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Abstract: In this work, we address the stability of compression systems and the active control of performance limiting 
phenomena: surge and rotating stall. Despite considerable efforts to stabilize axial compressors at efficient 
operating points, preventing and suppressing rotating stall and surge are still challenging problems. Due to 
certain passivity properties of the widely used Moore and Greitzer model for axial compressors, a robust 
passivity-based control approach is applied here to tackle the problem. The main advantage of this approach 
is that robust stabilization and high performance control can be achieved by simple control laws and limited 
control efforts. Analytical developments and time-domain simulations demonstrate that the developed 
control laws can effectively damp out rotating stall and surge limit cycles by throttle and close-coupled 
valve actuations. The robust performance of the controller is validated in the presence of bounded mass flow 
and pressure disturbances, as well as model uncertainties.  

1 INTRODUCTION 

Passivity theory, which provides an energy based 
perspective in control theory, has been the subject of 
much research over the last decades (Byrnes et al., 
1991; Sepulchre et al., 1997; Willems, 2007). The 
essential role of energy in the stability and 
performance of physical systems has resulted in the 
increasing attention to passivity. Basically, passive 
systems are a class of processes that dissipate a 
certain type of physical or virtual energy described 
by Lyapunov-like functions (Bao and Lee, 2007). 
The concept of passivity especially plays an 
important role in robust control. Since passive 
systems are easy to control, the first step in passive 
system theory is to render a process passive via 
either feedback or feedforward. Sufficient 
robustness to model uncertainties, parameter 
variations, and external disturbances can be ensured 
by passivity-based control (PBC) which guarantees 
the passivity of the system for the whole range of 
parameters. Achieving passivity with feedback is an 
appealing issue due to its input-output concept. 
However, one of the major challenges in feedback 

passification designs is to make it constructive. The 
key part of the design procedure is to select a proper 
output satisfying the required conditions (Sepulchre, 
et al., 1997). In 1991, Byrnes et al. (Byrnes et al., 
1991) derived the conditions under which a 
nonlinear system can be rendered passive via smooth 
state feedback and in 2009, Tsai and Wu (Tsai and 
Wu, 2009) presented a constructive method for 
robust PBC (RPBC) of a certain class of weakly 
minimum phase nonlinear uncertain systems. They 
proposed a control law that renders the system 
passive and asymptotically stabilizes the closed loop 
system.  

In this work, we utilize RPBC to effectively 
stabilize nonlinear phenomena in compression 
systems. Compression systems suffer from two types 
of nonlinearities with different natures: surge and 
rotating stall.  Rotating stall is a non-axisymmetric 
perturbation that travels around the annulus of the 
compressor, while surge is a violent limit-cycle in 
compressor characteristic that can lead to a flow 
reversal and large axial oscillations (see (Gu et al., 
1999) for more information). Despite the 
considerable efforts that have been made to 
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investigate these phenomena, different aspects of the 
problem such as sensing, actuating and model-based 
control are still challenging issues. 

From a control point of view,  the nonlinear 2D 
model developed by Moore and Greitzer  (Moore 
and Greitzer, 1986) for constant speed axial 
compressors (CSACs) dominates recent studies on 
rotating stall and surge control (Gu et al., 1999). The 
lumped parameter Moore and Greitzer model (so-
called MG3) is based on the first harmonic 
approximation of rotating stall. This model was 
developed using Galerkin procedure applied to the 
original PDE form. In spite of the simple form of the 
model, it can capture surge and rotating stall 
nonlinearities and qualitative behavior of the system 
including bifurcations (see (Hős et al., 2002) for 
more information).  

Remarkable efforts channeled into augmenting 
MG3 in different ways; among them obtaining 
higher order accurate model and including the force 
of actuators (Krstic and Wang, 1997; Leonessa et al., 
1997; Mansoux et al., 1994). One of the most 
promising actuators is the close-coupled valve 
(CCV). The early work of Dussourd in 1977 
(Dussourd et al., 1977) and the work of Simon and 
Valavani in 1991 (Simon and Valavani, 1991) 
addressed CCV in compression system control. In 
1998, Gravdahl introduced an augmented MG3 
model including CCV in error coordinates 
(Gravdahl, 1998). Recently, once again, this actuator 
attracted close attention of researchers in surge 
control ((Bartolini et al., 2008; Liaw et al., 2008; 
Shehata et al., 2009)).  

Gravdahl demonstrated that the two-state 
simplified form of MG3 including CCV shows 
certain passivity properties and then applied PBC to 
develop a surge controller (Gravdahl and Egeland, 
1998). This simple proportional PBC law effectively 
stabilized surge limit cycles. Although the controller 
was not able to damp out rotating stall, it showed 
promise for suppressing this hard-to-control 
nonlinearity. This interesting open problem was 
suggested as future work by Gravdahl.  

Here, we address this problem and design a 
RPBC to suppress rotating stall in CSACs. The 
simple proportional and low order form of the 
developed controller is the first advantage of the 
applied method. It is not based on full-state feedback 
(the square amplitude of rotating stall as the third 
state of MG3 is practically hard to measure) and 
does not require the detailed knowledge of model 
parameters, which cannot be accurately estimated. 
The controller actuates the system with feedback 
from mass flow and pressure rise by using both the 

throttle valve and CCV. Simulation results 
corroborating the analytical developments 
demonstrate that the applied RPBC effectively 
damps out the developed rotating stall and stabilizes 
efficient operating points (OPs) in the presence of 
bounded external disturbances and model 
uncertainties. The utilized approach eliminates surge 
limit cycles as well. 

The rest of the paper is organized as follows. In 
Section 2, we start by reviewing the Gravdahl model 
representing CSACs comprising CCV. Section 3 
presents the control design and Section 4 reports 
time-domain simulations. Finally, some conclusions 
about this work are drawn in Section 5. 

2 AXIAL COMPRESSORS 
MODELS 

Here, we briefly review Gravdahl model for CSACs 
including CCV and throttle actuators. The 
compressor comprising CCV is shown in Figure 1 
where the pressure rise over the equivalent 
compressor is the sum of the pressure rise of the 
compressor and the pressure drop over CCV: Ψ௘௖(Φ) = Ψ௖(Φ) − Ψ௩(Φ) where Φ is the 
circumferentially averaged flow coefficient and Ψ is 
the total-to-static pressure rise coefficient. Ψ௖(Φ) is 
known as the compressor characteristic (map) which 
describes a nonlinear relationship (assumed cubic in 
(Gravdahl, 1998)) between Φ and Ψ: Ψୡ(Φ) = ߰௖଴ + ܪ ൬1 + 1.5 ቀ஍ௐ − 1ቁ − 0.5 ቀ஍ௐ − 1ቁଷ൰ (1)

Here, ܪ is the compressor characteristic height 
factor, ܹ is the compressor characteristic width 
factor, and  ߰௖଴ is shut-off head. The CCV 
characteristic that describes the pressure drop over 
CCV as a function of flow is given by Ψ௩(Φ) =ଵఊೡమ Φଶ where ߛ௩ is the gain of CCV. The throttle 

characteristic Ψ்(Φ) = ଵఊ೅మ Φଶ gives the pressure 

over the throttle as a function of flow, where ்ߛ is 
the throttle gain. The throttle can be thought as a 
simplified model of a power turbine.  

For a given operating point (OP) (߶଴,߰଴), the 
dynamic model is developed in the form of state-
space equations 	ݖሶ = ,ݖ)݂ zሶ (ݑ = f(z, Γ୲)(Eqs. (2-4)), 
where 	ݖ ∈ ℝଷ, ݑ ∈ ℝଶ. ݖ = (߶, ߰,  represents்(ܬ
the state vector of the system and ݑ = ,ଵݑ)  ଶ) is theݑ
control vector. It is defined in error coordinates with 
respect to the coordinates of the operating point 
(߶଴,߰଴). In this model,  ߶ = Φ− ߶଴ , and ߰ = Ψ−߰଴. ܬ is the squared amplitude of the first harmonic 
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of rotating stall. Control variables ݑଵ = ଶݑ and ்ߛ =߰௩(߶) include the effect of throttle and the pressure 
drop over CCV (in error coordinates) respectively. 
A partially closed CCV during normal operation of 
the compressor leads to a bidirectional control law ݑଶ	. ሶ߰ = ݇ଵ൫߶ + ϕ଴ − ଵඥ߰ݑ +Ψ଴ − Δథ൯ (2)
 ߶ሶ = ݇ଶ ቀ߰௖ − ߰ − ଶݑ + Δట − ଷுସ ܬ ቀథାథబௐ − 1ቁ − ௐమ௃ଶఊೡమ ቁ (3)

ሶܬ  = ܬ߷ ൬1 − ቀ(థାథబ)ௐ − 1ቁଶ − ௃ସ 	− ସௐ(థାథబ)ଷுఊೡమ ൰  (4)

The compressor characteristic given in Eq. (1) in 
global coordinates can be expressed in error 
coordinates as: ߰௖(߶) = ଷ߶ଷܯ− ଶ߶ଶܯ− ଵ߶ (5)ܯ−

where ܯଵ = ଷுథబଶௐమ (థబௐ − ଶܯ , (2 = ଷுଶௐమ ቀథబௐ − 1ቁ , 

and ܯଷ = ுଶௐయ > 0 . 

 
Figure 1: Compression system comprising CCV. 

All derivatives are calculated with respect to a 
normalized time 	ߦ: = ݐܷ ܴൗ  where 	  is the actual ݐ
time, ܴ is the mean compressor radius, and. ܷ is the 
constant compressor tangential speed. Here, ݇ଵ =ଵସ஻మ௟೎ , ݇ଶ = ଵ௟೎ , and ݈௖ is the effective flow-passage 
nondimensional length of the compressor and ducts. 
B is a positive parameter (so-called Greitzer’s B-
parameter). The type of the developed nonlinear 
behavior to a great extent depends on the value of 
this parameter (small B can lead to rotating stall, and 
large B can cause surge). 

In the model, ߂థ = Φௗ + ݀థ and ߂ట = ௗߖ +݀ట	include model uncertainties and external 
disturbances. Mass flow disturbance Φௗ(ߦ) and 
pressure disturbance Ψௗ(ߦ) are both considered as 
defined by Simon and Valavani (Simon and 
Valavani, 1991). The disturbances are time varying 

and bounded (‖Φௗ‖ஶ and ‖Ψௗ‖ஶ exist). In addition 
to time varying disturbances, constant or slow 
varying offsets ݀ట and ݀థ	are also introduced. These 
can be respectively thought of as an uncertainty in 
the compressor and throttle characteristics.  

Setting ߶ሶ = ሶ߰ = ሶܬ = 0 leads to two equilibria:  ܬ௘ଵ = 0	 where the compressor is in its active 
operating point (߶଴, ߰଴) or 	ܬ௘ଶ = 4(1 −ቀΦௐ − 1ቁଶ − ସௐΦଷுఊೡమ) when the system is in fully 
developed rotating stall. By using ܬ௘ଶ in Eq. (3), one 
can obtain the equivalent stall characteristic Ψୣୱ(Φ), 
which is affected by pressure drop over CCV as can 
be seen in Eq. (6)  (see (Gravdahl, 1998) for more 
information). Ψ௘௦(Φ) = ߰௖଴ + ܪ ൬1 − ଷଶ ቀΦௐ − 1ቁ + ହଶ ቀΦௐ − 1ቁଷ൰ +ହுΨ௩(Φ) − ଼ௐுఊೡమ ቀ1 − ௐమଷுమఊೡమቁΦ  

(6)

Figure 2a plots these characteristics: Ψ௖(Φ) 
(compressor map without CCV), Ψ௘௖(Φ) (equivalent 
compressor map with CCV), Ψ௩(Φ) (pressure drop 
over CCV), Ψ்(Φ) (pressure drop over throttle), Ψ௦(Φ) (stall characteristic without CCV), and Ψ௘௦(Φ) (equivalent stall characteristic with CCV) in (Φ,Ψ) plane. The OP of the compression system 
(߶଴,߰଴) is the intersection of the throttle 
characteristic and the equivalent compressor map. 
An efficient and stable OP is normally located near 
the peak of the equivalent compressor map 
(corresponding to a high pressure rise). Moreover, it 
can be shown that this OP corresponds to fully 
damped stall (Hős et al., 2002). 

Figure 2a shows how the pressure drop over 
CCV can modify the equivalent compressor map and 
equivalent stall characteristic as well (see (Gravdahl, 
1998) for more details). This actuator can therefore 
be used to stabilize an unstable OP. Roughly 
speaking, when an OP is located in the negative 
slope area of the equivalent compressor map, it is 
stable (Willems, 1997). Figure 2b shows that due to 
the pressure drop over CCV an unstable initial OP in 
the positive slope area of the compressor map is 
changed to a stable OP in the negative slope area of 
the equivalent compressor map. Furthermore, 
throttle control can also be applied to move the OP. 
In this work, these two actuators are used to stabilize 
the system and eliminate rotating stall and surge. 
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Figure 2: a) Plot of pressure drop over throttle and CCV 
and compressor and stall characteristics with and without 
CCV b) Effect of pressure drop over CCV on the 
equivalent compressor characteristic and the stability of 
the OP. 

3 PASSIVITY-BASED CONTROL 

The main objectives of this section are, firstly, to 
passificate the axial compression system model and, 
secondly, to achieve both input-to-state stability 
(ISS, see (Krstic et al., 1995) for definition) and 
disturbance rejection. In (Byrnes et al., 1991), 
conditions  under which a nonlinear system can be 
rendered passive via smooth state feedback are 
driven. Based on this work, several authors have 
proposed to include uncertain terms (model 
uncertainties and external disturbances) in order to 
develop a RPBC (Lin and Shen, 1999; Tsai and Wu, 
2009; Jiang and Hill, 1998). These works based on 
assumptions on uncertainties (vanishing 
perturbation) or measurable states (full-state 
feedback with stall as a state-variable), which are not 
applicable here. Consequently, we remove certain 
restrictions that are imposed on the uncertainties 
(e.g. output dependency) and propose a new	
	

Lyapunov function stability analysis.  We 
demonstrate that the control law developed in 
Theorem 3.1 below ensures robust asymptotic 
stabilization of the compression system model.  
Furthermore, this easy-to-implement RPBC does not 
require a full-state feedback.  

Theorem 3.1: 

Consider the following disturbed system: Σ1: ൜ݔሶ = ଴݂(ݔ, 0) + ଵ݂(ݔ, ݕ(ݕ ሶݕ																																				 = ܾ଴(ݔ, (ݕ + ܽ଴(ݔ, ݑ(ݕ + ,ݔ)ܦ (ݕ + Δ(ݔ, (ݕ (7)

where ଴݂(ݔ, ,ݔ)ଵ݂ ,(ݕ ,ݔ)଴ܾ ,(ݕ ,ݔ)and ܽ଴ ,(ݕ  are (ݕ
smooth functions and ܽ଴(ݔ, ,ݔ is invertible for all (ݕ ,ݔ)Δ .ݕ ,ݔ)ܦ is the system uncertainty and (ݕ  is (ݕ
the external disturbance. 

If Δ(ݔ, ,ݔ)ܦ  and (ݕ  are bounded and if the (ݕ
zero dynamics of the system are stable (i.e. there 
exists a positive storage function ܵ(ݔ) such 
that:	ܵ(0) = 0 and  డௌడ௫ ଴݂(ݔ, 0) ≤ 0) then the 
following feedback control law ݑ = −ܽ଴(ݔ, ,ݔ)ଵሼܾ଴ି(ݕ (ݕ + ሽ (8)(ݕ)݌
where (ݕ)݌ satisfies (ݕ)݌்ݕ > 0, renders the 
closed-loop system input-to-state stable with respect 
to disturbances and model uncertainties, guarantees 
global uniform boundedness of (ݐ)ݕ, and ensures the 
convergence to a residual set. The size of the 
residual set can be arbitrarily made small by the 
choice of design parameters. 

Proof: 

Given a positive storage function for the system Σ1 as: ܸ(ݔ, (ݕ = (ݔ)ܵ + (9) ݕ்ݕ12

Differentiating ܸ(ݔ, gives: ሶܸ (ݕ ,ݔ) (ݕ = డௌడ௫ ( ଴݂(ݔ, 0) + ଵ݂(ݔ, (ݕ(ݕ + ,ݔ)଴்ܾݕ (ݕ ,ݔ)଴்ܽݕ+ ݑ(ݕ + ܦ)்ݕ + Δ) (10)

Since  డௌడ௫ ଴݂(ݔ, 0) ≤ 0, the substitution of the 
control law Eq. (8) into Eq. (10) gives that: ሶܸ ,ݔ) (ݕ ≤ (ݕ)݌்ݕ− + 	ߟ்ݕ (11)
where ߟ = ଵߟ] … ்[௡ߟ = ݔ߲߲ܵ] ଵ݂(ݔ, ்[(ݕ + ܦ) + Δ)	 (12)

Now, we use the simplified form of Young’s 
inequality which states that for all ܥ > 0 and all (ݍଵ, (ଶݍ ∈ ℝଶ: ݍଵݍଶ ≤ ଵଶݍܥ + ܥ14 	ଶଶݍ (13)
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By applying Eq. (13) to each term of  ߟ்ݕ, we 
have: ݕ௜ߟ௜ ≤ ௜ଶݕܥ + ܥ14 				௜ଶߟ ܥ∀ > 0, ݅ = 1,… , ݊	 (14)

Following the boundedness of uncertainties and 
assuming that ቛడௌడ௫ ଵ݂(ݔ, ߟ்ݕ :ቛஶ exists, we have(ݕ ≤ ݕ்ݕܥ + ܥ4݊ ஶଶ‖ߟ‖ 	 (15)

therefore: 	 ሶܸ ,ݔ) (ݕ ≤ (ݕ)ଵ݌்ݕ− + ܥ4݊ ஶଶ‖ߟ‖ 	 (16)

where 	 ݌ଵ(ݕ) = (ݕ)݌ − 	ݕܥ (17)
Appropriate choice of  (ݕ)݌ can satisfy the 

condition  ݌்ݕଵ(ݕ) > 0 (e.g. (ݕ)݌ = ܭ with 		ݕܭ ,ݔ)ܸ and (ݕ)ଵ݌்ݕ positive definite). Since ܫܥ−  are (ݕ
radially unbounded and positive definite, according 
to the work of Krstic et al. (Lemma 2.26) (Krstic et 
al., 1995), we can demonstrate that the control law 
of Eq. (8) renders the closed loop system ISS with 
respect to the uncertain terms and hence guarantees 
the global uniform boundedness of (ݐ)ݕ and 
convergence to residual set ܷ୼, outside which ሶܸ ,ݔ) (ݕ ൏ 0. ܷ୼ = ቄݕ: |ݕ| ≤ ଵିߙ ଵ. .ଶߙ ଷିߙ ଵ ܥ4݊ ஶଶ‖ߟ‖ ቅ	 (18)

where ߙଵ, ߙଶ, and ߙଷ are ݈ܿܽݏݏ −ࣥஶ functions such 
that: ߙଵ(|ݕ|) ≤ ,ݔ)ܸ (ݕ ≤ 	(|ݕ|)ଶߙ (|ݕ|)ଷߙ	(19) ≤ 	(ݕ)ଵ݌்ݕ (20)

The size of this set depends on ‖ߟ‖ஶଶ  and design 
parameter	ܥ. A smaller size of ܷ୼ requires a large ܥ	parameter, which implies higher controller gain.  

4 PBC DESIGN FOR MG3 

Here, it is supposed that mass flow ߶ and pressure 
rise ߰ in the error coordinates can both be measured. 
Then ݕ = [߶			߰]்and the model (Eqs. 2-4) can be 
rewritten in the form of system Σ1 including 
matched uncertainties. Since ܬ cannot be practically 
measured, the idea in this paper is to consider all the 
term containing ܬ as part of the disturbances.  This 
simplifies the control design and allows us to have 
an output feedback strategy. Here, ܽ଴ and ܾ଴ do not 
depend on ܬ and the assumptions of perturbation 
boundedness of Theorem 3.1 are satisfied.  

൜ܬሶ = ଴݂(ܬ, 0) + ଵ݂(ܬ, ݕ(ݕ ሶݕ																																	 = ܾ଴(ݕ) + ܽ଴(ݕ)ݑ + ,ܬ)ܦ (ݕ + Δ(ݕ) (21)

where ܽ଴ = ቈ 0 −݇ଶ−݇ଵඥ߰ + ߰଴ 0 ቉ (22)
 ܾ଴ = ൤݇ଶ(−߰ + ߰௖)݇ଵ(߶ + ߶଴) ൨ (23)
ܦ  = ൥ −݇ଵߔௗ−݇ଶ(ଷு௃ସ ቀథାథబௐ − 1ቁ + ௐమ௃ଶఊೡమ − Ψௗ)൩  (24)

 Δ = ቈ−݇ଵ݀థ݇ଶ݀ట ቉ (25)ܽ଴ is nonsingular in the operating range of the 
compressor where ߰ + ߰଴ > 0. Furthermore, 
Gravdahl showed that the squared amplitude of 
rotating stall and mass flow have upper bounds 
(Gravdahl, 1998): ∃	ܬ௠௔௫ ൏ ∞		such that (ߦ)ܬ ≤ ߦ	∀		௠௔௫ܬ > 0, and ߶௠௜௡ ≤ Φ ≤ ߶௖௛௢௞௘ , where ߶௖௛௢௞௘ is the choking 
value of the mass flow and ߶௠௜௡	is the negative flow 
during deep surge. The CCV gain is practically 
limited as well, in other words ߛ௩ ∈ ,௠௜௡ߛ]  .[௠௔௫ߛ
Consequently, ܦ and Δ are both bounded. Similarly, ቛడௌడ௫ ଵ݂(ݔ, ,ܬ)ଵ݂	since:	ቛஶexists(ݕ (ݕ = థାଶథబௐమ−)߶ܬ߷ + ଶௐ − ସଷுఊೡమ)  (26)

where ܹ, ܪ, and ߛ௩ are nonzero. 
To investigate the stability of zero dynamics, 

suppose that a nominal OP is initially located at the 
peak of the compressor map (which is ideally the 
case). It can be seen that the peak of the compressor 
map in Eq. (1) is located at (Φ,Ψ) = (2ܹ, ܪ2 +߰௖଴). Therefore, ߶଴ = 2ܹ at this OP: 

଴݂(ܬ, 0) = ܬ߷ ቀ− ௃ସ 	− ସௐథబଷுఊೡమ ቁ  (27)

Considering			ܵ = ଵଶద௃೘ೌೣ ଶ, one can show that: డௌడ௃ܬ ଴݂(ܬ, 0) = ௃మ௃೘ೌೣ ቀ− ௃ସ − ସௐథబଷுఊೡమ ቁ  (28)
In Eq. (28) the parameters (ܹ, ܪ), ߶଴, and ܬ are 

all positive. Hence ߲߲ܵܬ ଴݂(ܬ, 0) ≤ 0 

This satisfies the first condition of Theorem 3.1. 
By choosing (ݕ)݌ =  Theorem 3.1 states that the ,ݕܭ
following control law Eq. (29) can stabilize the OP 
in the presence of the external disturbances and the 
model uncertainties. 
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ݑ = ,ଵݑ] ்[ଶݑ = ൥ థାథబା௞భషభ௉మటඥటାటబ−߰ + ߰௖ + ݇ଶି ଵ ଵܲ߶			 ൩  (29)

In the developed control law, ܭ = [ ଵܲ 00 ଶܲ] 
consists of two high enough positive design 
parameters ( ଵܲ and ଶܲ) that guarantee the 
convergence to ܷ୼ and limit the size of this residual 
convergence set.  

Note that the control law Eq. (29) cancels all the 
nonlinearities in the model. Since the term ܯଷ is 
always positive in Eq. (5), we propose the following 
modification to avoid canceling the stabilizing 
nonlinearities (−ܯଷ߶ଷ): 

ݑ = ,ଵݑ] ்[ଶݑ = ൥ థାథబା௞భషభ௉మటඥటାటబ−߰ ଶ߶ଶܯ− ߶ଵܯ− + ݇ଶି ଵ ଵܲ߶ ൩ (30)

It is worth noting that all uncertainties in the 
model parameters are considered in the terms of Δ, 
therefore the parameter set used in Eq. (30) is only a 
reasonable estimation.  

Remark: 

In the case of deep surge, the system does not 
include the zero dynamics and the simplified form of 
control system can be derived by putting ܬ = 0 in 
Eq. (21). It can be seen that  ܬ = 0 considerably 
relaxes the boundedness conditions; however, the 
developed control laws Eq. (30) remains effective. 

5 RESULTS AND DISCUSSION 

All of the numerical constants and model 
parameters, which are used in this section, are 
mentioned in Table 1. At first, we demonstrate that 
external disturbances and model uncertainties can 
lead to rotating stall when the controller is 
deactivated (B-parameter in this case is 0.1.). The 
system initially starts from OP1 (the intersection of 
throttle characteristic ்ߛ = 0.62 and compressor 
map at (߶௜, ߰௜) = (0.51,0.66) (see Figure 3)). This 
OP is located in the negative slope area and the 
system is initially stable. As seen in Figure 4f, 
disturbances including time varying sinusoidal and 
constant offsets are applied at ߦ = 50.  

Consequently, the system develops rotating stall 
(Figure 4c) and output pressure drops (Figure 4a). 
This spells trouble for normal operation of the axial 
compressor. In Figure 3, the disturbed trajectory 
(blue line) settles down at OP2 consisting of the 
effect of rotating stall and disturbances. The 

disturbances last until ߦ = 200, but due to the 
hysteresis in the qualitative behavior of the system, 
rotating stall cannot be automatically removed (see 
Figure 4c). When disturbances disappear, 
uncontrolled trajectory (magenta line) ends up in 
OP3 which is located on the stall characteristic 
where pressure is considerably reduced. 

At ߦ = 300, the controller starts and rapidly 
damps out rotating stall and imposes the controlled 
trajectory (green line) toward the initial efficient 
OP1 where output pressure is high. In this 
simulation, ଵܲ = 10 and ଶܲ = 0.2. Figure 4d and 4e 
respectively report the control laws ݑଵ and ݑଶ. 
trajectory (green line) toward the initial efficient 
OP1 where output pressure is high. In this 
simulation, ଵܲ = 10 and ଶܲ = 0.2. Figure 4d and 4e 
respectively report the control laws ݑଵ and ݑଶ. 

 
Figure 3: Perturbations lead to rotating stall, but RPBC 
effectively damps it out. OP1: efficient OP, OP2: 
developed rotating stall and disturbances, OP3: rotating 
stall OP. 

 
Figure 4: RPBC returns the system to its initial efficient 
OP and removes rotating stall. 
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Figure 5: RPBC removes rotating stall and returns the 
system to its desired initial OP1. OP1: initial efficient OP, 
OP2: OP including rotating stall and disturbances. 

 
Figure 6: RPBC increases the output pressure and 
eliminates rotating stall.  

To investigate the effectiveness of the controller 
in the presence of perturbations, long lasting 
disturbances are applied to the system for ߦ > 50 
(Figure 6f). Again, Figure 5 and 6 show that the 
controller, which is activated at ߦ = 300, stabilizes 
the system at the desired OP1. In Figure 5, the 
controlled system trajectory finally reaches to the 
initial desired OP1. Figure 6c shows that rotating 
stall is rapidly damped out and Figure 6a reports the 
corresponding pressure increase after the activation 
of the controller at ߦ = 300. In this case, ଵܲ = ଶܲ =20. These two design parameters also modify the 
transient response of the system (e.g. the fall time of 
rotating stall). The scale of Figure 6d and 6e are 
adjusted to show the variation of control laws due to 
the time varying sinusoidal disturbances.  

Compressors suffer from deep surge as well. For 
surge simulations, the system initially starts at an 
efficient OP at the peak of compressor map. In this 
case, at ߦ = 50, we apply only the offset 
disturbances (thought of as model uncertainties) that 
move the system toward surge condition. Deep surge 
can be simulated by choosing a high enough value of 
B-parameter (e.g. ܤ = 2 leads to surge).  

 
Figure 7: RPBC stabilizes the compression system and 
eliminates deep surge. 

 
Figure 8: Deep surge including flow reversal and pressure 
oscillation is damped out due to RPBC activation.  

During deep surge, flow reversal occurs (see 
Figure 8b with negative flow values). Although 
perturbations are removed at ߦ = 2000, the system 
remains in surge condition (see Figure 8f and 8b). 
Then at ߦ = 3000, the controller starts and quickly 
stabilizes deep surge as shown in Figure 8a and 8b. 
Control efforts are shown in Figure 5d and 5e. 

Figure 7 reports disturbed and uncontrolled 
trajectories showing a limit cycle. Finally, when the 
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control is applied at ߦ = 3000, the controlled system 
trajectory settles down at the initial efficient OP1 
(green trajectory). This time-domain simulation 
shows that the developed control law Eq. (30) can 
robustly stabilize deep surge as well. 

6 CONCLUSIONS 

In this paper, the effectiveness of RPBC in 
stabilizing compression systems is demonstrated. 
Here, surge and rotating stall being potentially able 
to cause mechanical damages and performance 
reduction are robustly controlled in the presence of 
external disturbances and model uncertainties. The 
controller derives the control signal from pressure 
and flow measurements and applies it to the system 
by CCV and throttle actuations. The main 
contribution of this paper is to propose a simple and 
easy-to-implement RPBC algorithm that only relies 
on a small number of design parameters and does 
not require accurate knowledge of the model 
parameters.  

Analytical developments demonstrate that RPBC 
accomplishes the	 ISS	 property	 of	 the	 closed-loop	disturbed	 system.	 The	 size	 of	 the	 residual	convergence	set	and	 the transient response can be 
adjusted by control parameters. Time-domain 
simulation evaluates the performance of the control 
system and widely supports analytical outcomes.  

This brings us to the conclusion that by taking 
advantage of control methods based on the passivity 
of compression systems, a wide range of machines 
using compressors can obtain higher performance 
and greater operational reliability. Among these 
machines, gas turbines play an essential role both in 
aerospace and energy industries.  
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APPENDIX 

Table 1: Numerical values used in simulations. ݈௖ 3 ܹ 0.25 ܪ	  (ߦ0.2)	݊݅ݏ0.01 (ߦ)Φௗ (ߦ0.2)	݊݅ݏ0.01 (ߦ)for deep surge 2 ߷ 0.425 ݀థ −0.05 ݀ట 0.02 Ψௗ ܤ for rotating stall 0.1 ܤ 0.18
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