effector 
configuration will help us in implementing this. 
However, learning the null space from just 
experimental data is very difficult. Therefore, in this 
paper we have developed two solvers for the IS 
problem; one for both position and orientation and 
the other for just the orientation. These two solvers 
can be combined appropriately to attain the required 

accuracies in position and orientation. For instance, 
if the network output for coupled (position + 
orientation) IS solver is ାଵ

 	 and the output for 
Inverse Orientation Statics (IOS) solver is ାଵ	

 	 , 
then, they can be combined to give actuator 
configuration	ାଵ

 , where; 
 

ାଵ
 ൌ ݇ ∗ ାଵ

  ሺ1 െ ݇ሻ ∗ ାଵ
  (5)

 

By regulating the value of the constant	݇	ሺ݇  1ሻ, 
we can accordingly vary the orientation accuracy. In 
further sections we will be referring to this 
formulation as the appended IS solver and the 
complete IS solver will be just referred to as the IS 
solver. 

3 STEADY STATE MODEL 

The constant curvature model is the most widely 
used construction technique for soft robots due to 
their simplicity and computational ease (Walker, 
2013). Non- constant curvature models based on 
cosserat beam dynamics promises to be a better 
alternative (Renda et al., 2014). For our application, 
we have used a steady state model of a tendon 
driven soft continuum robot (Renda et al., 2012). 
The sample data for learning the IS model is 
obtained from this steady state model. 

 

Figure 1: Kinematic representation of the cosserat beam 
model. 

The soft continuum robot is modelled as a 
cosserat beam. A cosserat beam can be visualized as 
a continuum body which is composed of 
infinitesimally small rigid bodies that can rotate 
independently from the neighbouring element. The 
position and orientation of each material element is 
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represented by four vectors: ,࢛	 ,࢚ , ࢈ . The unit 
vector ࢚ is tangential to the manipulator backbone at 
that section and the vectors 	and ࢈ lie on the cross 
sectional area of the element. These three unit 
vectors form the local reference frame for each 
element. Therefore, the relation ࢈ ൌ ࢚	 ൈ   holds 
true everywhere. ࢛  is the position vector of the 
centre of mass of an element (Fig. 1). We are 
ignoring the effects of shear stresses in our 
formulation (Euler-Bernoulli hypothesis). This 
restricts the DoF of each element to four. The total 
length of our manipulator is 31 centimetres, divided 
into a section per centimetre. 

The complete configuration of the robot can be 
calculated by obtaining the four vectors for each 
element. The elements are related to each other in 
space by the below equations (Renda et al., 2012): 

࢚݀
ݏ݀

ൌ ݇ሺݏሻ൫1  ሻݏሺሻ൯ݏሺݍ െ ሻ൫1ݏሺߦ  ሻݏሺ࢈ሻ൯ݏሺݍ (6)

݀
ݏ݀

ൌ െ݇ሺݏሻ൫1  ሻݏሺ࢚ሻ൯ݏሺݍ

െ ߬ሺݏሻ൫1   ሻݏሺ࢈ሻ൯ݏሺݍ
(7)

݀
ݏ݀

ൌ ሻ൫1ݏሺߦ  ሻݏሺ࢚ሻ൯ݏሺݍ െ ߬ሺݏሻ൫1  ሻݏሺሻ൯ݏሺݍ (8)

࢛݀
ݏ݀

ൌ ൫1  ሻ (9)ݏሺ࢚ሻ൯ݏሺݍ
 

Here the functions ݇ሺݏሻ and ߦሺݏሻ are the curvatures 
with respect to ࢈ሺݏሻ	and ሺݏሻ , ߬ሺݏሻ  is the torsion 
with respect to ࢚ሺݏሻ , and ݍሺݏሻ  is the longitudinal 
strain along the arm. ݏ	 , is the parametrization 
variable which represents an element. 

The variables ݇ሺݏሻ ሻݏሺߦ , , ߬ሺݏሻ  and ݍሺݏሻ  are 
related by the following equations:  

൭
ܫܩ 0 0
0 ܬܧ 0
0 0 ܬܧ

൱

ۉ

ۈ
ۈ
ۇ
	
݀߬
ݏ݀

	
ߦ݀
ݏ݀

	
݀݇
ݏ݀

	

ی

ۋ
ۋ
ۊ
 ቌ

ሶܫܩ 0 0
0 ሶܬܧ 0
0 0 ሶܬܧ

ቍ ቆ
	߬
ߦ	
	݇
	ቇ (10)

 

			ൌ ሶࡹ				 ሺݏሻ 
(11)EAݍሺݏሻ ൌ ܰ(s) 

 

Where, ܰ (s) is the ࢚  component of the internal 
contact forces and ࡹሺݏሻ is the vector of the internal 
torque forces (The dot symbol is the derivative with 
respect to s). ܧ  is the Young’s modulus, ܩ  is the 
shear modulus, ܬ ,ܫ and ܬ are the moment of inertia 
of the section with respect to	࢚,  .in that order ,࢈	and	
The internal contact forces and the internal torque 
forces are calculated based on the cable 
configuration and tension on each cable (Refer to 
Renda et al., 2012). Equation 10 is numerically 
integrated from tip to base and solved along with 

equation 11 and appropriate boundary conditions to 
obtain the curvatures and strains in each segment. 
Finally, the kinematic equations 6, 7, 8, 9 are 
integrated to obtain the arm shape.  

There are three anchorage planes along the 
length of the manipulator. Each anchorage plane has 
four cables attached to it; each spaced apart by an 
angle of 90 degrees. Fig. 2 shows the reachable 
workspace of the robot obtained by random 
exploration in the actuator space.  

 

Figure 2: Schematic of the robot end effector workspace. 

4 DATA COLLECTION AND 
TRAINING 

The samples (,ାଵ,  ାଵ) are generated by motor࢞
babbling. The distance between consecutive samples 
ାଵ) െ  ) is decided randomly from a range to 
avoid any bias in the sample. The range of the each 
sampling data is from zero to 8 percent of the 
maximum actuator force. The range is decided by 
trial and error. Learning with a lower range will give 
better accuracy, but requires larger data set and 
performs poorly for farther target points. Therefore a 
continuous path must be planned beforehand, just 
like the case of differential IK. Selecting the distance 
from a range rather than a fixed value keeps the 
continuous nature of the problem intact, at least 
partially. Note that there are 12 actuators which can 
select its actions continuously. Even if we consider 
that the actuator space is discretized into 12 
segments (each segment being roughly 8 percentage 
of the total range), there are still around 9e+12 
possible configurations. Therefore, we cannot 
navigate the whole actuator space, instead we expect 
the generalization ability of neural networks or other 
machine learning process’s to predict accurate 
solutions for unseen data. 

4.1 Training 

As mentioned before, we are using neural networks 
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to learn the mapping (, → (ାଵ࢞ ሺାଵሻ. The input 
layer is of size 18 for the IS solver and 15 for the 
IOS solver. The output layer size is 12 for both cases. 
We are using a multilayer perceptron with a single 
hidden layer for this. Tan-sigmoid activation 
function is used in the hidden layer and a linear 
activation function is used at the output layer. Proper 
care must be taken during the training process. 
Bayesian regularization backpropagation method is 
used for training the neural network (Foresee at al., 
1997). The inputs and outputs are normalized and 
divided randomly in the pre-processing stage. A 
uniformly distributed noise is also added to the 
inputs to imitate realistic scenarios. The magnitude 
of the noise goes up to 3% of the maximum 
sampling range. Since the Bayesian regularization 
backpropagation algorithm is used for training; the 
data set is divided into training and test set in the 
ratio 80:20. No validation set is used. In the 
following subsections we describe the methodology 
adopted for determining the network size and sample 
data size for learning the IS. The parameters of the 
IOS solver are adopted from the IS solver as it can 
be seen as a subset of the IS problem. 

4.1.1 Network Size 

Proper care must be given to decide the hidden layer 
size. It is not enough to get good training or test 
performance, contrary to common intuition. The 
learning task provided to the neural networks is to 
learn a left inverse function. However, our objective 
is to learn the right inverse function (Rolf et al., 
2013b). In other words, the neural network tries to 
reduce the error between the predicted values 
of ሻሺ	ାଵ	 and the sample values of ௦ሻାଵሺ	 . 
Whereas, the final aim is to reduce the error between 
݂ሺሻ and	࢞ାଵ. There are local minima which can 
provide good training and test performance, and still 
perform poorly as a IS solver. For instance, a 
network that outputs ାଵ	 ൌ  , can give good 
training and test performance as both values are 
nearby due to the sampling method. Therefore, the 
appropriate size for the network is decided by 
checking the training error along with the 
performance of the IS solver. Fig.3 shows effect of 
network size on the training performance and the 
corresponding change in the IS performance. IS 
solver performance is measured by testing the 
solutions for fifty points randomly selected from the 
sample data (to ensure that the targets are reachable). 

 

Figure 3: Network size determination. The errors in 
position and angle are normalized for easier comparison. 

4.1.2 Sample Size  

The length of the sample data required would be 
directly proportional to the number of DoF’s of the 
system. Fig. 4 shows how the number of samples 
determine the performances of the network and the 
IS solver.  

 
Figure 4: Sample data size determination. The network 
size is forty for all tests. 

For all the ensuing experiments we have selected 
14000 samples for training a neural network of size 
40 units. Note that the proposed method needs to 
explore only a miniscule percentage of the actuator 
space. The same analysis cannot be done 
independently for IOS solver since the performance 
of the IOS solver is heavily dependent on the 
position of the manipulator (Reachability of a 
particular orientation depends on the corresponding 
position). Therefore, the performance of the IOS 
solver can only be inspected with the help of the IS 
solver. However, since we are using Bayesian 
regularization backpropagation algorithm for 
training the network, an exaggerated network size 
and sample data will not harm the learning process. 
Therefore, the same parameters of the IS solver was 
adopted for the IOS solver. 
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5 RESULTS AND ANALYSIS 

This section is divided into three subsections; the 
first subsection shows the test results for the 
developed IS solver on the simulated steady state 
model; the second subsection discusses the results 
with the appended IS solver (Sec. 2.1); the final 
subsection makes a comparative analysis of the 
proposed method with the inverse Jacobian method. 
There are two reasons for this; the first one is to 
compare the performance of the two methods; 
secondly, the comparison can help us understand the 
underlying form of the learned network. 

5.1 Simulations 

The main advantage of the proposed method is its 
ability to provide global solutions to the IS problem 
without the need to pre-plan a path from the starting 
point. So, the first tests were to evaluate if the IS 
solver can provide accurate actuator configuration 
for random target points in the workspace. Fifty 
points ( x	 ∈ ሺെ0.05,0.35ሻ, y ∈ ሺെ0.25,0.25ሻ, z ∈
ሺെ0.2,0.2)) were randomly selected from the sample 
data along with their corresponding orientation. 
Since the target points are not close to the home 
position (0.31[m], 0[m], 0[m]), the solver needs 
more than one iteration for converging to the right 
solution. Fig. 5 shows the test results for this 
experiment. The proposed method is able to generate 
results with a mean positional error of 0.012 meters 
and mean orientation error of 7.4 degrees. The 
method converges with an average of 3.56 steps for 
convergence within a range of 1mm. The same fifty 
target points were again used in the IS solver for a 
starting point at one of the extreme boundary points 
(-0.02[m],-0.16[m],-0.01[m]). The corresponding 
results are shown in Fig. 6. The average errors 
increase in this case. The average positional error 
goes to 0.015 meters and the average orientation 
error goes to 9.92 degrees. The convergence speed 
remains the same with each target taking an average 
of 3.68 iterations for convergence. Note that even 
though the magnitude of error increases, the error 
pattern remains relatively similar. We suggest that 
these points are under-represented in the sample data 
and therefore the learning system does not have an 
adequate representation around that region. One 
possible work-around is to develop algorithms that 
perform motor babbling initially and then later 
switch to a more goal oriented exploration strategy. 

 

Figure 5: Simulation results for the fifty points experiment 
at the natural starting point. The thick lines represent the 
mean of the data and the dotted lines on either side of the 
mean represent the standard deviation. 

 

Figure 6: Simulation results for the fifty points experiment 
for a starting point at one of the boundary extrema. 

The next set of simulations were conducted for 
continuous targets, i.e. the target points are locally 
adjacent and therefore forms a continuous path. As 
the target points are close by, the IS solver can 
output a solution in one iteration. Two such paths 
were used for evaluation. The first one is a circular 
path of radius 0.1 meters, centered at (0.25[m], 0[m], 
0[m]), with a fixed orientation parallel to the X axis 
(Fig. 7). The other path is a fixed point with a 
continuous change in elevation (0→90→0 degrees) 
and azimuth (0→180 degrees). Fig. 8 shows the 
target orientation vectors for this simulation and the 
corresponding solutions from the IS solver. For both 
tests, the manipulator starts from the home position 
(Zero force position). The results of both tests are 
encapsulated in Table 1. 

Table 1: Continuous path results. 

Test 
Position Error  

(Mean േ Standard 
Deviation) [m] 

Orientation Error (Mean 
േ	Standard Deviation) 

[degrees] 
Circular 

Path 
0.0085 േ 0.0028 7.33 േ 3.98 

Angular 
Path 

0.0118 േ 0.0059 3.21 േ	1.71 
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Figure 7: Continuous positional path following with fixed 
orientation. The target orientation is a vector perpendicular 
to the YZ plane. 

 

Figure 8: Continuous angular path following. 

 
Figure 9: Appended IS solver. 

5.2 Appended IS Solver 

As mentioned in the subsection 2.1, redundant soft 
manipulators have certain geometrical properties 
that could allow smooth motions in the self-motion 
manifold. The continuous positional path experiment 
(Fig.7) was again used to test the appended IS solver. 
Fig. 9 depicts how the modified solver can allow us 
to trade-off between positional accuracy and 
orientation accuracy, leading to an improvement in 
orientation accuracy by 0.95 degrees and reduction 
of positional accuracy by 1.3 mm. 

5.3 Analysis 

The proposed methodology for learning the IS of a 
redundant soft manipulator is an adaptation of the 
differential IK/IS method. Therefore, we try to make 
a comparison to the differential IK/IS method. The 
Jacobian at a point (Equation 2) can be obtained 
numerically by making infinitesimally small changes 
in the actuator configuration and observing the 
corresponding changes in the end effector 
configuration. Once the Jacobian matrix is obtained, 
it is inverted to obtain a particular solution to the 
IK/IS problem. For a redundant manipulator, the 
Moore-Penrose pseudo inverse will achieve the 
same. We ignore the null space solutions in this 
analysis.  

 

Figure 10: Correlation between the proposed method and 
JI method for a starting point at the home position. 

 

Figure 11: Correlation between the proposed method and 
Jacobian inverse method starting at a boundary extremum. 

We compare the correlation between the 
solutions provided by a Jacobian pseudo inverse (JI) 
based method and our proposed method at two 
points. One is the natural home position and the 
other is a boundary extremum. The correlation 
between the Inverse Jacobian method and the 
proposed method for varying target distance is 
shown in Fig. 10. We can observe that the 
correlation between the Jacobian pseudo inverse 
method and the learned system is high at the home 
position. This implies that the system tends to learn 
the ‘shortest path’ solution. It is low at lower 
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distances possibly because of the added noise. The 
trend is similar for other points well within the 
boundary. However for a starting position that lies at 
one of the extremum of the workspace, the 
correlation value is less (Fig. 11). The proposed 
method also performs better than the Inverse 
Jacobian method. 

6 CONCLUSIONS 

This paper presents a data driven method for 
learning the inverse statics mapping of a redundant 
soft manipulator. The novelty in our methodology 
arises from our linearized IS problem reformulation 
and sampling approach while implicitly feeding the 
learning system with information about the system 
boundaries. We have demonstrated through 
simulations that the proposed approach is suitable 
for static control of high dimensional redundant soft 
manipulators. We have also tried to address the 
possibility of utilizing the distinct self-motion 
manifolds of soft robots and its probable 
implications. Finally, comparison of the proposed 
method with commonly used inverse Jacobian 
method indicates that the learning system 
generalizes to the ‘shortest path’ solution. 
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