
An Ontology for Describing ETL Patterns Behavior

Bruno Oliveira1 and Orlando Belo2
1CIICESI, School of Management and Technology, Porto Polytechnic, Felgueiras, Portugal

2ALGORITMI R&D Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Keywords: Data Warehousing Systems, ETL Conceptual Modeling, ETL Patterns, Domain Specific Language,
Ontologies, PL4ETL, ETL Skeletons.

Abstract: The use of software patterns is a common practice in software design, providing reusable solutions for
recurring problems. Patterns represent a general skeleton used to solve common problems, providing a way
to share regular practices and reduce the resources needed for implementing software systems. Data
warehousing populating processes are a very particular type of software used to migrate data from one or
more data sources to a specific data schema used to support decision support activities. The quality of such
processes should be guarantee. Otherwise, the final system will deal with data inconsistencies and errors,
compromising its suitability to support strategic business decisions. To minimize such problems, we
propose a pattern-oriented approach to support ETL lifecycle, from conceptual representation to its
execution primitives using a specific commercial tool. An ontology-based meta model it was designed and
used for describing patterns internal specification and providing the means to support and enable its
configuration and instantiation using a domain specific language.

1 INTRODUCTION

Ontologies are being used by many organizations to
encode and share information across multiple
systems, providing a way to electronic agents
understand and use the information based on a solid
and shared formalism. The need to reuse a particular
domain knowledge is growing, since it enhances
better solutions and provides a better picture of a
specific domain (Gruber 1993). The struggle
imposed by global market demands affects business
requirements in an unexpected way. Therefore,
software design techniques should guaranty the
quality and robustness of any software piece. The
use of software patterns is a reuse-based technique
often applied in software developing on a lot of
different domains (Gamma et al. 1995). The need to
reuse components and share acquired knowledge
across applications is crucial to reduce time and
costs of developing software, contributing to
improve the quality of the software (Alexander et al.
1977).

In the field of Data Warehousing Systems
(DWS), the ETL (Extract, Transform, and Load)
process is one of the most important pieces that
support the entire business intelligence system,

consuming a large portion of time and resources in
its development. ETL processes are very particular,
being specific to each scenario where they are
applied, since its main purpose is to integrate data
from different data sources to target repositories,
which are especially built to support decision-
making processes. The amount of data that is
typically transformed associated to data
requirements and technology limitations that should
be considered in its development, places these
software systems in a very special domain (Weske et
al. 2004). All this contributes for increasing the
complexity related to its development and
maintenance. Additionally, there is still a lack of
proposals and methodologies to support its
development based on a conceptual approach with
the ability to represent all operational stages with a
simple notation and provide at the same time the
necessary bridges to allow for its mapping into a
correspondent physical model. Based on these
problems, we propose a pattern-based approach
designed to map typical ETL standard tasks - e.g.,
Surrogate Key Pipelining (SKP), Slowly Changing
Dimensions (SCD), and Change Data Capture
(CDC) - to configurable components that can be
adapted to specific application scenarios.

102
Oliveira, B. and Belo, O.
An Ontology for Describing ETL Patterns Behavior.
DOI: 10.5220/0005974001020109
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 102-109
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Based on previous works (Oliveira & Belo 2012;
Oliveira & Belo 2013), and using the Web Ontology
Language (OWL) (McGuinness & van Harmelen
2004), an ETL pattern based ontology was
developed to support the necessary requirements and
to describe each pattern configuration, enabling its
mapping to physical models that can be executed in
practice (Oliveira & Belo 2015). Basically, an
intermediate layer is provided to separate technical
knowledge, typically used in commercial tools, from
the domain knowledge used by decision-makers
(McGuinness & Wright 1998). Due the complexity
of the knowledge involved and the application of
each pattern to specific contexts (Dietrich & Elgar
2007; Noy & McGuinness 2001), ETL processes can
suffer from inconsistencies and misunderstandings
about communication problems that can result from
different meanings or architectural contradictions.
Ontologies can be used to provide the contextual
data necessary to describe each pattern according to
its structural properties (Noy & McGuinness 2001).

Thus, after a brief exposure of some related work
(Section 2), we describe our ontology approach to
support ETL patterns, providing a specific taxonomy
of the most used ETL techniques and the main
components that support the configuration of each
pattern (Section 3). Next, a set of necessary
formalisms to create a pattern-based language and
how to use them to generate physical models is
presented (Section 4). Finally, we discuss the
experiments done so far, analyzing results and
presenting some conclusions and future work
(Section 5).

2 RELATED WORK

The development of more abstract models to support
the development of ETL processes and their
mapping to execution primitives is not new.
Vassiliadis and Simitsis covered several aspects of
ETL development in their research (Vassiliadis et al.
2003). They approached ETL conceptual modeling
(Vassiliadis et al. 2002a), its representation using
logical views (Vassiliadis et al. 2002b; Simitsis &
Vassiliadis 2008), and its implementation using a
specific ETL tool (Vassiliadis et al. 2000). Akkaoui
(Akkaoui & Zimanyi 2009) proposed a conceptual
approach for ETL development based on well-
known technologies such as BPMN (Business
Process Model and Notation) and BPEL (Business
Process Execution Language). Several mappings
rules were presented to support the mapping of
BPMN models to BPEL executable models. This is

not easy to make, suffering this approach from
several traditional problems already debated by
research community (White & Corp 2005). Later,
Akkaoui presented the BPMN4ETL meta model
(Akkaoui et al. 2011), showing how BPMN
conceptual primitives can be mapped to physical
models using specific templates recognized by
commercial tools. However, in the field of ETL
patterns, there is not much more to refer. Even so,
we can refer also the work of Köppen et al. (2011),
which presented a pattern-oriented approach to
support ETL development, providing a general a
description for a set of patterns - e.g., aggregator and
duplicate elimination patterns. This work was
focused on important aspects related to the definition
of internal composition properties of patterns and
their relationships. The patterns were presented only
at a conceptual level, lacking to support patterns
instantiation for execution primitives. Thus, we
believe that our work distinguishes from other
approaches presented so far, since we followed a
pattern-based approach supported by well-
documented components that can be configured and
used in different ETL development phases. Fine-
grained tasks are encapsulated inside these
components, resulting in a coarse-grained new ETL
development level, defined by the use of an upper
abstraction layer that simplifies and carries the
acquired knowledge between projects.

3 ETL META MODEL FOR
PATTERNS DEFINITON

Nowadays, sharing and reusing knowledge it is a
crucial activity for software development. Many
specific frameworks appeared with the goal to define
a new kind of software programming for taking
advantages of previous expertise and allowing for its
reuse on new applications in different application
scenarios and domains. Usually, these frameworks
are composed by collections of software patterns
representing a set of instructions or activities, which
can be configured and applied to more specific
needs. Concerning the specificities of an ETL
environment, patterns can be characterized using a
set of pre-established tasks grouped based on a
specific configuration related to the context in which
are used. Creating these reconfigurable components
avoid the need to rewrite some of the most repetitive
tasks that are used regularly. Several tasks, such as
surrogate key process generation, lookup operations,
data aggregation, data quality filters or slowly
changing dimensions, are just some few examples of

An Ontology for Describing ETL Patterns Behavior

103

usual tasks used in any DWS. Instead of using
repetitive tasks to solve the same problems over and
over again, conceptual models can be used to
simplify ETL representation. This way, users focus
on more general requirements, leaving the
complexity of its implementation on other
development steps. Consequently, users only need to
provide configuration metadata to the conversion
engine that will be responsible to generate the
correspondent physical model.

Figure 1: The ETL patterns taxonomy.

OWL, a language based on Web semantic
technology, is often used to describe domain specific
meta-models in order to represent properties and
relationships between domain concepts (i.e.,
patterns). OWL is a W3C standard (W3.org 2012)
that was developed to provide a simple form to
process and use semantic data across applications in
the Web. With OWL, classes or concepts can be
described and arranged to form taxonomic
hierarchies, properties describing the composition in
terms of attributes of each concept and restrictions
over the relationship between the concepts
presented. Thus, ETL patterns can be syntactically
expressed using classes, data properties and object
properties, providing the basic structure to support
the development of a specific language to pattern
instantiation. Figure 1 shows an excerpt of the
breakdown among the different levels of the ETL
patterns taxonomy proposed. The ‘Pattern’ class
represents the most general concept used, while
‘Extraction’, ‘Transform’ and ‘Load’ are the three
types of patterns that are intrinsically associated to
each typical phase of an ETL process. Instances of

‘Extraction’ are used to extract data from
information system using a specific data object (e.g.,
a table or file), representing typical data extraction
processes and algorithms applied over specific data
structures. Three types instances are commonly
referred for the concept ‘Extraction’, namely:

a) Full extraction patterns that are used to extract
all data from a specific data source without
any criteria, i.e., all data currently available.

b) Differential extraction patterns that are used to
identify new data since the last successful
extraction. For this data extraction type, all
data from source and target repository is
compared to identify new data.

c) Incremental extraction patterns: used to extract
data from data sources since the last
successful extraction but based on specific
criteria and using specific CDC (Change
Data Capture) techniques to identify and
track the data that has been changed in all the
data warehouse sources.

The ‘Transformation’ class represents patterns
that are used in ETL transformation phase for the
application of a set of cleaning or conforming tasks
(Rahm & Do 2000), in order to align source data
structures to the requirements of the target schema
of a data warehouse. This class represents a large
variety of procedures that are often applied in DWS,
such as patterns responsible to apply the well-known
policies related to SCD techniques, patterns for
surrogate key generation, or patterns to support the
conciliation and integration of data from many data
sources. For example, a DQE pattern can be
specialized to a ‘Normalization’ class, which
represents the set of tasks needed whenever it is
necessary to standardize or correct data according to
a given set of mapping rules stored in mapping
tables. With these classes, all the most frequent ETL
patterns can be represented along with all its
operational stages. Using the ontology hierarchy to
support ETL patterns meta-model, patterns can be
changed or even new patterns can be added without
compromising the whole pattern structure. Finally,
The ‘Load’ class represents patterns that are used to
load data to the target DW repository, representing
efficient algorithms for data loading or index
creation and maintenance for loading procedures.
The ‘Intensive Data Loading’ (IDL) subclass should
load data to a target DW schema considering the
model restrictions used.

After the taxonomy definition, the meta-model
should be enriched to support the basic rules for the
development of well-formed ETL patterns. For that,
each class should be defined through the use of
properties. For example, the ‘Extraction’ class
representing all ‘Extraction’ patterns is composed by
some Datatype Properties such as PatternId and

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

104

Figure 2: The ontology for ETL patterns – a view.

PatternName (inherited from ‘Pattern’ class), and
Object Properties such as PeriodLiterals that refers
to extraction interval used (Hour, Daily, Month)
(oneOf property) and the metadata related to the
repository connection (input object: Data class and
fields used: Field class). Each subclass can also
include additional properties. For example, the
‘Incremental’ class uses a date type property to
identify new or changed records. Each property
should be described based on its cardinality, value,
domain and range. The domain links a property to a
class, while the range links a property to a class or
data range. This allows for the association between
classes and data types, and provides a way to
establish restrictions. For example, all patterns
should have (hasInput object property) at least one
(minCardinality restriction) and at most two
(maxCardinality restriction) ‘Data’ class association
for pattern input and only one (functionalProperty
constraint) ‘Data’ class association for pattern
output. Generally, patterns only have one source for
input and one target repository as output. However,
the DCI (Data Conciliation and Integration) pattern
uses more than one data source as input (using
subPropertyOf axiom) due being responsible to
integrate data extracted from two data sources from
the same data object. In Figure 2 we can see a brief

resume of some classes and its data or object
properties.

4 PATTERN LANGUAGE
SPECIFICATION

Several authors tried to simplify and minimize ETL
development using conceptual models in early
development phases. Currently, there is still a lack
of semantics to support ETL systems specification
and development, and more importantly to provide
the necessary mappings to execution properties,
taking advantage of the work done previously in
design phases. The majority of works presented till
now supports ETL processes representation using
very detailed tasks. Thus, the models that are
generated automatically are composed by dozens of
tasks without a direct mapping to commercial tools.
With the pattern-based approach proposed, a new
abstraction layer is provided, simplifying and
helping ETL development from conceptual phases to
physical models that can be executed. For this
particular task, we believe that commercial tools
should be preferentially used, since they provide
powerful and well-known frameworks that many

An Ontology for Describing ETL Patterns Behavior

105

professionals are able to use. Therefore, we propose
a specific configuration language that can be applied
to each pattern presented by the ontology, covering
its operational stages and providing a solid
framework to enable its conversion to equivalent
semantics used by current ETL commercial tools.
Using the Protégé-OWL API (Protégé 2011)
(Horridge 2012) we can use and manipulated a
specific RDF/XML (Brickley & Guha 2004). Based
on the concepts and properties presented, a specific
generator was built to automatically generate a
specific pattern configuration language, allowing for
the configuration of each pattern using the ontology
definition. The engine uses two important layers: the
language construction rules (syntax), and the
ontology data model. For the language specification,
a set of type statements and keywords were used to
describe each language component. The USE
keyword is used to identify the pattern path that
should be used based of the taxonomy presented
(Figure 1), followed by the pattern name. Top levels
(Pattern class is the higher level) should be firstly
defined and the special character ‘.’ (dot) is used to
traverse each hierarchy level, from the middle levels
to bottom levels. Next, and based on each Pattern
class object properties, a set of blocks delimited by
{} (braces) are defined. Inside each block, simple or
composite assignments can be performed. For the
general blocks (generated from Pattern class), the
simple assignments are formed based on data
properties associated to Pattern class, while
composite statements are generated based on the
object properties. Each block can contain more than
one occurrence based on the cardinality of the object
properties associated to ‘Pattern’ class. For
example, the DCI pattern have two input block, each
one for the data source used for data integration. The
OPTIONS block is used to map the properties
associated to the bottom pattern class used and can
be composed by single or composite statements.

Using the ontology and the syntax rules
presented, the configuration language can be
automatically generated for each pattern. This
approach guarantees that, if the ontology is change,
then the correspondent grammar rules will be
consistent with the ontology definition. Figure 3
shows an example of the syntax rules applied to the
language constructs (Figure 3a) and a correspondent
example of its instantiation using a specific pattern
(Aggregator) that applies a sum operation to the
duration of telephone calls made by each customer.

The sum_duration aggregator pattern
(Transform.Aggregator) presents three main blocks
derived from the object properties applied to the
Pattern class. The Source describes input metadata,
Target describes output metadata and Fields block
describes the fields will be used as output to the

Figure 3: PL4ETL basic pattern configuration syntax and
language example through the instantiation of an
aggregator pattern.

target repository. These three blocks correspond to
hasInput, hasOutput and hasFields object properties,
respectively. For input block, a CSV file was used
for data extraction based on delimiter ‘:’ (a
composite statement is used due the existence of a
data property describing the delimiter rule for the
CSV class), and the pattern output will store
correspondent data into a specific relational table.
Details such as database name or server was omitted
since they can be configured in further steps. After
fields identification (separated by comma), the
keyword OPTIONS is used to specify each
configuration parameter (derived from properties
applied to the Aggregator class) associated to
Aggregator class: Function to identify the
aggregation function applied, FunctionField to
specify the field that should be used by the function,
RenameField to apply the alias to the new field
generated and the GroupFields used to specify the
group by clause.

With this pattern-based approach, a new
abstraction layer for developing ETL processes is
proposed. Patterns can be used to create an ETL
conceptual model without focusing in very detailed
tasks. However, to produce physical models based
on conceptual primitives we need to provide two

USE Transform.Aggregator

‘sum_duration’

 source{

 data=CDR_Calls.csv

 type=CSV{

 delimiter=':'

 }

 }

 target{

 data=calls

 type=relational

 }

 fields{

 DATETIME, CustomerId

 }

USE pattern_name

 block_name_1{

 ([)

 single_statement_name

and

 [composite

statement_name{…}]

(])(,)(…)

 }

()

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

106

Figure 4: Development stages of an ETL process using patterns.

independent components: patterns configuration
meta data that is supported by the domain language
provided, and workflow coordination data that
describes the process flow. Only for demonstration
purposes, the BPMN language was used to create the
ETL conceptual models we used. In several works,
BPMN has proven that is quite suitable to represent
several workflow operational components of ETL
systems, both at conceptual and physical primitives
(Akkaoui et al. 2012; Oliveira et al. 2015). In recent
works (Oliveira et al. 2014; Oliveira & Belo 2015)
we also proposed the use of BPMN as visual layer to
support ETL conceptual models, representing
patterns using BPMN elements. The experimental
tool developed has the ability to interpret the
configuration language and provide the generation
of a physical model, making it possible to be
executed by commercial tools such as Kettle from
Pentaho (Bouman & Dongen 2009). For that and
based on the ontology presented, a specific meta
model can be generated and used to support pattern
instantiation and configuration. Using protégé editor
to create the ontology it’s possible to generate java
code based on the ontology definition. This feature
allows for manipulating the ontology and, at the
same time, provides the necessary contracts to
control and implement the necessary models to
support pattern interpretation and manipulation. The
final step covers the generation of physical models
using the architecture and philosophy followed by
each commercial tool. A set of standard
transformation skeletons was built to encapsulate the
logic of the conversion process, providing the
meanings to transform each pattern internal structure
to a specific serialization format. Figure 4
summarizes all the phases of the development
process that are needed to support the physical

representation of an ETL process using patterns,
from the ontology definition to the generation of
physical model.

5 CONCLUSIONS AND FUTURE
WORK

In practice, ETL systems are sophisticated data
migration processes that follow some traditional
guidelines associated to repositories that respect to
some specific architectural philosophies. The
specificities of ETL systems have been studied and
applied to several areas, contributing to the
identification of common tasks and solutions in
order to solve them. The SCD policies are just an
example of a typical procedure, identified and
categorized based on acquired experience over the
years. Additionally, the complexity of the tasks and
operators in a complicated workflow consumes great
amounts of time and computational resources. With
the pattern-oriented approach present in this paper,
the knowledge and best practices revealed by several
works can be put in practice using a set of software
patterns that can be applied to the entire ETL
development life cycle: from conceptual phase to its
physical implementation primitives. Such patterns
can be used in software models, providing a new
level of abstraction that simplifies the initial phases
of software development, especially the ones related
to requirements elicitation and generation of
conceptual models.

Patterns provide an excellent groundwork for
process validation, allowing for the identification of
the most important parts of a system to be built. In
order to formalize its composition, we presented an
ontology specification describing and categorizing

Patterns specification

Conceptual Design

Using patterns and process
modelling languages

Logical Design

Extraction:

 Extraction:'

Extraction =

ExtractionComposition

;

ExtractionComposition:

'source{'

Physical Design

Template Engine

Transformation
templates

Tool physical
files

An Ontology for Describing ETL Patterns Behavior

107

all the ETL patterns proposed, having the ability to
express the construction rules for a language we
built previously to support the configuration of each
ETL pattern. The ontology also describes the main
operational components of each pattern, covering the
main properties and restrictions that can be used to
support its usage. Thus, enriching each pattern
definition using in the referred language, we can use
all the main components to its posteriorly the
mapping of execution primitives. Recognizing the
value and the abilities of the frameworks offered by
commercial migration tools, we can develop specific
transformation templates to translate each ETL
pattern configuration to a corresponding format that
can be interpreted directly by an ETL
implementation tool. All this provides pattern
reusability across several systems and contributes to
system robustness, since patterns are independent
elements on every ETL applications.

As future work, a set of tests will conducted to
study the feasibility of our approach as well as to
extend it, improving and enriching the ontology in
order to cover more coordination and
communication aspects, essentially.

REFERENCES

Akkaoui, Z. et al., 2011. A model-driven framework for
ETL process development. Proceedings of the ACM
14th international workshop on Data Warehousing
and OLAP (DOLAP’11), pp.45–52.

Akkaoui, Z. et al., 2012. BPMN-Based Conceptual
Modeling of ETL Processes. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7448, pp.1–14.

Akkaoui, Z. & Zimanyi, E., 2009. Defining ETL
worfklows using BPMN and BPEL. In Proceeding of
the ACM twelfth international workshop on Data
warehousing and OLAP DOLAP 09. pp. 41–48.
Available at: http://portal.acm.org/citation.cfm?doid=1
651291.1651299.

Alexander, C., Ishikawa, S. & Silverstein, M., 1977. A
Pattern Language: Towns, Buildings, Construction,
Oxford University Press.

Bouman, R. & Dongen, J. Van, 2009. Pentaho® Solutions:
Business Intelligence and Data Warehousing with
Pentaho and MySQL®,

Brickley, D. & Guha, R.V., 2004. RDF Vocabulary
Description Language 1.0: RDF Schema. W3C, pp.1–
15. Available at: http://www.w3.org/TR/rdf-schema/.

Dietrich, J. & Elgar, C., 2007. Towards a web of patterns.
Web Semantics: Science, Services and Agents on the
World Wide Web, 5(2), pp.108–116. Available at:
http://linkinghub.elsevier.com/retrieve/pii/S15708268
07000030.

Gamma, E. et al., 1995. Design patterns: elements of

reusable object-oriented software. Design, 206, p.395.
Available at: http://www.cs.up.ac.za/cs/aboake/sws7
80/references/patternstoarchitecture/Gamma-DesignPa
tternsIntro.pdf.

Gruber, T.R., 1993. A translation approach to portable
ontology specifications. Knowledge Acquisition, 5(2),
pp.199–220. Available at: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.101.7493.

Horridge, M., 2012. protégé-owl api. Research, Stanford
Center for Biomedical Informatics, p.1. Available at:
http://protege.stanford.edu/plugins/owl/api/.

Köppen, V., Brüggemann, B. & Berendt, B., 2011.
Designing Data Integration: The ETL Pattern
Approach. The European Journal for the Informatics
Professional, XII(3).

McGuinness, D.L. & van Harmelen, F., 2004. OWL Web
Ontology Language Overview, OMG.

McGuinness, D.L. & Wright, J.R., 1998. Conceptual
modelling for configuration: A description logic-based
approach. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 12(4), pp.333–
344.

Noy, N. & McGuinness, D., 2001. Ontology development
101: A guide to creating your first ontology.
Development, 32, pp.1–25. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.136.5085&rep=rep1&type=pdf\nhttp://li
ris.cnrs.fr/alain.mille/enseignements/Ecole_Centrale/
What is an ontology and why we need it.htm.

Oliveira, B. et al., 2015. Conceptual-physical bridging -
From BPMN models to physical implementations on
kettle. In CEUR Workshop Proceedings. pp. 55–59.

Oliveira, B. & Belo, O., 2015. A Domain-Specific
Language for ETL Patterns Specification in Data
Warehousing Systems. In 17th Portuguese Conference
on Artificial Intelligence.

Oliveira, B. & Belo, O., 2012. BPMN Patterns for ETL
Conceptual Modelling and Validation. In 20th
International Symposium on Methodologies for
Intelligent Systems.

Oliveira, B. & Belo, O., 2013. Pattern-based ETL
conceptual modelling. In 3rd International Conference
on Model & Data Engineering (MEDI 2013).

Oliveira, B., Belo, O. & Cuzzocrea, A., 2014. A Pattern-
oriented Approach for Supporting ETL Conceptual
Modelling and its YAWL-based Implementation. In
4th International Conference on Data Management
Technologies and Applications.

Protégé, 2011. The Protégé Ontology Editor, Available at:
http://protege.stanford.edu/.

Rahm, E. & Do, H., 2000. Data cleaning: Problems and
current approaches. IEEE Data Eng. Bull., 23(4),
pp.3–13. Available at: http://wwwiti.cs.uni-magdeburg
.de/iti_db/lehre/dw/paper/data_cleaning.pdf\npapers2:/
/publication/uuid/17B58056-3A7F-4184-8E8B-0E4D8
2EFEA1A\nhttp://dc-pubs.dbs.uni-leipzig.de/files/Rah
m2000DataCleaningProblemsand.pdf.

Simitsis, A. & Vassiliadis, P., 2008. A method for the
mapping of conceptual designs to logical blueprints
for ETL processes. Decision Support Systems, 45(1),

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

108

pp.22–40.
Vassiliadis, P. et al., 2003. A framework for the design of

ETL scenarios. In Proceedings of the 15th
international conference on Advanced information
systems engineering. CAiSE’03. Berlin, Heidelberg:
Springer-Verlag, pp. 520–535. Available at: http://dl
.acm.org/citation.cfm?id=1758398.1758445.

Vassiliadis, P. et al., 2000. ARKTOS: A tool for data
cleaning and transformation in data warehouse
environments. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, pp.1–7.
Available at: http://scholar.google.com/scholar?hl=
en&btnG=Search&q=intitle:A+Tool+For+Data+Clean
ing+and+Transformation+in+Data+Warehouse+Envir
onments#0.

Vassiliadis, P., Simitsis, A. & Skiadopoulos, S., 2002a.
Conceptual Modeling for ETL Processes. Proceedings
of the 5th ACM international workshop on Data
Warehousing and OLAP - DOLAP ’02, pp.1–25.
Available at: http://dl.acm.org/citation.cfm?id=583890
.583893.

Vassiliadis, P., Simitsis, A. & Skiadopoulos, S., 2002b.
On the Logical Modeling of ETL Processes. Science,
pp.782–786. Available at: http://www.springerlink.co
m/index/tjaep8rw6y7nrb07.pdf.

W3.org, 2012. Semantic Web - W3C. W3.org. Available
at: http://www.w3.org/standards/semanticweb/.

Weske, M., van der Aalst, W. & Verbeek, H., 2004.
Advances in Business Process Management. Data &
Knowledge Engineering, 50, pp.1–8.

White, S.A. & Corp, I.B.M., 2005. Using BPMN to Model
a BPEL Process. Business, 3, pp.1–18. Available at:
http://www.bpmn.org/Documents/Mapping_BPMN_to
_BPEL_Example.pdf.

An Ontology for Describing ETL Patterns Behavior

109

