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Abstract: In this paper we show the identification of the dynamic parameters of a redundant flexible joint robot with a
flexible bearing in the first joint. The bearing leads to distortions of the link velocities measured by gyroscopes.
The bearing flexibility is not modeled explicitly, resulting in a very simple model. For the joint positions
encoders are used. We show how to pack the calibration problem into the sparse least-squares on manifolds
toolkit (SLOM) and present the results. For verification we compare the measured data with the predicted data
computed using the identified dynamic parameters.

1 INTRODUCTION

For model predictive control it is essential to have a
good model. One question is the qualitative structure
of the model, i.e. the decision which of the countless
effects happening in reality are modeled and which
of them are ignored. This is usually answered by ex-
pert knowledge, i.e. experience and experiment. The
other question is to determine the quantitative param-
eters governing these modeled effects, which need to
be determined by a calibration procedure.

In this paper we are concerned with a specialized
ball playing 3-DOF entertainment robot, which has
on purpose a very low-cost design (Figure 1) being
built in large parts from laser cut acrylic. This design
comes with some mechanical problems, most notably
a high friction and high elasticity almost everywhere
in the structure and actuator system.

We want to illustrate in this paper the calibration
of an elastic joint robot model to this machine using
motor encoders and gyroscopes. The encoders are
placed on every motor, i.e. every joint. But, not ev-
ery joint has a gyroscope. Thus, the data has to be
extracted from the sensors for each joint.

We also show that the obtained model is reason-
ably precise even though the robot’s elasticity is not
only located in the joints, as assumed by the model,
but also in the whole structure. Most notably the ef-
fect is recognized in the first bearing connecting the
robot’s body to the base.

1.1 System

The system under calibration and parameter finding
is a 2.1 m tall ball playing entertainment robot named
“Doggy” (Figure 1). Its task is to hit balls with its
head. The head is made of a 40cm Styrofoam sphere
and holds one of our two IMU sensors. Moreover,
the heads orientation does not matter when playing a
ball – as it is a sphere, so only the position and veloc-
ity matter. The head is connected to the robot’s three
revolute jointed system via a carbon rod. The first
axis acts like a hip and gives the robot a redundant de-
gree of freedom (DOF). The redundancy is a result of
the common intersection point of all axes (Figure 1).
Therefore, the end-effector (EOF) moves on a par-
tial sphere (due to joint limits) and the two DOF are
controlled by three redundant joints. A stereo cam-
era system for ball tracking is placed after the first
joint to turn with the robot. Additionally, our circuit
board with a microcontroller, motor drivers and an-
other IMU sensor is placed on the first body.

Each joint is driven by a DC motor using a tooth
belt as coupling. As the tooth belt is not totally stiff,
we get elasticity between the motor and the link. Each
motor has an encoder for the positioning, read by the
microcontroller.

The material used to build our robot is mostly
acrylic glass (roughly 80%) and the base plate is made
of steel. The rest is made of aluminum (Figure 1).
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Figure 1: “Doggy” the ball playing entertainment robot. From left to right: The costume of the robot,
its interior, the coordinate systems with color encoding (the world coordinate frame is on the ground in the
same orientation as 1 in its initial position), and the kinematic chain. The video (http://www.informatik.uni-
bremen.de/agebv2/downloads/videos/schuetheIcinco16 calibrationMotion.mp4) shows the movement of the calibration.

1.2 Problem Statement

Our goal is to calibrate the parameters of the robot’s
dynamics to use them in a following work for model
predictive control (MPC) which we already developed
in simulation (Schüthe and Frese, 2015). For such an
MPC we need the state xxx of our robotic system and the
dynamic function with known parameters. The states
are not measurable directly. Thus, we will have to
build an observer, e.g. a Kalman-Filter, to estimate the
states using the dynamic model. Moreover, the aim is
to control the robot using an optimal controller which
needs the model of the controlled system as well. For
both we need the dynamics including its parameters.

Some of the dynamic parameters are known a pri-
ori, such as the inertia of the robot, which is pretty
well known from the CAD model. Other parame-
ters, like the motor inertia b, the motors mutual induc-
tion constant kmi and the voltage to torque constant
kpwm are known only approximately, as there is only
few information on the used low-cost motor. How-
ever, some parameters are not known and can only be
guessed. These are the motor friction τττfm, the spring
constant kkks, and spring damping constant ddds.

A major challenge in the calibration is the first
bearing, between base and first body. It is a ball
bearing with some kind of flexibility, especially when

moving joint 2 and 3 (see link of Figure 1). So
the IMUs will measure the movements of the motors
added with – we could say – “noise”, which is the
result of the flexible bearing.

To solve the calibration problem we use the mo-
tor encoders’ and the gyroscopes’ data, with a 1kHz
sampling frequency. We explicitly relinquish of the
accelerometer data to show that the robots parame-
ters can be calibrated without accelerometers. More-
over, our upcoming estimator should work on gyro-
scope data only and we want to see if it works also for
the calibration.

1.3 Contribution

We show that the robots’ parameters can be obtained
by using encoders and only gyroscopes for measure-
ments. We prove that it is also possible to do this if
there is a large error on the gyroscopes’ data. To our
knowledge the estimation of the link position and ve-
locity has never been done by using gyroscope data
only with additional information of encoders. More-
over, we explain how to do such a calibration by using
the sparse least-squares on manifold (SLOM) toolkit
and that it is very straightforward to implement.
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2 RELATED WORK

The options for identifying dynamic parameters are
summarized in the overview paper by (Wu et al.,
2010), where the authors distinguish on-line and off-
line identification. The former deals with adaptive
control algorithms and neural networks. In adaptive
control the parameters are adjusted and estimated on-
line for using them in the controller. Neural net-
works are effectively identifying nonlinear systems.
The parameters are used as weights for the network
and are approached by training the weights in real-
time (Narendra and Parthasarathy, 1990). The lat-
ter, off-line identification, has three methods to name:
(1.) Physical experiments, such as isolating each link
and measure its mass, the inertia and center of grav-
ity (COG). (2.) Computer aided design (CAD) tech-
niques can be used for inertia and COG measuring.
But other parts, such as the identification of friction
or the motor parameters, are not possible. (3.) The
third possibility is the identification by analyzing the
input/output behavior on a well known motion and
minimizing the difference of the real data and the es-
timated data of the model. In our identification we
make use of (2.) and (3.) in combination.

In (Grotjahn et al., 2001) and (Vuong and Ang Jr,
2009) the identification of dynamic parameters of in-
dustrial robots is presented. In (Grotjahn et al., 2001)
the identification does not require the friction model
a priori. Vuong et al. have to deal with highly nonlin-
ear friction and build a model which overcomes this
problem. They also demonstrate the identification us-
ing an off-line method with a least-squares algorithm,
which is enhanced by constraints to adjust the least-
squares result (Mata et al., 2005). Both have a model
for a rigid body robot, so there is no flexibility.

The identification with flexible joints is discussed
and demonstrated in (Moberg, 2010), where also the
friction is estimated. Additionally, the model is en-
hanced by flexible links. To identify the parameters a
least-squares off-line method is used.

How accelerometers and gyroscopes can be uti-
lized to obtain the state of flexible robots and use them
for control was shown in (Staufer and Gattringer,
2012; Cheng and Oelmann, 2010). However, there
is a combination of both IMU sensors to estimate the
state. In our case we only want to use the gyroscope.

In the identification process the least-squares
solver takes a big role. Also for our identification pro-
cess we make use of a least-squares solver packed into
a framework called SLOM (Hertzberg, 2008), which
can be used for mapping problems, but also for cali-
bration and sensor fusion (Hertzberg et al., 2012).

3 MODEL

To identify the parameters for the dynamics we need
an appropriate dynamic model. It is also necessary
to know the kinematics for transformations from one
coordinate system to the other. This is needed for the
measurement functions, which will be explained later.

3.1 Kinematics

With the Kinematics we describe the relations of co-
ordinate systems. Each joint and each IMU has one
coordinate system. Additionally, there are the world
coordinate system and the end-effector (EOF) coordi-
nate system. We can transform from one system to
another using translations and rotations. In our case
we only need to transform velocities to create a re-
lation between angular motor velocities θ̇θθ and gyro-
scope measurements ωωω. Only rotations of the form

to
f romRRR are needed. A rotation of the z-axes moves the
correlated body together with its coordinate system
(Figure 1). The rotations – IMU1

1RRR and IMU2
EOF RRR – should

also be identified by our calibration, as they could be
misaligned by a few degrees.

3.2 Dynamics - Elastic Joint Model

As mentioned before, we need to take into account
the elasticity between motor and link due to the tooth
belt coupling. This dynamic model is well known
and described in (Siciliano and Khatib, 2008; Albu-
Schaeffer et al., 2007) as

000 = MMM(qqq)q̈qq+ ccc(qqq, q̇qq)+ τττg(qqq)+

KKKs (qqq−θθθ)+DDDs
(
q̇qq− θ̇θθ

)
+ τττfl

(1)

τττm = BBBθ̈θθ+KKKs (θθθ−qqq)+DDDs
(
θ̇θθ− q̇qq

)
+ τττfm , (2)

where motor angle, velocity and acceleration are θθθ,
θ̇θθ, and θ̈θθ respectively. MMM(qqq) is the link inertia,
the Coriolis and centrifugal terms are represented by
ccc(qqq, q̇qq), τττg(qqq) holds the gravitational terms. The cou-
pling between motor and link is approximated by
a spring with stiffness KKKs = diag(kkks) and damping
DDDs = diag(ddds). The friction on link and motor side
is denoted as τττfl and τττfm. The motor torque τττm and
the motor inertia BBB = bIII (III is the unit matrix) have
to be transformed to the link side by the gear ratio
nG = 42.092.

BBB = n2
GBmotor (3)

τττm = nGτmotor (4)
A common way to simplify (2) is to neglect the

Coriolis and centrifugal terms, which are hardly no-
ticeable in our system. We can also neglect the gravi-
tational terms τττg(qqq) as we inserted springs that coun-
teract the gravitational force on the pitch and yaw
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axes, i.e. axes 2 and 3. Thus, we can position the
robot anywhere in the working space and it holds its
position without any torque input. Additionally, we
neglect the link friction τττfl like in (Moberg, 2010). In
some test cases we have seen that the link friction is
close to zero. We assume that the motor parameters
kpwm, kmi, and b are identical, because the motors are
of the same type. For the spring parameters each ele-
ment i of the vectors kkks and ddds represents the specific
stiffness and damping of the i-th joint. The simplified
dynamics

000 = MMM(qqq)q̈qq+ τττc (5)

τττc = diag(kkks)(qqq−θθθ)+diag(ddds)
(
q̇qq− θ̇θθ

)
(6)

000 = bθ̈θθ− τττc + τττfm− τττm(uuu, θ̇θθ) (7)

can be rearranged to formulate a dynamical state
space representation, where the highest derivative is
placed on the left hand: ẋxx = fdyn(xxx,uuu), with the state

xxx =
(

qqqT q̇qqT θθθT θ̇θθT
)T

. (8)

The input vector defines a pwm (pulse width modu-
lation) signal of the voltage passed to the DC motor.
τττm is the torque to the system as result of the voltage.
The transfer function fdyn(xxx,uuu) is

fdyn(xxx,uuu) =




q̇qq
−MMM(qqq)−1τττc

θ̇θθ
(bIII)−1

(
τττc + τττm(uuu, θ̇θθ)− τττfm

)


 . (9)

Link Inertia. The link moment of inertia MMM(qqq) is
the computation result of Matlab’s Spatial V2 library
(Featherstone, 2012). We fed it with CAD model in-
formation of each joint, i.e. its COG inertia, its mass,
and its displacement between axis coordinate system
and COG.

MMM(qqq) =




m1,1 m1,2 m1,3
m1,2 m2,2 m2,3
m1,3 m2,3 m3,3


 (10)

with the matrix entries

m1,1 = 1.824c2s2−2.975c2
2−503.760c2

2c2
3+

0.106c2
2c3s3 +0.183c2c3s2−0.138c2s2s3+

1012.973

m1,2 = 0.8192s2−8.5760c2 +0.0691c3s2+

0.0916s2s3−0.1062c2c2
3−503.7604c2c3s3

m1,3 = 514.2253s2 +0.0916c2c3−0.0691c2s3

m2,2 = 503.7604c2
3−0.0531sin(2∗q3)+40.0367

m2,3 = 0.0691c3 +0.0916s3

m3,3 = 514.2253 .
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Figure 2: Coulomb friction as Signum function (dashed
line) and approximated Sigmoid function (solid line).

The inertia is given in gm2. The inertia depends on the
i-th link position of the time step k with ci = cos(qk,i)
and si = sin(qk,i).

Motor Torque τττm. The torque is given by the pwm
Signal uuu, the maximum voltage of the power supply
Umax = 32V, and a gain kpwm which translates the
voltage to a torque. This torque is countered by a mu-
tual induction (value of kmi) and depends on the motor
velocity θ̇θθ, which is the second part of the equation.

τττm(uuu, θ̇θθ) = kpwmUmaxIIIuuu− kmiIIIθ̇θθ (11)

Motor Friction τττfm. The motor friction consists of
different parts (Olsson et al., 1998). First, the static
friction which holds the joint at a position until a force
higher than this friction is produced. As our goal is to
control the robot mostly in motion, we neglect this
friction. Secondly, there is viscous friction, which in-
creases proportionally to the velocity. We can also
neglect that as we use a tooth belt. Finally, there is
the kinetic or Coulomb friction acting at a constant
rate over all velocities. This is typically described
as τττfm = diag(µµµfm)sgn(q̇qq), where τττfm is the friction
torque and µµµfm the kinetic friction coefficient. The
Signum function (sgn) translates the velocity q̇qq to a
constant value over all velocities depending on its
sign. The disadvantage of this model is the discon-
tinuity of the sgn-function – this is unwanted in simu-
lations, e.g. when using an ODE-Solver. We approxi-
mated the Signum function by a Sigmoid function

τττfm = 2diag(µµµfm)




1
1+exp(−400q̇1)

−0.5
1

1+exp(−400q̇2)
−0.5

1
1+exp(−400q̇3)

−0.5


 . (12)

This differs from the sgn function only close to zero
velocity (Figure 2). Our calibration goal is to get µµµfm.
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Not Modeled. In our model we leave out the vibra-
tion and movement of the first axis around its x- and
y-axes, which is normally the case in the joint’s turn-
ing definition. But in our case the bearing of Axis 1
allows little movements around those axes due to its
flexibility. Leading to a deviation between model and
real world. We want to see, if it is possible to find
parameters that still fit the model to the real behavior.
Therefore, we expect that movements around x1- and
y1-axes will be put into the springs and dampings of
axes 2 and 3.

The motivation for this simplification is: First, that
in general the simplest model that works is the best
model. Second, that incorporating the elasticity in
the Axis 1 bearing directly would require four addi-
tional states, namely position and velocity for 2-DOF
of elastic movement.

4 MEASUREMENT FUNCTIONS

To determine the parameters governing the behavior
of the robot, we search for the parameters which best
explain sensor measurements taken while exercising
the degrees of freedom of the robot during a cali-
bration motion. I.e. we search for the parameters ϑϑϑ
which result in the least squared difference of the ac-
tual measurements and the measurements predicted
from the parameters. Formally, we search the least-
squares estimate ϑ̂ϑϑ

ϑ̂ϑϑ = argmin
ϑϑϑ

1
2
‖F(ZZZ,ϑϑϑ)‖2

Σ , (13)

where ZZZ is the vector of all stacked measurements and
Σ the covariance of the measurement error calculated
by F . F computes the difference between actual and
predicted (using the parameters) measurements.

4.1 Calibration Parameters

ϑϑϑ consists of the time-invariant parameters ϑϑϑcalib, in
which we are interested primarily, and the parameters
ϑϑϑstate describing the state of the robot during the cal-
ibration motion at each sensor sampling time tk. For
N samples we have

ϑϑϑ =

(
ϑϑϑcalib
ϑϑϑstate

)
with ϑϑϑstate =




ϑϑϑstate1
...

ϑϑϑstateN


 . (14)

ϑϑϑstatek is the state vector as defined in (8) at time tk
and the concrete parameters to be calibrated are

ϑϑϑcalib = (kpwm kmi b µµµT
fm kkkT

s dddT
s

ωωωT
1,0 ωωωT

2,0
IMU1

1RRRT IMU2
EOF RRRT )T (15)

In addition to model quantities, ϑϑϑcalib contains param-
eters pertaining to the sensors used. These are the ro-
tation of the end-effector frame relative to the IMU
mounted on the end-effector (IMU2

EOF RRR), the rotation of
the coordinate frame of the first axis relative to the
IMU mounted after that axis (IMU1

1RRR, see Figure 1),
and biases of the gyroscopes (ωωω1,0 and ωωω2,0). While
not really time-invariant, the gyroscope biases vary so
slowly that we consider them to be constant over the
duration of the calibration motion.

The two rotation matrices of ϑϑϑcalib have only three
DOF each (IMU1

1RRR, IMU2
EOF RRR∈ SO(3)), but do not have a

3-dimensional, singularity-free parametrization. The
solver we use, SLOM, can perform least squares op-
timization on elements of manifolds meeting certain
criteria, which are called �-manifolds and include
SO(3), by parameterizing changes to the manifold el-
ements vectorially. The �-theory is treated very thor-
oughly by (Hertzberg et al., 2013). For the purpose of
this particular calibration problem, we have two oper-
ators to apply a vectorially represented change δδδ to a
rotation matrix RRR1 and to obtain δδδ from two rotation
matrices RRR1,RRR2, namely

� : SO(3)×R3→ SO(3)
with RRR2 = RRR1 �δδδ = RRRRot(δδδ) (16)

� : SO(3)×SO(3)→ R3

with δδδ = RRR2 �RRR1 = aRot(RRR−1
1 RRR2). (17)

Rot(vvv) = expvvv× with vvv×uuu = vvv× uuu for any uuu ∈ R3 is
the rotation matrix whose scaled axis representation
is vvv and aRot is its inverse.

These operators are best thought of as ‘+’ and ‘−’
operations for rotations, which encapsulate the struc-
ture of the rotation representation. They are easily ex-
tended to the parameter vector by using ordinary ‘+’
and ‘−’ for the vectorial components and ‘�’ and ‘�’
for the rotation components.

4.2 Measurements

Sensor Measurements. The components related to
measurements of (13) are filled in here. There are
two types of measurements. Sensor measurements
and pseudo-measurements derived from properties
we know about the robot.

The sensors are sampled at N time points tk, 1 ≤
k ≤ N over the duration of the calibration motion.
Each sensor is sampled at each time tk (i.e. when a
measurement is available the time of the microcon-
troller is used as time stamp), so for time tk, there is
a stack of measurements ZZZk, which contains a sample
of each sensor,

ZZZk =
(

θθθT
meas,k

IMU1ωωωT
1,k

IMU2ωωωT
2,k

)T
. (18)
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In (18), θθθmeas,k ∈R3 are rotary encoder measurements
of each axis and IMU1ωωω1,k, IMU2ωωω2,k the gyroscope
measurements in their sensor coordinate frame.

All these measurements build the measurement
vector

ZZZ =
[
ZZZk
]N

k=1 . (19)

Error Function. The error function F of (13) con-
sists of following components. For each time tk there
is a component pertaining to the motor

Fmotor,k = θθθmeas,k−θθθk−θθθ0 , (20)
where θθθ0 is the known zero-position of the motor and
θθθk the respective component of the parameters ϑϑϑ as
defined in (14) and (8), respectively.

Similarly, there are error components considering
the gyroscopes (Fgyro1,k,Fgyro2,k), which complete

Fk =
(
FT

motor,k Fgyro1,k FT
gyro2,k

)T
. (21)

The error considering only the gyroscope at the first
axis is

Fgyro1,k = q̇k,1−worldω1,k,2 , (22)
with q̇k,i the i-th link angle velocity, worldω1,k,2 the y-
axis of gyroscope one, and

worldωωω1,k =
1

worldRRR−1 IMU1
1RRR−1(IMU1ωωω1,k−ωωω1,0),

(23)
with the rotation from world to first frame

1
worldRRR =




cos(qk,1) sin(qk,1) 0
−sin(qk,1) cos(qk,1) 0

0 0 1


 . (24)

I.e. it is the difference in the angular velocity of the
axis as stored in ϑϑϑ and the vertical component of
measured angular velocity corrected by the gyroscope
bias and rotated into the world reference frame.

The error function component for the end-effector
gyroscope is

Fgyro2,k =
IMU2ω̂ωω2− IMU2ωωω2,k (25)

with
IMU2ω̂ωω2 =

IMU2
EOF RRR

(
EOF

1RRR IMU1
1RRR−1 IMU1ωωω1,k

+ EOF ωωωq̇2 +
EOF ωωωq̇3

)
+ωωω2,0 , (26)

where

EOF ωωωq̇2 =




0 sin(qk,3) 0
0 −cos(qk,3) 0
0 0 0


 q̇qqk , (27)

EOF ωωωq̇3 =




0 0 0
0 0 0
0 0 −1


 q̇qqk , (28)

EOF
1RRR =




c2 0 −s2
−s2s3 −c3 −c2s3
s2c3 s3 c2c3


 . (29)

This looks more complicated than it is. Fgyro2,k is
the difference between the sensor measurement of the
gyroscope at the end-effector and the expected angu-
lar velocity at the location of the end-effector gyro-
scope, which is the measurement of the gyroscope at
the first axis plus the angular velocity caused by the
rotations of the second and third axes.

In addition to the sensor measurement, we know
that initially, at tk = t1, all angular velocities of the
links and the motors are zero and that the links have
approximately the same angles as the motors. The
corresponding component of the error function is

Finitial =
(
(qqq1−θθθmeas,1)

T q̇qqT
1 θ̇θθT

1

)
. (30)

We also know that the system behaves approx-
imately according to the dynamics function fdyn in
(9), which relates the states of two successive time
points tk and tk+1. This contributes to the error func-
tion N−1 times, with Ts = tk+1− tk and the pwm uuuk,

Fdyn,k = ϑϑϑstate,k +Ts fdyn(ϑϑϑstate,k,uuuk)

−ϑϑϑstate,k+1 . (31)

With these error functions, the bias concerning the
horizontal axes of the gyroscope at the first axis is
unobservable. To fix this, we keep the commands of
the first M≤N time steps zero, i.e. uuuk = 000 for 1≤ k≤
M. To let the solver exploit this knowledge, we define
the error function components only valid until tM:

Fbias,k =
(
(ωωω1,0−ωωω1,k)

T (ωωω2,0−ωωω2,k)
T
)T (32)

That is, as long as there is no command to move, the
gyroscopes should measure their bias.

In summary, the error function leads to

F(ZZZ,ϑϑϑ) =




Finitial

[Fk]
N
k=1[

Fdyn,k
]N−1

k=1
[Fbias,k]

M
k=1


 . (33)

The corresponding covariance is a block-diagonal
matrix. We assumed the same covariance for all errors
of the same kind, so with AP denoting P repetitions of
A, the covariance is

Σ = blkdiag(Σinitial,ΣN
meas,Σ

N−1
dyn ,ΣM

bias). (34)

5 EVALUATION

Our identification uses an off-line method based on
a trajectory the robot is following. Here we imple-
mented a simple P-controller to move to different po-
sitions. The maximum torque set to the motors by the
controller can also be adjusted. For our identification
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Figure 3: On top we see the pwm signal uuu and on bottom the
measured motor angle θθθ transformed to the link side. The
color encoding is red, green, and blue for yaw (1), pitch (2),
and roll (3) axis, respectively.

we move the robot in two pwm stages, the first is slow
with large displacement (uuu = 0.15). This should help
the identification of the friction coefficient µµµfm. In the
second stage we move very fast (uuu = 0.90). In the fast
stage we implemented a kind of a chirp signal, e.g. be-
tween 53 s and 56 s in Figure 3. The chirp should be
useful to classify the parameters of the spring (ddds and
kkks). The parameters for the motor, i.e. kpwm, kmi, and
b, should be detectable at any time the robot moves.
The rotations IMU1

1RRR and IMU2
EOF RRR should be close to the

known values from the CAD.
Figure 3 shows the pwm signal together with the

measured angles of the encoders. The movement with
the distortion of the bearing can be seen in the video
mentioned in Figure 1. The effect of the flexible bear-
ing is best seen on the first gyroscope’s x- and z-axis,
due to an indirect effect by movements of joints 2 or
3 (Figure 4).

Joints 2 and 3 indirectly affect the first gyro-
scope’s x- and z-axis, due to the flexibility of the bear-
ing.

5.1 Initial Guess

The data-sheet of encoders and IMU sensors give us
the standard deviations σencoder = 6.9259× 10−5 rad
and σgyro = 1.745× 10−3 rad/s, which remains the
same for all measurements. The measurement covari-
ance is given by

Σmeas = blkdiag(σ2
encoderIII

3×3,σ2
gyroIII6×6) . (35)

For the initial covariance Σinitial only the compo-
nent regarding the displacement of link and motor
angle changes. This is due to the influence of the
spring. Σdyn is set to a change in the motor veloc-
ity in 1000 steps of 15◦/s. The link velocity is set to
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−40
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/de
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Figure 4: Gyroscope 1 measurement influenced by the bear-
ings flexibility. The effect on the x- and z-axis is shown,
which should be 0 in theory by a movement of joints 2 or 3.
Red, green, and blue denotes x, y, and z axis, respectively.

change 20◦/s. For motor and link position covariance
is chosen small, as the position error is mostly given
by the velocity error. The dynamic covariance is con-
stant for all time steps. It emphasizes only the main
effects and neglects cross-correlations. I.e. elements
on the diagonal are chose conservatively and are zero
off diagonal.

Σdyn = blkdiag(10−12III3×3,1.21×10−4III3×3,

10−12III3×3,6.889×10−5III3×3)
(36)

Σinitial = blkdiag(0.0076III3×3,σ2
encoderIII

6×6) (37)

For the identification we need to set an initial
guess of the parameters. For the motor we can com-
pute the kpwm and kmi from basic motor data – in our
case this information is limited to the rated current
and speed, the voltage supplied, and the output torque.
We approximate the motor inertia by its weight and
radius. The gyroscopes offset ωωω1,0 and ωωω2,0 can be
measured beforehand and used as initial guess. All
other parameters were hand tuned within a simulation
of the dynamics to get close to the measurement for
each axis separately. This was only done for the first
slow movements. We took the parameters which fit
quite well as initial guess. The initial guess and the
identified parameters are given in Table 1. We can
see only a slight difference for kpwm, b, µµµfm, bias ωωω1,0
and ωωω2,0, and for the rotation matrices. This result
is, except for µµµfm, expectable, as we can measure or
compute the parameters with a small tolerance. For
µµµfm we just had a good hand tuning with the simu-
lation. The divergence of parameter kmi is not a sur-
prise, as we could only roughly compute this a pri-
ori. For the spring parameters we also expected a low
value for the stiffness, but for Axis 3 we expected a
higher value than for Axis 2. As one can feel that
Axis 3 is more “stiff” than Axis 2 in its spring. On the
other hand, we had the idea that the calibration algo-
rithm will pack the bearings flexibility into the spring
stiffness, which we can see here.
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Table 1: Initial guess and identified parameters.

Initial guess Identified

kpwm/ NmV−1 3.487 4.696
kmi/ Nmsrad−1 15.563 31.328
b/ kgm2 2.681 2.428
µµµfm/ Nm (2.0 2.0 2.0)T (1.599 2.565 4.855)T

kkks/ Nmrad−1 (400 400 600)T (187.555 120.070 103.056)T

ddds/ Nmsrad−1 (1.0 1.0 1.0)T (5.335 4.143 8.043)T

ωωω1,0 / deg (2.615 0.014 −1.273)T (2.615 0.014 −1.273)T

ωωω2,0 / deg (2.723 −0.102 −0.652)T (2.723 −0.103 −0.652)T

IMU1
axis1RRR

(−1 0 0
0 0 −1
0 −1 0

)T (−0.999 −0.0439 −0.0199
0.0189 0.0219 −0.999
0.044 −0.999 −0.020

)T

IMU2
EOF RRR

(0 0 1
0 −1 0
1 0 0

)T (−0.009 0.027 0.999
0.030 −0.999 0.027
0.999 0.030 0.008

)T

5.2 Verification

To verify our results we compare the measured data
with predicted data of a model. (1.) We take the
first state SLOM optimized as our initial state xxx0. (2.)
We call our dynamics recursively to compute the new
state from the old xxxk = xxxk−1 +Ts fdyn(xxxk−1,uuuk−1) like
in (31), with Ts = 1 ms. Thus we get all states and
can compare the measured position and velocity with
the predicted position θθθ and velocity θ̇θθ. (3.) The pre-
dicted value for ωωω1 based on the state can be extracted
from (23). This means a rotation of the first axis leads
to a change in ωωω1. (4.) With (26) we get the predicted
ωωω2 using the predicted ωωω1, qqq, and q̇qq. We compare the
predicted and measured gyroscope values.

The comparison is splitted into five different re-
gions of the measurement for better visualization. We
start with the slow behavior for all three axes in Fig-
ure 5(a). We see that the predicted data fits well
to the measured data, except for the motor positions.
The reason is an accumulated error on the velocity
will affect the joint’s position. Also small velocity er-
rors are leading to drift. This is a well known behav-
ior. For the velocities there should be no drift visible.
The measurements are approximated by our predic-
tion with little divergence for velocities.

The second region shows the yaw axis movement
(Figure 5(b)). There is a difference between the part
where the joint’s velocity changes fast and the part
where it moves more constantly in one direction. The
motor velocity is slightly better fitted than the link
velocity transferred to the gyroscope motion. As ex-
pected, there is no influence of the flexible bearing.

Movements of the flexible bearing are provoked
when the motor turning the pitch axis changes di-
rection (Figure 6(a)). Here, the flexible bearing gets
stimulated. After the shock, the joint performs very

little force on the bearing, so it can recover from the
impact and return to its initial state, i.e. zero position
and velocity. While recovering it oscillates. Although
the effect is clearly visible in the gyroscopes, the mo-
tion of the turning axis can still be detected. For the
motor velocity it fits again to the measured data, but
our predicted second gyroscope values fit not as well
as for the first axis. As we neglect the flexible bear-
ing in the model, the predicted measurement of the
first gyroscope is close to zero. Adjusting the spring
stiffness is the solver’s only chance to account for the
movements of the flexible bearing. Thus, it finds a
compromise between spring stiffness and flexibility
of the bearing to fit the data as well as possible.

This effect is much better seen on the roll axis
(Figure 6(b)). Note the delay between measurement
and predicted data. This is caused by the spring stiff-
ness. If we put a rod instead of a tooth belt (kkks→ ∞),
the link would follow the motor immediately. The op-
posite would be a very flexible tooth belt, i.e. kkks→ 0.
Then the link would follow eventually. The compro-
mise SLOM does is to take motions from the bear-
ing and the joints into account. From the view of
SLOM, there is no difference between these two mo-
tions. Thus, it lowers the stiffness.

In Figure 7 all axes move together. It is hard to
make a statement here, because the drift of the angles
affects the other joints velocity as they are coupled
through the link inertia MMM(qqq). However, in principle
the motor velocities are predicted well, whereas the
gyroscope values have higher variations to the mea-
sured values, due to the under-determined spring, as
result of the bearings flexibility.

Cross Verification To cross check our identified pa-
rameters we took another motion sample and com-
pare measured and predicted data for a new pwm
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(a) Slow motion.
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(b) Joint 1 moving (yaw).

Figure 5: Comparison of measured (solid) and predicted data (dashed). For each figure we see from top to bottom the motor
position θθθ, the motor velocity θ̇θθ, the second gyroscope IMU2ωωω2, and the first IMU1ωωω1. For motor angle and velocity the red,
green, and blue denote yaw, pitch, roll axis respectively. For the gyroscopes it denotes x, y, z axis based on its coordinate
system.

signal. Figure 8 shows this new recorded motion.
The predicted motion (dashed line) approximately fits
the measurement as described in the previous sec-

tion. Additionally, there is no chirp in this move-
ment, which simulates the normal behavior we want
to achieve. It shows that the parameters found are a
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(a) Joint 2 moving (pitch).
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(b) Joint 3 moving (roll).

Figure 6: Comparison of measured (solid) and predicted data (dashed). For each figure we see from top to bottom the motor
position θθθ, the motor velocity θ̇θθ, the second gyroscope IMU2ωωω2, and the first IMU1ωωω1. For motor angle and velocity the red,
green, and blue denote yaw, pitch, roll axis respectively. For the gyroscopes it denotes x, y, z axis based on its coordinate
system.

good fit for other motions. Thus, we are able to pre-
dict the velocities quite well, but need to have in mind

the drift of the positions.
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Figure 7: Comparison of measured (solid) and predicted data (dashed). For motor angle θθθ and velocity θ̇θθ the red, green, and
blue denote yaw, pitch, roll axis respectively. For the gyroscopes ωωω it denotes x, y, z axis based on its coordinate system.
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Figure 8: Comparison of measured (solid) and predicted data (dashed). For motor angle θθθ and velocity θ̇θθ the red, green, and
blue denote yaw, pitch, roll axis respectively. For the gyroscopes ωωω it denotes x, y, z axis based on its coordinate system.
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6 CONCLUSION

We have been shown that it is possible to find parame-
ters for the dynamics even if the model takes no flex-
ibility of the bearing into account, which moves the
whole body. To get more accurate results the solver
packs the bearing’s flexibility into the flexibility be-
tween joints and links. The predicted behavior of the
robot based on the identified model parameters has
deviations to the measured data. These deviations are
larger whenever the velocities of the second and third
bodies change direction, because the bearing’s flexi-
bility gets stimulated. The overall approximation is
fitting to the measurements well. However, while the
model is reasonably good and, at the same time, very
simple, we suspect it will not be good enough for our
controller.

By now, we are working on an extension of the
model presented herein, where the flexibility of the
bearing is part of the dynamic model. We believe that
this can be achieved by putting two new joints before
the first one, acting directly on the same coordinate
system as joint one. The bodies of the two inserted
joints will have no mass and no inertia. Their rotation
is about the x and y axes of joint one. The flexibility
is given by a spring acting between the origin and the
joints position. We hope that this will give us a better
model and separate the behavior of joint two and three
from the behavior of the bearing.

Additionally, we have to calibrate the cameras for
the ball tracking, too. We want to add this calibration
into the calibration we were stated herein. Moreover,
we can use the cameras to examine in some positions
the position of the links 2 and 3.
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