
NSIM-ACE: An Interconnection Network Simulator for Evaluating
Remote Direct Memory Access

Ryutaro Susukita1, Yoshiyuki Morie1, Takeshi Nanri1 and Hidetomo Shibamura2
1Research Institute for Information Technology, Kyushu University,

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
2Institute of Systems, Information Technologies and Nanotechnologies, Fukuoka SRP Center Building 7F,

2-1-22 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan

Keywords: Network Simulation, Interconnection Network, RDMA, Performance Evaluation, Parallel Processing,
Discrete Event Simulation.

Abstract: Network simulation is an important technique for designing interconnection networks and communication
libraries. Also network simulations are useful for the analysis of internal communication behavior in parallel
applications. This paper introduces a new interconnection network simulator NSIM-ACE. This simulator
enables us to evaluate RDMA directly while existing simulators do not have such capability. NSIM-ACE
also provides a similar user-interface to RDMA-based parallel programs for easy use. The experimental
evaluation indicates that the simulation accuracy is sufficient to compare performance of some RDMA-
based algorithms and the simulator is capable of predicting performance scalability for non-extinct
networks.

1 INTRODUCTION

Modern high performance parallel computers consist
of a large number of computing nodes connected via
an interconnection network. Applications running on
such systems perform computation
in parallel by communicating data between nodes.
Designing high speed interconnection networks and
communication libraries have an important role for
running parallel applications efficiently. However, it
is not an easy task to predict performance of
interconnection networks and communication
libraries at the design stage. Particularly, if a large
number of nodes communicate a large amount of
data simultaneously, communication performance
degrades from the theoretical value due to
communication contention. Therefore, simple
mathematical models of parameters including the
minimum communication latency between nodes
and the bandwidth predict inaccurate communication
performance. Analyzing communication behaviors
inside real machines is also an issue for efficient
parallel applications. It may be difficult because of
the same reason. As an attempt to solve these
problems, many interconnection network simulators
were developed so far.

NSIM is an interconnection simulator developed
for evaluating extreme-scale systems. Users can
configure detail of the target network. This simulator
focuses on simulation speed. The simulation model
is simplified not at the great expense of simulation
accuracy. A feature of NSIM is accepting programs
compatible with Message Passing Interface (MPI) as
input communication patterns. NSIM simulates the
target network by means of pseudo execution of
such a program. This feature provides with a user-
friendly simulation environment. NSIM is
implemented to be a parallel simulator on distributed
memory systems.

Adiga et al. (2005) developed a dedicated
simulator for predicting performance of three
dimensional torus network of IBM BlueGene/L. The
simulator inputs are traces of pseudo application
codes. The developers extended an IBM tracer for
generating the traces. This is a parallel simulator on
shared memory systems. Simulations of up to a 64K-
node network were reported.

BigNetSim (Choudhury et al., 2005) is a
simulator supporting various interconnection
networks. Users can flexibly configure network
parameters including topology, size and
communication latency. BigNetSim has two

254
Susukita, R., Morie, Y., Nanri, T. and Shibamura, H.
NSIM-ACE: An Interconnection Network Simulator for Evaluating Remote Direct Memory Access.
DOI: 10.5220/0005978802540261
In Proceedings of the 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2016), pages 254-261
ISBN: 978-989-758-199-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

execution modes. In one mode, it simulates
according to communication patterns artificially
generated inside the simulator. In the other mode,
BigNetSim simulates according to traces generated
by BigSim (Zheng et al., 2004), a simulator for
extreme-scale parallel computers.

FSIN (Ridruejo and Alonso, 2005) is an
interconnection network simulator included in a
simulation framework called INSEE. FSIN supports
a variety of router models and network topologies.
This simulator is based on relatively simple network
models where every network event spends equal
time. FSIN accepts two types of simulation inputs,
artificially generated communication patterns and
traces of MPI applications. FSIN has a unique
feature that it can feedback the simulation results to
original trances.

SimGrid (Casanova et al., 2014) is a simulator
for a wide area of computer systems including
processor, network, storage and grid computing.
SimGrid simulates these computer resources in a
unified model where if multiple tasks on the target
system require a resource simultaniouly, the
resource is shared by the tasks in an optimization
rule. This simulator accepts two types of simulation
inputs, programs written in an original format and
unmodified MPI programs.

Meanwhile, recent network interface cards
(NICs) used in high performance parallel computers
have the function of Remote Direct Memory Access
(RDMA). RDMA has the following advantages:

 Low communication latency: RDMA directly
transfer data from memory on the send node to
memory on the receive node.

 Efficient parallelization of communication and
computation: RDMA transfers data
independently of node processors.

 Minimum consumption of memory: RDMA
need no communication buffer.

Since MPI is the de fact standard of parallel
programming, the RDMA-based programming
model is not the main stream. However, the
advantages above give RDMA a potential to become
an alternative in coming high performance parallel
computers.

Communication libraries that adopt the RDMA-
based model include ARMCI (Nieplocha and
Carpenter, 1999) and GASNet (Bonachea, 2002).
These libraries have put/get operations in the RDMA-
base model. MPI also defines put/get operations in
addition to the message passing model. A recent
example of communication libraries that support the
RDMA-based model is the basic layer of ACP library
(Sumimoto et al., 2016). It aims at a primitive

communication library for parallel programing.
Unlike communications that require operations

in both the send and receive nodes, RDMA starts the
communication by either the send node or the
receive node. On the other hand, RDMA often needs
extra processing such as preparation for the
communication and the confirmation of a write
operation on the receive node. We need a different
design of communication libraries and a different
style of parallel programing.

However, existing interconnection network
simulators do not provide the function of handling
RDMA directly nor user-friendly interface to the
RDMA-based programs. In order to break this
limitation, we implemented the NSIM-ACE
interconnection network simulator by extending
NSIM. In this paper, we present this new simulator.

2 NSIM OVERVIEW

2.1 Network Model

NSIM supports mesh/torus networks up to six
dimensions and fat tree networks. NSIM assumes
that each node connected by the target network
consists of one processor and one or multiple NICs.
The target network is modeled as a combination of
routers, router-to-router links and router-to-NIC
links. The router model assumes static dimensional
routing, virtual cut-through and a pipelined router.
Data transfer on each link is simulated basically at a
packet level. However, NSIM employs a simulation
technique that gives the same accuracy as flit level
simulations. For saving memory usage, actual data are
not transferred but only information on data size is.

2.2 Inputs and Outputs

For communication patterns, NSIM accepts an MPI-
like program in which the prefix MPI_ of MPI
functions are replaced with MGEN_. This program
is called an MGEN program. In the MGEN program,
computational parts except for MPI functions are
replaced with MGEN_Comp (t) functions, where t is
a predicted computation time. This function enables
us to simulate communication taking into account
the difference of the start times between processes. It
is also used for simulations including computation
times. After a simulation, NSIM outputs a predicted
execution time of the input MGEN program.
Detailed statistics including the effective bandwidth
and the effective usage of each link are also
reported.

NSIM-ACE: An Interconnection Network Simulator for Evaluating Remote Direct Memory Access

255

2.3 Modules

NSIM consists of the following five modules:
 DES (Discrete Event Simulation)

A parallel discrete event simulator.
 MGEN (Message level event GENerator)

MGEN performs pseudo execution of the input
MGEN program and generates Message Level
Events (MLEs). An MLE corresponds to a
message in MPI.

 PGEN (Packet level event GENerator)
PGEN calls MGEN for generating MLEs and
generates Packet Level Events (PLEs) from the
MLEs. A PLE is an event of DES.

 SIM (SIMulation control)
SIM calls PGEN for generating PLEs and
enqueues them to the event queue of DES. SIM
also proceeds the simulation time of DES.

 EP (Event Processing)
EP processes packet transfer on the network. It is
the event procedure of DES.

2.4 Simulation Flow

At the beginning of a simulation, SIM calls PGEN.
PGEN internally calls MGEN. MGEN generates
MLEs from the MGEN program. It does not perform
actual communications. Then PGEN generates PLEs
from the MLEs. Each of these PLEs is an event that
injects a packet into the network from a send NIC.
SIM enqueues these PLEs to the event queue of DES
and proceeds the simulation time of DES so that
events are processed in correct time order. EP
processes PLEs so that the packet is injected into the
network. Also EP generates a new PLE that transfers
the packet to a next link, a next router or the receive
NIC. These PLEs are processed in correct time order
by DES. Finally the packet reaches the receive NIC.
The simulation is completed when all packets reach
receive NICs.

3 NSIM-ACE

3.1 Simulation Model

NSIM-ACE models two types of RDMA, i.e., put
and get operations. We focus put operations. In a put
operation, the send process transfers data from
memory on the send node to memory on the receive
node. First, data on memory are transferred to the
send NIC using DMA. The send NIC injects the data
into the network as packets. The packets are

transferred to the receive NIC on the network.
Packet transfer on the network is modeled as the
same way as in NSIM. If a packet of put data
reaches to the receive NIC, it is transferred to
memory on the receive node using DMA. After all
put data are transferred to memory, the receive NIC
sends a control packet to the send NIC. The put
operation is completed when the control packet
reaches the send NIC.

3.2 Inputs and Outputs

NSIM-ACE accepts an MGEN program for the
communication pattern.

For describing RDMA in MGEN programs, we
added new MGEN functions to NSIM.
 MGEN_acp_handle MGEN_rdma_put (int

dest_rank, int data_size, int tag)
MGEN_rdma_put issues a put operation which
transfers data of data_size bytes from the process
that calls this function to the process of rank
dest_rank. The tag is used for specifying a put
operation in the receive process. This function is
completed even if the put operation has not
completed yet. This function returns a handle
that corresponds to the put operation.

 void MGEN_rdma_poll (int tag)
MGEN_rdma_poll waits until the put operation
specified by tag completes data transfer to
memory on the receive node.

 void MGEN_acp_complete (MGEN_acp_handle
handle)
MGEN_acp_complete waits for the completion
of the put operation specified by handle.
The functions and the type those have prefix of

MGEN_acp_ in the names are similar to functions
and type in ACP library those have names without
MGEN_.

We show a sample MGEN program below.
#include “mgen.h”
int MGEN_Main(int argc, char

**argv){
int rank, size, ms=4, r, tag=0;
MGEN_Comm com = MGEN_COMM_WORLD;
MGEN_acp_handle handle;
MGEN_Comm_rank(com, &rank);
MGEN_Comm_size(com, &size);

r = (rank + 1) % size;

handle = MGEN_rdma_put(r, ms,

tag);
MGEN_rdma_poll(tag);
MGEN_acp_complete(handle);

}

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

256

In this program, each process puts data to a
neighbor process.

The NSIM-ACE simulates the target network
according to the communication pattern described
by the input MGEN program. After the simulation,
NSIM-ACE outputs a predicted execution time and
the same kinds of detail statistics as NSIM outputs.

3.3 Implementation

We implementation the put operation in a similar
way to a send operation in NSIM. If a put operation
is issued in the MGEN program, MGEN generates
an MLE that corresponds to the put data. One
difference from NSIM is that no receive operation is
explicitly issued in the MGEN program. Another
difference is the ordering of send and receive
operations. In NSIM, send and receive operations
are issued in order in the MGEN program. In NSIM-
ACE, the control packet of the put operation is sent
when all put data are transferred to memory
independently of the MGEN program, i.e., the order
is determined by intermediate results of the
simulation. We added the following new flow to
NSIM. After SIM proceeds the simulation time of
DES, it checks packets that reach each NIC. If all
packets of the put data reach a NIC, SIM calls
PGEN. PGEN internally calls MGEN. MGEN
generates an MLE that corresponds to the control
packet. From the MLE, PGEN generates a PLE that
injects the control packet into the network. SIM
enqueues it to the event queue. This modification
was not straightforward because NSIM was
designed on the assumption that all send and receive
operations are described and they are issued in order
in the MGEN program.

Another consideration is the choice of the time
step. DES was parallelized using conservative
algorithm with lookahead. We assumed that a PLE
of time t1 that injects a control packet is generated
and then enqueued after the simulation time is
proceeded from t to t + Δt. The PLE is processed
after the simulation time is proceeded to t + Δt.
However, if Δt is too large, t1 < t + Δt. Since any
event of time between t1 and t + Δt is processed
when the simulation time is proceeded to t + Δt, the
PLE is processed in a wrong time order. We set Δt to
the minimum latency of router-to-NIC links. The
injection PLE is generated when DES processes a
PLE of time t2 that transfers the last packet of the put
data from a router to a NIC between t and t + Δt.
Since t2 > t and the latency from the router to the
NIC is equal to or larger than Δt, t1 ≥ t2 + Δt > t + Δt.
This guarantees that the injection PLE is processed

in correct time order. A similar discussion is applied
to get operations.

We did not change EP, which determines the
network model. The network is simulated in the
same way as NSIM.

4 EXPERIMENTAL
EVALUATION

In order to evaluate the simulation accuracy of
NSIM-ACE, we compared simulation results and
measurements on a real machine in three
experiments. In addition, we predicted performance
scalability beyond the number of processes in real
measurements using NSIM-ACE.

4.1 Random Ring

The random ring traffic is one of High Performance
Computing Challenge benchmark suite (Luszczek,
2006). Processes of the benchmark compose a ring
in a random order. Each process sends 2MB data to
the left and right neighbor processes in parallel and
receives 2MB data from the left and right neighbor
processes in parallel. The benchmark measures the
bandwidth of the data transfer.

4.1.1 Experimental Environment

We ran the benchmark on Fujitsu PRIMERGY
RX200 S7. Each node has one quad-core Intel Xeon
processor E5-2609 (2.40 GHz). Sixteen nodes are
connected by InfiniBand QDR switches. The
throughput of each switch is 4GB/s per one
direction. The port-to-port latency is 140
nanoseconds or below. The routing is destination-
based. The original random ring traffic benchmark is
written using MPI. We rewrote it using the put or get
operation in the basic layer of ACP library. We used
the InfiniBand implementation of ACP library. The
InfiniBand implementation creates a communication
thread per process. The communication thread are
always running when the process is running. We ran
only two processes per node for excluding the
impact of the communication thread on the
bandwidth. We ran two processes per node also in
two other experiments. The original benchmark
measures bandwidth in ten different random process
orders. We measured only in one process order.

The simulation parameters are listed in Table 1.
The DMA transfer speed was obtained by measuring
the throughput in the random ring traffic benchmark
of two processes on one node. We set the

NSIM-ACE: An Interconnection Network Simulator for Evaluating Remote Direct Memory Access

257

communication library overhead to zero because it is
so small compared to the one-hop latency of 2MB
data transfer that it has little impact on simulation
results. We set the other parameters according the
specification of the real machine. In order to predict
performance scalability above 16 nodes, we
simulated with another parameter set where the
parameters are the same except for that the number
of nodes are 256.

Table 1: Configuration Parameters for NSIM-ACE.

Type Parameter Value

Router

Maximum theoretical
communication speed of
network
Switch throughput
Routing calculation time
Virtual channel allocation
time
Switch allocation time
Switch latency
Cable latency

4.0 GB/s

4.0 GB/s
4.0 ns

4.0 ns
4.0 ns
128 ns
0.6 ns

Node

DMA transfer speed
Communication library
overhead
Number of processes

2.8 GB/s

0 ns
One process
/ node

There are a few differences between the
simulations and the real measurement. One is in the
programs. The MGEN program was described by
extracting communication parts of the original
benchmark. NSIM-ACE assumes one process per
node as NSIM. We described the MGEN program so
that one process performs communications in
parallel that correspond to two processes in the real
machine. Another difference is intra-node
communications. NSIM-ACE does not simulate
intra-node communications. Instead we described
MGEN_Comp (t), where t is the communication
latency of 2MB data transfer in the node DMA. In
addition, algorithms of arbitration and routing are
different between the simulations and the real
machine. These differences may cause simulation
errors described below.

We performed simulations on HP ProLiant
ML350e Gen8 v2 in all three experiments. It has two
quad-core Intel Xeon processor E5-2407 v2 (2.4
GHz). NSIM-ACE required approximately 40
seconds for simulations when the number of process
was 512. These times were measured in sequential
executions including two other experiments.

4.1.2 Results and Discussions

The comparison of simulation and real machines are
shown in Figure 1. Simulation results agree well
with the real measurements at 4 and 8 processes.
However, they show lower bandwidth than the real
measurements at 16 and 32 processes. The
difference may be caused by differences in
arbitration and routing algorithms of the switches. In
this experiment, all nodes on which processes are
running are connected to the same switch if the
number of processes is 4 or 8. In this case, the
algorithm differences are unlikely to be seen.
Otherwise, the nodes on which processes are
running are connected to multiple switches. In this
case, there are multiple communication routes
between nodes. The simulation can be more likely to
occur communication contention than the real
measurements. As a result, it is possible to show
lower bandwidth than the real measurements.

The 256-node simulations predict that the
bandwidth gradually decreases above 32 processes.
However, if we actually increase nodes and those
connected to each switch for the real machine like
the simulations, such a machine is expected to give
higher bandwidth than the simulations because the
real machine shows higher bandwidth than the
simulations at 16 and 32 processes.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 [G

B
/s

]

Number of processes

16 nodes, Real machine
16 nodes, NSIM-ACE

256 nodes, NSIM-ACE

Figure 1: Random ring bandwidth of put operation.

4.2 Synchronization Barrier

Since a synchronization barrier communicates small
data, simple mathematical modeling is effective for
the performance prediction of the barrier itself.
However, we need the barrier simulation if it is
included in another communication pattern. For
example, a barrier is used for waiting until multiple
receive processes become ready for a put operation.

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

258

4.2.1 Ring Algorithm

Many algorithms are known for synchronization
barrier of p processes. One of simple algorithms is
ring. The complexity is O(p). This algorithm can be
implemented using put operations as follows. The
ring algorithm performs a barrier in p − 1 steps. In
each step, the process of rank i (i ≠ p − 1) puts some
data to some memory region of the process of rank i
+ 1. The process of rank p − 1 puts to the process of
rank 0. After that, the process of rank i (i ≠ 0) waits
for receiving the data from the process of rank i − 1
by polling the memory region. The process of rank 0
waits for receiving from the process of rank p − 1.
After p − 1 steps, the barrier is completed.

4.2.2 Recursive Doubling Algorithm

One of O(log p) algorithms is recursive doubling,
which can be implemented using put operations as
follows. If p = 2n, the recursive doubling algorithm
performs a barrier in n steps. In step i (i = 1, 2, 3, ...,
n), 2n processes are divided into groups of 2i
processes in the rank order. In each group, each
process of smaller 2i − 1 ranks puts some data to
some memory region of the process whose rank is
the sender's rank + 2i − 1. Each process of larger 2i −
1 rank puts some data to some memory region of the
process whose rank is the sender's rank − 2i − 1.
Then the two processes waits for receiving the data
from each other by polling the memory region. After
n steps, the barrier is completed. If p = 2n + r (0 < r
< 2n), this algorithm needs extra steps for r processes
before step 1 and after step n.

4.2.3 Experimental Environment

We compared simulation results of barrier time to
real measurements. We executed programs of both
algorithms written using ACP library on the same
machine as in the random ring experiment. In this
experiment, we observed fluctuation in average
barrier times larger than in usual measurements. We
measured the minimum barrier time in 100 same
barriers for obtaining the time required for the
barrier at the least on this machine.

We used the same configuration parameters as in
the random ring experiment except for the
communication library overhead. In this experiment,
the communication library overhead is not negligible
compared to the one-hop latency of put data. We
determined the communication library overhead by
measuring the barrier time of two processes on one
node. In this case, each of the two processes puts the
data to each other. The barrier time corresponds to

the communication library overhead excluding
network latency. In this environment, half of the
barrier time is closer because the NIC of the node
performs two put operations sequentially. The
determined value was 0.8 microseconds. For
obtaining the communication library overhead fitting
real measurements best, we also varied nearby 0.8
microseconds. The communication library overhead
in configuration parameters corresponds to the node
latency including the minimum latency of memory
access and that of the node DMA transfer in addition
to the communication library overhead. We call this
parameter node latency, hereafter.

We described MGEN programs in a similar way
to that in the random ring experiment.

When p = 512, NSIM-ACE needed 148 and 0.33
seconds for simulating the ring and recursive
doubling algorithms, respectively.

4.2.4 Results and Discussions

The comparison of the simulation results and the
real measurements is shown in Figure 2. If we set
the node latency to the real measurement (0.8 μs),
the simulation results are somewhat smaller than the
real measurements in both algorithms. If we vary the
node latency, the simulation results follow best the
trend of real measurements in the case of 0.6
microseconds. The comparison of the two
algorithms shows the recursive doubling algorithm
is faster than ring in real measurement as expected.
The simulation indicates the same result.
Furthermore, we find that the recursive doubling
algorithm is faster if p = 2n than otherwise in the real
measurements. The simulations also give the same
trend. In this experiment, the simulation accuracy of
NSIM-ACE is sufficient to compare the two
algorithms and reproduce the characteristics of the
recursive doubling algorithm if we give an
appropriate node latency. We conclude that NSIM-
ACE is so useful for the performance prediction of
barriers as simple mathematical modelling. Results
of 256-node simulations followed as the algorithm
complexities.

4.3 Particle Data Communication after
Domain Decomposition

4.3.1 Communication Pattern

In parallel gravitational N-body simulations, particle
data communications after domain decomposition
are described more directly than point-to-point or
collective communications of MPI (Susukita et al.,

NSIM-ACE: An Interconnection Network Simulator for Evaluating Remote Direct Memory Access

259

 0

 10

 20

 30

 40

 50

 60

 4 8 16 32

B
ar

rie
r t

im
e

[μ
s]

Real machine
NSIM-ACE, 0.9 μs node latency
NSIM-ACE, 0.8 μs node latency
NSIM-ACE, 0.7 μs node latency
NSIM-ACE, 0.6 μs node latency

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 8 16 32

B
ar

rie
r t

im
e

[μ
s]

Number of processes
Figure 2: Barrier times of ring (top) and recursive
doubling (bottom) algorithms.

2015). In this communication pattern, we need a
synchronization barrier before the data packing or
after that.

4.3.2 Experimental Environment

In a previous report (Susukita et al., 2015), we
showed that simulation results of NSIM-ACE are in
good agreement with real measurements in regard to
this communication pattern. In addition, we found
that the simulations distinguish performance change
between two different synchronization points
described later. In this paper, we simulated the
communication pattern beyond the system size of
the real machine.

The same environment was used as in the report.
We executed with 64 and 128 processes on another

real machine only for recording communication
patterns. The largest put data decreased from 2.1
MB in the 32-process execution to 0.79 MB in the
128-process execution.

We described an MGEN program by extracting
put operations of particle data. We also simulated a
variant of the MGEN program in which we do not
describe MGEN_Comp calls for intra-node
communications, i.e., inter-node only variant.

NSIM-ACE required 0.65 and 0.83 seconds for
the 128-process simulations when we performed the
barrier before and after the packing, respectively.

4.3.3 Results and Discussions

The simulation results are shown in Figure 3. For 32
processes, differences between the simulation results
and the real measurements are less than 10% both in
the pack time and put operations. The simulations
predict that the barrier before the packing provides
better performance than the barrier after the packing
up to 128 processes. This means that NSIM-ACE is
able to propose a better synchronization point for a
non-existent machine on which we cannot actually
measure the performance.

 0

 1

 2

 3

 4

 5

 6

32
 p

ro
ce

ss
es

Ba
rri

er
 b

ef
or

e
pa

ck
32

 p
ro

ce
ss

es

Ba
rri

er
 a

fte
r p

ac
k

64
 p

ro
ce

ss
es

Ba
rri

er
 b

ef
or

e
pa

ck
64

 p
ro

ce
ss

es

Ba
rri

er
 a

fte
r p

ac
k

12
8

pr
oc

es
se

s

Ba
rri

er
 b

ef
or

e
pa

ck
12

8
pr

oc
es

se
s

Ba
rri

er
 a

fte
r p

ac
k

E
xe

cu
tio

n
tim

e
[m

s]

Real machine pack
Real machine put
NSIM-ACE pack

NSIM-ACE put
Inter-node only
NSIM-ACE put

Figure 3: Execution time of particle data communication.

The simulations of the inter-node only variant
indicate contributions of inter-node put operations.
They suggest that both inter- and intra- node put
operations are possible to make a great impact on the
results. When the number of processes is 32, the
latency of inter-node only simulations make little
difference between the two synchronization points,
while original simulations make a difference. We
inferred that intra-node put operations make the
difference. For example, intra-node put operations
may cause communication contention if we

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

260

performed a barrier after the packing. By contrast,
when the number of processes is 64, the latency of
put operations is increased if we performed a barrier
after the packing even in inter-node only simulation.
In this case, inter-node put operations may cause
communication contention.

5 CONCLUSIONS

In this paper, we introduced NSIM-ACE, a new
interconnection network simulator for RDMA
evaluation. We implemented it by extending NSIM
simulator for large-scale interconnection networks.
The NSIM-ACE has a user-friendly interface where
the communication pattern is given in a similar way
to RDMA-based parallel programs. We performed
three experiments for evaluating the simulation
accuracy and predicting performance scalability.
The experiment on random ring bandwidth shows
that the simulator produces bandwidth degradation
due to communication contention. The experiment
on synchronization barrier indicates that the
simulation accuracy is sufficient to compare
performance of RDMA-based algorithms and find
algorithm characteristics. In addition, NSIM-ACE
can predict the better algorithm for a communication
pattern appearing in a particle simulation.

ACKNOWLEDGEMENTS

This work is supported by Core Research for
Evolutional Science and Technology (CREST)
Program of Japan Science and Technology Agency
(JST), Research Area “Development of System
Software Technologies for post-Peta Scale High
Performance Computing”, Research Theme
“Development of Scalable Communication Library
with Technologies for Memory Saving and Runtime
Optimization“. A part of computation was carried
out using the computer facilities at Research
Institute for Information Technology, Kyushu
University.

REFERENCES

Adiga, N. R. et al., 2005. Blue Gene/L Torus
Interconnection Network. IBM Journal of Research
and Development, Vol.49, pp.265-276.

Bonachea, D., 2002. GASNet Specification, v1.1. U.C.
Berkeley Tech Report (UCB/CSD-02-1207).

Casanova, H., Giersch. A., Legrand, A., Quinson, M. and
Sutero, F., 2014. Versatile, Scalable, and Accurate
Simulation of Distributed Applications and Platforms.
Journal of Parallel and Distributed Computing,
Vol.74, No.10, pp. 2899-2917.

Choudhury, N., Mehta, Y., Wilmarth, T. L., Bohm, E. J.
and Kale, L.V., 2005. Scaling an Optimistic Parallel
Simulation of Large-scale Interconnection Networks.
Proc. 37th Conference on Winter Simulation,
Conference, WSC ’05, pp.591-600.

Luszczek, P. R., Bailey, D. H., Dongarra, J. J., Kepner, J.,
Lucas, R. F., Rabenseifner, R. and Takahashi, D.,
2006. The HPC Challenge (HPCC) Benchmark Suite.
Proc. 2006 ACM/IEEE Conference on
Supercomputing, SC ’06.

Miwa, H. et al., 2011. NSIM: An Interconnection Network
Simulator for Extreme-Scale Parallel Computers,
IEICE Transactions on Information and Systems,
Vol.94, No.12, pp.2298-2308.

Nieplocha, J. and Carpenter, B., 1999. ARMCI: A
Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-time
Systems. Proc. RTSPP of IPPS/SDP’99.

Ridruejo, F. J. and Alonso, J. M., 2005. INSEE: An
Interconnection Network Simulation and Evaluation
Environment. Proc. 11th Euro-Par Parallel
Processing Conference 2005, Euro-Par’05, pp.1014-
1023.

Sumimoto, S., Ajima, Y., Saga, K., Nose, T., Shida, N.
and Nanri, T. 2016. The Design of Advanced
Communication to Reduce Memory Usage for Exa-
scale Systems. Proc. 12th International Meeting on
High Performance Computing for Computational
Science (accepted).

Susukita, R., Morie, Y., Nanri, T. and Shibamura, H.,
2015. Performance Evaluation of RDMA
Communication Patterns by Means of Simulations,
Proc. 2015 Joint International Mechanical, Electronic
and Information Technology Conference (JIMET
2015), pp.141-147.

Zheng, G., Kakulapati, G. and Kalé, L.V., 2004. BigSim:
A Parallel Simulator for Performance Prediction of
Extremely Large Parallel Machines. Parallel and
Distributed Processing Symposium, International,
Vol.1, p.78b.

NSIM-ACE: An Interconnection Network Simulator for Evaluating Remote Direct Memory Access

261

