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Abstract: Fault tolerance allows a system to remain operational to some degree when some of its components fail. 
One of the most common fault tolerance mechanisms consists on logging the system state periodically, and 
recovering the system to a consistent state in the event of a failure. This paper describes a general fault 
tolerance logging-based mechanism, which can be layered over deterministic systems. Our proposal 
describes how a logging mechanism can recover the underlying system to a consistent state, even if an 
action or set of actions were interrupted mid-way, due to a server crash. We also propose different methods 
of storing the logging information, and describe how to deploy a fault tolerant master-slave cluster for 
information replication. We adapt our model to a previously proposed framework, which provided common 
relational features, like transactions with atomic, consistent, isolated and durable properties, to NoSQL 
database management systems. 

1 INTRODUCTION 

Fault tolerance enables a system to continue its 
operation in the event of failure of some of its 
components (Randell et al., 1978). A fault tolerant 
system either maintains its operating quality in case 
of failure or decreases it proportionally to the 
severity of the failure. On the other hand, a fault 
intolerant system completely breaks down with a 
small failure. Fault tolerance is particularly valued in 
high-availability or life-critical systems.  

Relational Database Management Systems 
(DBMS) are systems that usually enforce 
information consistency and provide atomic, 
consistent, isolated and durable (ACID) properties in 
transactions (Sumathi and Esakkirajan, 2007). 
However, without any sort of fault-tolerance 
mechanism, both atomicity and consistency are not 
guaranteed in case of failure (Gray and others, 
1981).  

We have previously proposed a framework 
named Database Feature Abstraction Framework 
(DFAF) (Pereira et al., 2015), based in Call Level 
Interfaces (CLI), that acts as an external layer and 
provides common relational features to NoSQL 
DBMS. These features included ACID transactions, 
but our framework lacked fault-tolerance 
mechanisms and, in case of failure, did not 
guarantee atomicity or consistency of information.  

This paper presents a model that can be used to 
provide fault-tolerance to deterministic systems 
through external layers. We describe how to log the 
system state, so that it is possible to recover and 
restore it when the system crashes; possible ways to 
store the state, either remotely or locally; and how to 
revert the state after a crash.  

We prove our concept by extending DFAF with 
the proposed logging mechanisms in order to 
provide fault-tolerant ACID transactions to NoSQL 
DBMS. DFAF acts the external layer over a 
deterministic system (a DBMS). We consider that 
non-deterministic events can happen in the 
deterministic systems and are either expected (e.g.: 
receiving a message), triggering deterministic 
behaviour, or unexpected (e.g.: crashing), leading to 
undefined behaviour.  

The remainder of this paper is organized as 
follows. Section 2 describes common fault tolerance 
techniques and presents the state of the art. Section 3 
provides some context about the DFAF and Section 
4 formalizes our fault tolerance model, describing 
what information is stored and how to store it. 
Section 5 describes a fault-tolerant data replication 
cluster which can be used for performance 
enhancements and Section 6 shows our proof of 
concept and evaluates our results. Finally, and 
Section 7 presents our conclusions. 
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2 STATE OF THE ART 

Fault tolerance is usually achieved by anticipating 
exceptional conditions and designing the system to 
cope with them. Randell et al. define an erroneous 
state as a state in which further processing, by the 
normal algorithms of the system, will lead to a 
failure (Randell et al., 1978). When failures leave 
the system in an erroneous state, a roll-back 
mechanism can be used to set the system back in a 
safe state. Systems rely on techniques like check-
pointing, a popular and general technique that 
records the state of the system, to roll-back and 
resume from a safe point, instead of restarting 
completely. Log-based protocols (Johnson, 1989) 
are check-pointing techniques that require 
deterministic systems. Non-deterministic events, 
such as the contents and order of incoming 
messages, are recorded and used to replay events 
that occurred since the previous checkpoint. Other 
non-deterministic events, such as hardware failures, 
are meant to be recovered from. Indirectly, they are 
recorded as lack of information.  

In the fault tolerance context, logging 
mechanisms and their concepts and implementation 
techniques have been discussed and researched 
extensively (Gray and Reuter, 1992), with popular 
write-ahead logging approaches (Mohan et al., 1992) 
having become common in DBMS to guarantee both 
atomicity and durability in ACID transactions. There 
are also other approaches which do not rely on 
logging systems to provide fault tolerance, like 
Huang et al.’s method and schemes for error 
detection and correction in matrix operations (Huang 
et al., 1984); Rabin et al.’s algorithm to efficiently 
and reliable transmit information in a network 
(Rabin, 1989); or Hadoop’s data replication 
approach for reliability in highly distributed file 
systems (Borthakur, 2007). Some relational DBMS 
use shadow paging techniques (Ylönen, 1992) to 
provide the ACID properties. However, the above 
described fault tolerance mechanisms are not 
suitable to be used in an external fault-tolerance 
layer, since they are very dependent on the 
architecture of the systems they were designed for. 

The most general proposals fall in the category 
of data replication, where several algorithms and 
mechanisms have been proposed. These include 
Hadoop’s data replication approach for reliability in 
highly distributed file systems (Borthakur, 2007); 
(Oki and Liskov, 1988), which is based on a primary 
copy technique; (Shih and Srinivasan, 2003), an 
LDAP-based replication mechanism; or (Wolfson et 
al., 1997), which provides an adaptive algorithm that 

replicates information based on its access pattern. 
Recently, proposals have also focused on byzantine 
failure tolerance (Castro and Liskov 1999; Cowling 
et al. 2006; Merideth and Iyengar 2005; Chun et al. 
2008; Castro and Liskov 2002; Kotla and Dahlin 
2004). Byzantine fault-tolerant algorithms have been 
considered increasingly important because malicious 
attacks and software errors can cause faulty nodes to 
exhibit arbitrary behaviour. However, the byzantine 
assumption requires a much more complex protocol 
with cryptographic authentication, an extra pre-
prepare phase, and a different set of techniques to 
reach consensus.  

To the best of our knowledge, there has not been 
work done with the goal of defining a general 
logging model that provides fault tolerance as an 
external layer to an underlying deterministic system. 
Some solutions provide fault tolerance, but are 
adapted to a specific context or system. Others are 
overly-abstract general models, like data replication, 
and do not cover how to generate the necessary said 
data from an external layer to provide fault-tolerance 
to the underlying system. Not only that, but many 
data replication systems also assume conditions we 
do not, such as the possibility of byzantine failures, 
or overly complex data access patterns. While 
byzantine failures are of enormous importance in 
distributed unsafe systems, such as in the BitCoin 
environment (Nakamoto, 2008), we consider their 
countermeasures to be complex and performance-
hindering in the scope of our research. Not only that, 
but byzantine assumptions have been proven to 
allow only up to 1/3 of the nodes to be faulty. We 
intend to focus on fault-tolerance for underlying 
deterministic systems through a logging system, and 
while distributed data replication is used for 
reliability, expected DFAF use cases do not assume 
malicious attacks to tamper with the network. 
However, our model is general enough that it 
supports the use of any data replication techniques to 
replicate logging information across several 
machines. 

3 CONTEXT 

We have previously mentioned the DFAF, which 
allows a system architect to simulate non-existent 
features on the underlying DBMS for client 
applications to use, transparently to them. Our 
framework acts as a layer that interacts with the 
underlying DBMS and with clients, which do not 
access the DBMS directly. It allowed ACID 
transactions, among other features, on NoSQL 
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DBMS, but was not fault tolerant. Typically, 
NoSQL DBMS provide no support to ACID 
transactions. An ACID transaction allows a database 
system user to arrange a sequence of interactions 
with the database which will be treated as atomic, in 
order to maintain the desired consistency constraints. 
For reasons of performance, transactions are usually 
executed concurrently, so atomicity, consistency and 
isolation can be provided by file- or record-locking 
strategies. Transactions are also a way to prevent 
hardware failures from putting a database in an 
inconsistent state. Our framework must be adjusted 
to take hardware failures into account with multi-
statement transactions. In a failure free execution, 
our framework registers what actions are being 
executed in the DBMS and how to reverse them, 
using a reverser mechanism (explained further 
below). Actions are executed in the DBMS 
immediately and are undone if the transaction is 
rolled-back.  

However, during a DFAF server crash, the ACID 
properties are not enforced. As an example, consider 
a transaction with two insert statements. If the 
DFAF server crashed after the first insert, even 
though the client had not committed the transaction, 
the value would remain in the database, which 
would mean the atomic aspect of the transaction was 
not being enforced. To enforce it, we propose a 
logging mechanism, whose records are stored 
somewhere deemed safe from hardware crashes. 
That logging system will keep track of the 
transactions occurring at all times and what actions 
have been performed so far. When a hardware crash 
occurs, the logging system is verified and 
interrupted transactions are rolled-back before the 
system comes back on-line. Our logging system is 
an extension to DFAF and is a log-based protocol 
where the underlying DBMS acts as the 
deterministic system mentioned previously. Each 
action in a transaction represents a non-deterministic 
event and is, as such, recorded, so that the chain of 
events can be recreated and undone when the system 
is recovering from failure. 

4 LOGGING SYSTEM 

Logging systems for fault-tolerance mechanisms 
have several different aspects that need to be 
defined: firstly, the logging system must be designed 
in a way that the logging is not affected by hardware 
failures. In other words, if the server crashes while a 
database state was being logged, the system must be 
able to handle an incomplete log and must be able to 

recover its previous state. Secondly, logging an 
action is not done at the same time as that action is 
executed. Taking an insertion in a database as an 
example, the system logs that a value is going to be 
inserted, the value is inserted and the system logs 
that the insertion is over. However, if the system 
crashes between both log commands, there is no 
record of whether the insert took place or not. To 
solve this, the underlying system must be analysed 
to check if it matches the state prior to the insertion 
or not. Thirdly, while recovering from a failure, the 
server can crash again, which means the recovery 
process itself must also be fault tolerant. Finally, 
cascading actions imply multiple states of the 
underlying system, all of which must be logged so 
that they can all be rolled-back. In other words, if an 
insert in a database triggers an update, then the 
database has three states to be logged: the initial 
state, the state with the insertion and the state with 
the insertion and the update. Because the server can 
crash at any of these states, they all need to be 
logged so that the recovery process rolls-back all the 
states and nothing more than those states.  

4.1 Logging Information 

In order to provide fault tolerance, there are two 
choices to compensate for the failure (Garcia-Molina 
and Salem, 1987): backward recovery, or executing 
the remainder of the transaction (forward recovery). 
For forward recovery, it is necessary to know a 
priori the entire execution flow of the transaction, 
which is not always possible. DFAF uses the 
backward recovery model to avoid leaving the 
system in an inconsistent state when a rollback is 
issued by a client. To do so, along with the actions 
performed, DFAF registers how to undo them. In 
other words, when a client issues a command, the 
command to revert it, referred to as the reverser, is 
calculated. In a SQL database, for example, an 
insert’s reverser is a delete. Reversers are executed 
backwards in a recovery process to keep the 
underlying system in a consistent state. However, 
logging actions and performing them cannot be done 
at the same time. It is also not adequate to log an 
action after it has already been performed, since the 
server could crash between both stages, and there 
would be no record that anything had happened. 
Therefore, actions (and their reversers) must be 
logged before they are executed on the underlying 
system. However, if the server crashes between the 
log and the execution, the recovery process would 
try to reverse an action that had not been executed. 
Because we have no assumptions regarding when 
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the system can crash, the only way to solve this 
problem is to directly assess the underlying system’s 
state to figure out whether the action has been 
performed or not. Since we have access to the 
underlying system’s state prior to the action being 
executed, we can find a condition that describes 
whether the action has been executed or not. This 
condition will be referred to as verifier from now on.  

For example, after the insertion of value A, it is 
trivial to verify if the value has been inserted or not 
by the amount of rows with value A that existed 
prior to the insertion. If there were two As and the 
transaction crashed during the insertion of a third, by 
counting how many exist in the database, we can 
infer whether we need to reverse this action in the 
transaction (if we now have three As) or if the action 
did not get completed (if we still have two As). The 
concept is extended to cascading actions. A reverser 
is determined for each cascading action in DFAF, 
which means a verifier must also be calculated to 
determine whether that effect happened and needs to 
be rolled-back or not. If the server crashes during 
these triggered actions or during a rollback, each 
verifier must be checked before applying the 
corresponding reverser, to ensure that 1) we are not 
reverting the same action twice, and that 2) we are 
not reverting an action that was not executed. During 
the recovery process, reversers are executed 
backwards. If a verifier shows that an action has not 
been completed, or after an action has been reversed, 
its record (along with the reverser and verifier) is 
removed from the log. If the server crashes during a 
recovery, due the verifier system, there is no risk of 
reverting actions that need not be reverted or that 
have not yet been executed. 

4.2 Logging Information Storage 

We have implemented two possible information 
storage mechanisms: a local and a remote one. These 
can be used with regular hardware and standard 
computational resources nowadays. Other storage 
mechanisms are supported, such as using a relational 
DBMS to store and retrieve the logs. The only 
requirement is that the mechanisms are fault-
tolerant. 

The local mechanism relies on writing the 
logging information to disk: fault tolerance is 
supported even in a complete system crash, but with 
heavy performance costs. It does not require any 
additional software, other than file system calls. The 
remote mechanism tries to leverage both 
performance and fault tolerance and relies on a 
remote machine to keep the logging information in 

memory. I/O operations are not as heavy on 
performance as writing to disk, but fault tolerance is 
only guaranteed if the logging server does not crash.  

We have designed a fault-tolerant master-slave 
architecture, deemed a Cluster Network (CN), to 
allow several machines to coordinate and replicate 
information among them. This system can be used to 
store the logs from the remote mechanism, which 
allows some machines to crash without loss of 
information. In a CN, the only case where the logs 
would be lost would be a scenario where all 
machines crashed, which is unlikely if the machines 
are geographically spread. We expect the 
performance of this mechanism to be superior in 
comparison with the local mechanism. The remote 
mechanism uses TCP sockets to exchange 
information between the servers. Because TCP 
provides reliability and error control, both machines 
know when a message has been properly delivered 
and the system server can perform the requested 
actions while the logging server keeps the 
information in memory. Both servers can detect if 
the network failed or the remaining server has 
crashed. In these cases, the recovery process can be 
initiated until connectivity is re-established.  

The local mechanism, as previously stated, was 
designed to store the information in the file system. 
We assume that the hardware crashes will not be so 
severe that they render the hard drive contents 
unrecoverable, or that a back-up system is deployed 
to allow the recovery of a defective file system. 
Most file systems do not provide fault-tolerant 
atomic file creation, removal, copy, movement, 
appending or writing operations, so we need to first 
address this issue and prevent the logging system 
from entering an inconsistent state, if there is a crash 
during a logging operation. We start by creating a 
file for each transaction occurring in the system. The 
file is created as soon as a transaction is started and 
deleted just before it is complete. If the server 
crashes when the transaction is starting and creating 
the file, the file can either exist and be empty, or not 
exist. There are no actions to be rolled-back, so 
either case is fine and the file is ignored. If the 
server crashes when deleting the file and closing the 
transaction, the file can either exist with its contents 
still intact, or not exist. If it does not exist, the 
transaction was already over. If it still exists, then it 
is possible to read it and rollback the database. The 
log file update must be done in a way that the 
logging system’s last state must be recoverable. As 
such, to prevent file corruption, a copy of the old 
state is kept until the new one is completely defined. 
Firstly, we create a file, temp, that signals we were 
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updating the log and whose existence means that the 
original log file is valid. After we create it, we copy 
the log to a copy file. When all of the contents have 
been copied, we delete temp. If the server crashes at 
any point and temp exists, log is still valid and the 
server ignores copy. If temp does not exist, but copy 
exists, then copy is valid and the server ignores the 
original log. After temp has been deleted, log is 
updated with the new information (a new state in the 
database, for example). After log has been fully 
updated, copy can be deleted, since it is no longer 
necessary. Table 1 shows the several stages 
described above. 

Table 1: A log-update cycle, with the several stages of the 
update, the state of each of the files, and what file is 
chosen on each stage. 

Stage: 1 2 3 4 5 6 7 8 
log (L)      ?   

temp         
copy (C)    ?     

File:  L L L L C C C L 

With the two proposed mechanisms, a recorded 
log of executed actions on the database can be safely 
stored and used to return the underlying system to a 
consistent state. 

5 CLUSTER NETWORK 

Our remote logging mechanism can rely on a 
cluster-based system to store the needed 
information. This allows for fast interactions, 
reliability and consistency. Data replication 
techniques such as byzantine tolerant approaches are 
a valid option, but have an associated performance 
decay due to the byzantine assumption and a low 
threshold for the amount of faulty machines. As 
such, we designed a fault-tolerance master-slave 
network that replicates information across all the 
slaves and better fits DFAF’s requirements.  

We require our Cluster Network to be able to 
grow as needed, without having to interrupt service 
or without having maintenance downtime. We 
considered that nodes should be symmetrical to 
avoid the human error factor present in id-based 
systems. We also want a stable algorithm (a master 
stays as master until it crashes) to avoid unnecessary 
operations when an ex-master is turned back on. 
Finally, we consider that an IP network is not perfect 
and that network elements (switches, routers) and 
well as network links can crash at any time. We 
therefore allow a set of any number of nodes that 

communicate through IP where any of the nodes can 
crash and be restarted at any given time. The master 
node is contacted by clients and it forwards the 
information to the slave nodes. Clients can find the 
master node through any number of methods, like 
DNS requests, manual configuration, broadcast 
inquiries, etc. If the master crashes, one of the slaves 
is nominated to be master and, because all the 
information was replicated among the slaves, it can 
resume the master’s process.  

Our election algorithm is inspired in Gusella et 
al.’s election algorithm (Gusella and Zatti, 1985). 
While many other leader election algorithms would 
be supported, this one suits the DFAF requirements 
the best. The authors have developed a Leader 
Election algorithm that is dynamic (nodes can crash 
and restart at any time), symmetric (randomization is 
used to differ between nodes), stable (no leader is 
elected unless there is no leader in the cluster) and 
that uses User Datagram Protocol (UDP) 
communication (non-reliable, non-ordered). It 
supports dynamic topology changes to some degree, 
but it is not self-stabilizing (nodes start in a defined 
state, not in an arbitrary one). When a master is 
defined, the master is the one receiving requests 
from clients. In order to guarantee consistency 
among all the nodes, the master forwards any 
incoming requests to the slaves before answering the 
client with the corresponding response. This 
guarantees that all the slaves will have the same 
information as the master. If the master crashes 
during this process, because the client still has not 
been answered, he will retry the request to the new 
master, which will store it (while avoiding request 
duplication) and forward it to the slaves. When a 
slave joins the network, he contacts the master and 
requests the current system information (in this case, 
the current log). A mutual exclusion mechanism is 
necessary to avoid information inconsistency when 
information is being relayed to a new slave. To 
avoid request duplication from clients when the 
master node crashes, a request identification number 
is used. Using this approach means that up to N-1 
nodes in the CN can crash without information being 
lost or corrupted. Using other approaches for data 
replication, such as (Castro and Liskov, 1999) only 
allows up to N/3 nodes to be faulty and is expected 
to have worse performance. However, byzantine-
tolerant approaches are more robust and, as 
previously stated, our logging model is general 
enough that any data replication mechanism can be 
used to safe-keep the logging information. 
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6 PROOF OF CONCEPT 

We extended the previously mentioned DFAF with 
our proposed logging mechanism, in order to 
guarantee the atomic and consistent properties of 
transactions. This way, even if the DFAF server 
crashed during multiple concurrent transactions, 
those transactions will all be rolled-back and the 
underlying database will be on a consistent state 
when the recovery process has finished. The reverser 
and verifier system in DFAF depends on the 
underlying DBMS schema and query language. 
Different schemas can imply different cascading 
actions, if, for example, different triggers are defined 
in each schema. However, NoSQL DBMS don’t 
usually support cascading actions such as triggers, 
and they do not fall under the expected use cases of 
DFAF. Different query languages also imply 
different reversers and verifiers, since an insert in 
SQL has a very different syntax from a NoSQL 
DBMS’s custom query language. However, the 
reverser and verifier creation mechanism is trivial 
for most SQL and SQL-like languages. Verifiers are 
select statements related with the values being 
inserted, deleted or updated. Reversers are delete 
statements for insert statements, insert statements 
for delete statements, and update statements for 
update statements. Having multiple transactions 
occurring at the same time implies having either 
multiple log files or a single log file with 
information from all transactions. This could lead to 
problems during the recovery process, if the order of 
actions in separate transactions was not being 
logged. However, the fact that transactions 
guarantee the isolation property means that each of 
their actions will not affect other transactions. 
Therefore, the order in which each transaction is 
rolled-back is irrelevant, as long as the statements in 
each transaction are executed backwards. To prove 
our concept, we tested the local logging mechanism 
using DFAF with a single client connecting to the 
database. The client starts a transaction, inserts a 
value and updates that value, finishing the 
transaction. During this process, the logging 
information is stored in a local file. We crashed the 
transaction on several stages (shown in Table 1) and 
verified that the recovery process could correctly 
interpret the correct log file and set the database in a 
correct state, the one previous to the transaction. In 
order to interrupt the process on particular stages, 
exceptions were purposely induced in the code, 
which were thrown at the appropriate moments. The 
recovery process was then started and tested as to 
whether it could successfully recover and interpret 

logged information and, if needed, rollback the 
database to a previous state. Results showed that the 
system was always able to recover from a failed 
transaction and returned the database to a safe state. 
To prove our concept with the remote mechanism, 
we deployed a network with a client connected to a 
DBMS and to a CN, as shown in Figure 1.  

 

Figure 1: The deployed network for tests with the remote 
mechanism and a single client. 

We used the same transaction used to test the 
local mechanism. In our first test, we checked 
whether the CN could detect and roll-back failed 
transactions. We crashed the client after the first 
insertion and the CN immediately detected the crash 
and rolled-back the transaction. In our second test, 
we checked if a correct rollback was ensued with 
crashes on different stages of the transaction. We 
crashed the client at several stages of the transaction 
(before logging the action, after logging but before 
performing the action, after performing but before 
logging that it has been performed and after logging 
that the action had been done) and monitored the 
roll-back procedure to guarantee the database was in 
the correct state after the recovery process had 
finished. Finally, we checked whether several 
concurrent transactions occurring in a DFAF server 
could all be rolled-back without concurrency issues. 
We used a DFAF server to handle several clients 
while connected to a CN, as can be seen in Figure 2, 
and crashed the server during the client’s 
transactions. The CN detected the crash and rolled-
back all transactions, leaving the database once more 
in a consistent state. 

  

Figure 2: The deployed network for tests with the remote 
mechanism and multiple clients. 

To demonstrate the soundness of our approach in 
a practical environment, we examined the 
performance of our logging mechanism’s 
implementation and of our CN using a 64-bit Linux 
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Mint 17.1 with an Intel i5-4210U @ 1.70GHz, 8GB 
of RAM and a Solid State Drive. For tests involving 
a CN, a second machine was used, running 64-bit 
Windows 7 with an Intel i7 Q720 @ 1.60GHz, 8GB 
of RAM and a Hard Disk Drive. A 100Mbit cable 
network was used as an underlying communication 
system between both nodes. Figure 3 shows how the 
local (green) and remote (red) logging mechanisms, 
using as a basis for comparison a transaction with up 
to 1000 statements on a SQLite table. This number 
of statements was based on previous DFAF 
evaluations. Tests were repeated several times to get 
an average of the values, the 95% confidence 
interval was calculated, and the base time for 
operations was removed to allow for a more intuitive 
graph analysis. The CN used for the remote 
mechanism was a local single-node, which removed 
most of the network interference with the tests. 

 

Figure 3: Performance (in milliseconds) of the different 
logging mechanisms. 

As expected, the most performant mechanism is 
the remote mechanism, where a sub-second 
performance decay is noticed (around 321±209 
milliseconds for 1000 operations). The baseline time 
for 1000 operations was 10295±1142 milliseconds, 
which means remote mechanism has a performance 
decay of approximately 3.1%. The local mechanism 
is the least performant, due to the high amount of 
disk operations, with around 2047±237 milliseconds 
for 1000 operations, a 19.8% performance decay. 
The performance difference of an order of 
magnitude between both mechanisms is due to the 
fact that, as the logging file gets bigger, it takes 
longer to read, copy and write it. This means that, 
with a transaction of 1000 insertions, for example, 
the 1000th insertion will take a lot longer than the 
1st insertion, while the remote mechanism takes the 
same amount of time for any insertion.  

We tested Cluster Networks to find how long it 

takes to find a master and make the information 
consistent among them. These values have a direct 
correlation to the defined time-outs on each state of 
the network, as defined by Gusella et al.’s algorithm. 
We created two-node networks (1 master, 1 slave) 
and measured the times taken for each node to 
become a master/slave (with a confidence interval of 
95%) and to guarantee the consistency of 
information among them. Tests with more nodes 
were not feasible, due to hardware restraints. Tests 
show an average of 5±1 milliseconds to get a node 
from any given phase of the election algorithm to the 
next, excluding the defined time-outs. The time 
taken to exchange all the information from a master 
to a slave depends on the current information state, 
but in our tests, any new slave took approximately 
8±1 milliseconds to check whether information was 
consistent with the master. Transferring the log with 
1000 records from the first test took approximately 
20±4 milliseconds. 

7 CONCLUSIONS 

We have previously proposed DFAF, a CLI-based 
framework that implements common relational 
features on any underlying DBMS. These features 
include ACID transactions, local memory structure 
operations and database-stored functions, like Stored 
Procedures. However, the proposal lacked a fault 
tolerance mechanism to ensure the atomic property 
of transactions in case of failure. We now propose a 
fault tolerance model, general enough to work with 
several underlying deterministic systems, but 
adapted to DFAF.  

Our model is a logging mechanism which 
requires the performed action, its verifier (that 
checks whether it has been executed or not) and its 
reverser (to undo it, in case of failure). We describe 
two ways of storing the information: either locally in 
the file system, or remotely in a dedicated server. 
Because operating systems do not usually provide 
atomic operations, to prevent the logging 
information from becoming corrupted, we also 
describe how to update the information. In order to 
guarantee that the remote server is also fault tolerant 
and the information is not lost in case of failure, we 
describe a master-slave network that can be used to 
replicate the information. Clients contact the master, 
which replicates the information to slaves without 
consistency issues. Our performance results show 
that the use of our logging mechanism can be 
suitable for a real-life scenario. There is an expected 
performance degradation, but a fault tolerant system 
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provides several advantages over a slightly more 
performant fault intolerant system. Not only that, but 
the performance decay using the remote mechanism 
is nearly negligible. 

In the future, we intend to improve both the local 
and remote mechanisms. Regarding the file system, 
we intend to develop a highly performant algorithm, 
that does not rely on copying the previous log on 
each update. Regarding the remote mechanism, we 
intend to adapt the CN for other requirements, in 
order to improve performance. This can be done by 
allowing priority nodes and removing the symmetry 
factor. This way, servers can preferentially become 
masters, if they have better hardware or conditions. 
The CN can also be improved by changing the 
underlying communication protocol, which at the 
moment is assumed to be unreliable. We also intend 
to develop a master look-up mechanism, like DNS 
registration. At the moment, there is no such 
mechanism, and clients resort to finding masters 
manually. 

In conclusion, we extended DFAF with a log-
based fault-tolerance model, this way guaranteeing 
ACID properties on the underlying DBMS 
transactions. We describe two ways of storing the 
information, to leverage performance and reliability, 
but support other models. We also propose a master-
slave fault tolerant network which can be used as a 
remote server to keep information replicated and 
consistent. Both the logging model and the CN can 
be used for other applications as well; we have for 
example adapted the CN to act as a concurrency 
handler in another module of DFAF. 
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