
Security of Mobile Single Sign-On: A Rational Reconstruction of
Facebook Login Solution

Giada Sciarretta1,2, Alessandro Armando1,3, Roberto Carbone1 and Silvio Ranise1

1Security & Trust, FBK-Irst, Trento, Italia
2University of Trento, Trento, Italia

3DIBRIS, University of Genova, Genova, Italia

Keywords: Single Sign-On, Digital Identity, Security of Mobile Devices, OAuth 2.0.

Abstract: While there exist many secure authentication and authorization solutions for web applications, their adaptation
in the mobile context is a new and open challenge. In this paper, we argue that the lack of a proper reference
model for Single Sign-On (SSO) for mobile native applications drives many social network vendors (acting as
Identity Providers) to develop their own mobile solution. However, as the implementation details are not well
documented, it is difficult to establish the proper security level of these solutions. We thus provide a rational
reconstruction of the Facebook SSO flow, including a comparison with the OAuth 2.0 standard and a security
analysis obtained testing the Facebook SSO reconstruction against a set of identified SSO attacks. Based
on this analysis, we have modified and generalized the Facebook solution proposing a native SSO solution
capable of solving the identified vulnerabilities and accommodating any Identity Provider.

1 INTRODUCTION

Single Sign-On (SSO) protocols are arguably one of
the most successful security solutions available today.
They allow users to access multiple services through
a single authentication act carried out with an authen-
tication server acting as an Identity Provider (IdP).
Note that, by reducing the number of digital identities
(and credentials) a user has to deal with, SSO proto-
cols improve the user’s experience and security (e.g.,
stronger password selection).

While for web applications there exist many se-
cure authentication and authorization solutions to
protect the user’s digital identities and online re-
sources, solutions for mobile applications are not
yet consolidated. The existing protocols, such
as OAuth 2.0 (IETF, 2012a) and OpenID Con-
nect (OIDF, 2014a), provide only a partial support
for mobile native applications, leaving many imple-
mentation choices to developers. Leveraging these
protocols, many social networks have already de-
ployed their own authentication and authorization so-
lutions, which have been tremendously successful:
most Facebook and Google users routinely and trans-
parently use them on their smartphones and tablets.
However, the adaptation of protocols originally de-
signed to work in a traditional web scenario, to-

gether with the lack of a complete SSO standard for
mobile native applications (hereafter native SSO)—
it is only available a draft version released by the
working group NAPPS (OIDF, 2014b) of the OpenID
Foundation—have caused the spread of a number of
serious vulnerabilities and attacks. There are many
studies in the literature, such as (Chen et al., 2014;
Wang et al., 2013; Shehab and Mohsen, 2014), which
focus on the analysis and description of common vul-
nerabilities and attacks caused by incorrect imple-
mentation assumptions; however—to the best of our
knowledge—it remains unclear how to implement na-
tive SSO solutions in a secure way.

This paper provides a model which can be used to
support the native SSO development. More specif-
ically, we make the following three contributions.
First, we provide a rational reconstruction of the Face-
book1 native SSO. Second, we include detailed secu-
rity considerations for the Facebook solution. Third,
we propose a native SSO solution inspired by the
Facebook native SSO but capable of solving the iden-
tified vulnerabilities.

1In the rest of this paper we will focus on the SSO solution
used by Facebook. However the concepts discussed in this
paper can be easily adapted to the SSO solution developed
by Google.

Sciarretta, G., Armando, A., Carbone, R. and Ranise, S.
Security of Mobile Single Sign-On: A Rational Reconstruction of Facebook Login Solution.
DOI: 10.5220/0005969001470158
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 147-158
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

147

The rest of the paper is structured as follows. In
Section 2, we describe the basic notions of a SSO
scenario and, in the context of native applications,
we give a short overview of the OAuth 2.0 protocol.
We also provide an application scenario for the pro-
posed solution. In Section 3, we detail our rational
reconstruction and security analysis of the Facebook
solution. Together with the description of the flow,
we make a comparison with OAuth flows and explain
Facebook native SSO security issues. In Section 4,
we describe our solution for native SSO, comparing
it with the Facebook solution. Finally, we present the
related work in Section 5, and we draw our conclu-
sions and discuss our future work in Section 6. In
addition, in Appendix we detail the flow of our native
SSO solution.

2 BACKGROUND

The goal of this section is to provide the basic notions
required to clearly understand the analysis performed
on the Facebook native SSO solution. Section 2.1
describes the entities involved and the functional re-
quirements of a SSO process. In Section 2.2, we give
an overview of the OAuth 2.0 protocol, used by Face-
book to perform the login process.

2.1 SSO: Entities and Requirements

SSO protocols allow users to access multiple services
through a single authentication act. The User partici-
pates in the protocol through a User Agent (UA) and
authenticates with an Identity Provider (IdP) with the
purpose of proving her identity to a Client entity (C).
We assume a SSO solution meets the following two
requirements:

(R1) the IdP user credentials can be used to gain ac-
cess to several Cs. This implies that users do not
need to have credentials with a C to access it.

(R2) If a user has already a login session with an IdP,
then she can access new Cs without entering her
IdP credentials anymore, and only the user con-
sent is required.

A typical SSO scenario consists of the following
steps: first a user asks for access to C. Then C issues
an authentication requests to IdP (through UA). The
IdP authenticates the user and establishes a security
context with her. The IdP then sends an authentication
assertion containing the user information to C pass-
ing back through UA. Whenever in the future the user
will access new Cs through the same UA supporting

C1 C2

UA

[HTTPS]

User

IdPuser&pw

Figure 1: SSO for Web Apps.

the login with the same IdP the login phase will be
skipped, thereby satisfying (R2).

The SSO entities are instantiated in different ways
based on the scenario and technology used. As we
will describe in Section 5, while the SSO scenario
where C apps are web application (illustrated in Fig-
ure 1) is very studied, the case where Cs are native
applications is quite new and challenging. For this
reason, in the rest of this paper we will focus on the
authentication process for Android2 native apps.

2.2 OAuth for Native Applications

Many standards and products on authentication and
authorization have been developed in the last few
years by prominent organizations. Here we present
the OAuth 2.0 (OAuth, for short) (IETF, 2012a),
which is one of the most widespread protocols used
in the case of mobile native apps.

OAuth is an authorization protocol typically used
to manage delegation of authorization. To illustrate
consider a user, called Resource Owner (RO), which
wants to use an app, called Client (C), to print some
photos (resources) stored on a different photo-sharing
site (resource server). Using OAuth, RO can grant C
access to her private photos, without having to share
her credentials by directly authenticating with a server
trusted by the photo-sharing service, called Autho-
rization Server (AS), which issues an access token
to C carrying the requested authorization delegation.
The default access token type used in the OAuth pro-
tocol is a bearer token, which in (IETF, 2012b) is de-
fined as “a security token with the property that any
party in possession of the token (a “bearer”) can use

2We focus on Android, even if many concepts can be ap-
plied on other operating systems.

SECRYPT 2016 - International Conference on Security and Cryptography

148

RO C AS

1. RO login

2. Token request, RO credentials

3. access_token

Figure 2: OAuth RO Password Credential Flow.

RO UA C
1. Token request

2. user login + consent

3. redirect_uri#access_token

AS WHCR

4. redirect_uri

5. script

6. execute script
7. access_token

Figure 3: OAuth Implicit Flow.

the token in any way that any other party in posses-
sion of it can. Using a bearer token does not require a
bearer to prove possession of cryptographic key mate-
rial (proof-of-possession)”. This means that an entity
in possession of an access token can access the corre-
sponding RO resources without any further authenti-
cation and authorization process.

In many implementations, OAuth is also used for
authentication by assuming that the resource that C
wants to access is the user profile on AS. If C can ac-
cess a user profile, this means that the RO has granted
the permission. This authorization act is used by C as
a proof of the user identity.

In the case of native apps OAuth does not specify
which flow to use. We have three possibilities: Au-
thorization Code, Implicit and Resource Owner Pass-
word Credentials. Note that, the Authorization Code
is the only flow that requires the authentication of C.
Indeed, in the final step of the flow C exchanges a
code and its client secret to obtain an access token in
a direct communication with AS. The client secret is
a value obtained in the registration phase and known
only by itself. In the case of native apps, as every
information is visible by the RO (the owner of the
smartphone where the native apps are installed), the
confidentiality of the client secret is not guaranteed.
These types of C, for which the client secret is not
confidential, are called public Cs. Note that, if every
information pass through the RO’s smartphone, the
exchange of the client secret for an access token just
makes the flow more complex without adding more
security. Thus, we will detail only the flows designed
to be used with public Cs.

RO Password Credentials Flow. This flow, illus-
trated in Figure 2, includes the following steps: in
Step 1, RO provides C with her own credentials.
Then, in Step 2, C requests an access token from AS’s
token endpoint by including the credentials received
from RO. Finally, in Step 3, AS validates the RO cre-
dentials, and if valid, issues an access token.

Implicit Grant Flow. This flow, illustrated in Fig-
ure 3, involves the following steps: in Step 1, C initi-
ates the flow by directing RO’s UA to the authoriza-
tion endpoint. C also includes a redirection URI to
which AS will send UA back once access is granted
(or denied). In Step 2, AS authenticates RO (via UA)
and establishes whether RO grants or denies C’s ac-
cess request. Assuming RO grants access, AS redi-
rects UA back to C (Step 3). The redirection URI
includes the access token in the URI fragment. In
Step 4, UA follows the redirection instructions by
making a request (which does not include the frag-
ment) to Web-Hosted Client Resource (WHCR). UA
retains the fragment information locally. In Step 5,
WHCR returns a web page (typically an HTML doc-
ument with an embedded script) capable of access-
ing the full redirection URI including the fragment re-
tained by UA. UA executes the script locally (Step 6),
which extracts the access token. In Step 7, UA passes
the access token to C.

2.3 Application Scenario

In this section, to motivate our work and give an illus-
trative example of the applicability of the proposed
native SSO solution, we describe an application sce-
nario that involves e-health mobile applications.

TreC (acronym for Cartella Clinica del Cittadino,
i.e. Citizens’ Clinical Record) is a platform3 devel-
oped in the Trentino region for managing personal
health records. Besides the web platform, which is
routinely used by around 61,168 users since 2012,
TreC is currently designing and implementing a num-
ber of native Android applications to support self-
management and remote monitoring of chronic condi-
tions. These applications are used in “living lab” con-
text by voluntary chronic patients according to their
hospital physicians. An example is the “TreC-Lab:
Diario Diabete” app, which is a mobile diary that al-
lows patients to record health data, such as the blood
glucose level and physical activity. While in the tra-
ditional web scenario, patients access services using

3The development of the platform is supported by a joint
project between Fondazione Bruno Kessler and Munici-
pality of Trento (Italy). More information is available at
https://trec.trentinosalute.net/.

Security of Mobile Single Sign-On: A Rational Reconstruction of Facebook Login Solution

149

C1

User

FB_server
(IdP)

UA

C2

UA

(a) Native Apps and Embedded Browsers.

C1 C2

User

FB_client (UA)

FB_server
(IdP)

(b) Native Apps Only.
Figure 4: Facebook Native SSO Solutions.

their provincial health care system credentials (lever-
aging a SAML-based SSO (OASIS, 2005) solution),
a solution for native SSO is currently missing.

The solution we propose will allow patients to
access different TreC e-health mobile applications
(and possibly other third-party e-health applications)
through a single authentication act with the provincial
health care system. In particular, the different entities
of SSO solution will be instantiated in the following
way: C apps will be the TreC e-health mobile appli-
cations, the User will be a patient that wants to use the
TreC apps to manage her health data, and the IdP will
be played by the IdP of the provincial health care sys-
tem. In addition, being the TreC data sensitive ones,
the proposed solution must be also flexible enough to
support strong authentication mechanisms.

As we will show in the next sections, our solution
is an excellent starting point to fulfill the TreC needs
and accommodate the provincial health care system.

3 FACEBOOK NATIVE SSO: A
RATIONAL
RECONSTRUCTION

Facebook (FB, for short) exploits OAuth for both au-
thentication and authorization. In this paper, we will
focus on the authentication process for Android na-
tive apps, which allows app developers to integrate
the FB login feature, and so exploit the FB native SSO
solution. In Section 3.1, we describe the different
FB native SSO solutions identifying the scenario that
we will take into account during our security analy-
sis. Section 3.2 describes our rational reconstruction
of FB native SSO. Together with the details of the
flow, we make a comparison with OAuth flows. In

Section 3.3, we define the assumptions and the threat
model that we will use in the FB security analysis, and
finally, in Section 3.4, our security considerations on
FB solution are presented. The result of our analysis
shows that the FB native SSO is vulnerable to known
SSO attacks.

3.1 Facebook Native SSO Solutions

FB provides a Software Development Kit (SDK) to
help mobile app developers to implement the login
feature. As reported in the FB login guide (Face-
book, 2015), the SDK has two different kinds of login
implementation where the SSO entities are instanti-
ated in different ways: (i) in Figure 4(a), C1 and C2

4

are native apps installed on user smartphones, UAs
are embedded in the apps, and the IdP is played by
FB server; (ii) in Figure 4(b), C1 and C2 are native
apps installed on user smartphones, UA is a FB An-
droid app (hereafter FB client) handling user authen-
tication locally on the device, and the IdP is played by
FB server.

As pointed out in (Shehab and Mohsen, 2014)
and (Boyd, 2012), if an embedded browser is used
(case of Figure 4(a)), C has full control of the hosted
UA. Thus, if C is malicious, then it can steal the user
credentials or change the authorization permissions.
An additional limitation for the embedded browser
solution is that it does not satisfy the requirement
(R2). Indeed, if the browser is integrated within the
app, then the login session information is saved in
(and only accessible to) the app and it is therefore not
available to other apps. This forces the user to re-enter
credentials even if she has active login sessions with

4For the sake of simplicity we consider only two Cs, the
generalization to more than two Cs is straightforward.

SECRYPT 2016 - International Conference on Security and Cryptography

150

C

FB_client

FB_server

app

User

1. click on login button

3. input credentials

4. token request, user credentials&sig

5. u_id & token_FB

7. token request, C_id&key_hash&u_id
8. user consent

10.
token_C

11. user info request, token_C

12.user info

StartActivityForResult

 2. login
request,

C_id

9. token_C

6. read
key_hash

token_FB

Facebook

Figure 5: Facebook Native SSO Solution.

an IdP. We thus disregard this solution and take into
account the solution shown in Figure 4(b).

3.2 Facebook Flow Description

To reconstruct the FB native SSO solution, we im-
plemented an application that integrates the FB Login
feature following the FB documentation (Facebook,
2015) and using the FB Android SDK. At the time
of our analysis, we used Android 4.3.1, FB Android
SDK 3.22.0 and FB APK 23.0.0.22.14.5

To obtain a precise description of the FB native
SSO flow, we have performed the following method-
ology: (i) we have analyzed the source code of the
FB SDK to understand the interaction between our
app and FB client inside the smartphone, and (ii) we
have used the Fiddler proxy tool6 to carefully inspect
the HTTP(S) traffic between the FB client and the
FB server.

Registration Phase. To use the FB login solution
we had to register with FB. In this phase, we have en-
tered the app package name and the certificate finger-
print (called, key hash) of our app (C). The key hash
is a digest (SHA1) of the file CERT.RSA, that con-
tains the public key of the developer, the signature
of the app package (APK) obtained with the private

5We also analyzed the FB flow with more recent versions
(Android 5.1.1, FB Android SDK 4.1.0 and FB APK
44.0.0.26.142), even if some parameters of the API calls
are different, the overall flow matches.

6Available at http://fiddler2.com/.

key of the developer, and other information about the
certificate. After the registration phase, an identifier
(C id) is associated with our native app.

Before the step description, we define the Android
components used by the FB solution. To manage
the inter-communication between two apps, FB use
explicit intents and the startActivityForResult7

method. An intent is an inter-process communica-
tion mechanism and is called: (i) explicit, when the
sender specifies the name of the receiver, and (ii)
implicit, whereby the sender only specifies the re-
quired task without specifying any receiver. The
startActivityForResult method allows an app to
display an Activity (basically a user interface) of an-
other app and get a result back.

SSO Phase. Figure 5 depicts the most important
steps, abstracting away the steps that are irrelevant
for the authentication process. In Step 1 the user
opens C and clicks the “Login with Facebook” but-
ton to authenticate in C. This triggers the invoca-
tion (Step 2) of an Activity from FB client using the
method startActivityForResult. C is put on wait
for the Activity to return a result. In Step 3, FB client
presents to the user an interface for prompting her cre-
dentials. The user enters her credentials and activates
a “Log in” button. In Step 4, FB client interacts with
the FB server in order to authenticate the user. Note

7For more details see the Android documentation,
available at http://developer.android.com/reference/an
droid/app/Activity.html#startActivityForResult(android.
content.Intent,int).

Security of Mobile Single Sign-On: A Rational Reconstruction of Facebook Login Solution

151

that, the HTTPS request contains the user credentials
and a parameter, sig, which is the hash of the param-
eters on the request calculated using a specific value
stored in the FB client app. As a response to the au-
thentication request (Step 5), FB client gets the user
information, among which there is the user’s identi-
fier (u id), and an access token (token FB). token FB
is used by the FB client to obtain configuration and
user information. Note that, token FB has no expira-
tion date, but can be invalidated by the user either by
changing password or logging-out in the device.

Remark 1. We can observe that Steps 3-5 of Figure 5
correspond to the steps of Figure 2 with the User,
FB client and FB server playing the role of OAuth
RO, C and AS respectively. As the RO password cre-
dential, the FB implementation eliminates the need
for storing the user credentials for future use, by ex-
changing the credentials with a long-lived access to-
ken (token FB).

In Step 6, using the Android method
getPackageInfo(client packageName, Package
Manager.GET SIGNATURES) FB client extracts
the information about the certificate fingerprint
(key hash) included in the package of C, and in
Step 7, it sends a token request for C to FB server,
including C id, key hash and u id. First, FB server
checks whether the provided key hash matches
the one previously provided by the developer for
the given C id in the registration phase. If there
is no match then the flow is interrupted with an
error, otherwise FB server checks whether the user
authorized C. If C was not authorized by the user,
the response (Step 8) contains a consent form. The
consent form asks the user to grant or deny C to read
the profile information. Otherwise, if C was already
authorized by the user, the consent phase is skipped.
If the user agrees, the response (Step 9) contains the
access token for C (token C). In Step 10, FB client
returns control to C and provides token C as result of
the invoked Activity (see Step 2).

Remark 2. At this point, it is interesting to do an-
other comparison with the OAuth flows. We have
that Steps 2 and 7-10 of Figure 5 can be compared
with Steps 1-3 and 6-7 of Figure 3 with the User, C,
FB client, and FB server playing the role of OAuth
RO, C, UA, and AS, respectively. We can observe that
in the FB solution the WHCR entity is missing. The
WHCR is the server side of C and is needed to give
to the UA the instructions to interpret the fragment
values (e.g., access token value) returned in Step 3
and pass them to C. This procedure has been designed
to manage the same-origin policy when Cs are web

browser applications. Many native apps do not have
a corresponding server, so in the FB native solution,
the redirection URI is the same for every native app
and has the value fbconnect://success. Indeed, it
is the FB client that received the script and read the
access token out of the URI. In addition, we observe
that Step 8 of Figure 5 corresponds to Step 2 of Fig-
ure 3 without the user login (the user identity is passed
using the u id parameter).

Finally, C sends a request (Step 11) to the FB server
including token C to obtain the user information. C
obtains the user information from FB and this proves
that C is under control of the corresponding user.

By analyzing the FB solution, we have noticed
that it is the combination of two OAuth flows (Re-
source Owner password credential and Implicit), and
the FB client app has two purposes: (i) it permits FB
to authenticate C, and (ii) manages the SSO process
(user authentication and access token release). In ad-
dition, we observe that the FB solution satisfies the re-
quirements expected for a SSO solution: (i) a user has
to register only with the FB server and can use her FB
credentials with different native apps (Cs). This sat-
isfies requirements (R1); (ii) using FB client allows
user to enter her FB credentials just once, and the
app will store the authenticated session. Every time
a native app requires to login with the FB server, the
FB client will employ the stored session without ask-
ing the user for credentials again. This satisfies (R2).

3.3 Security Assumptions and Threat
Model

In order to perform a security analysis of the Face-
book solution, we need to identify security assump-
tions and threat model of a native SSO flow. We de-
cide to express these assumptions for a generalized
SSO solution, where the entities involved are: the hu-
man participant (User), the server that authenticates
the user (IdP server), the native app that manages au-
thentication and token exchange (IdP client), and the
native app that uses the authentication assertions of
the IdP (C).

3.3.1 Assumptions

The exchange of authentication assertions among the
different entities are regulated by the following as-
sumptions:

(A1) IdP server is trusted by C on identity asser-
tions;

(A2) users download and install the proper
IdP client apps (i.e., IdP client is authentic and

SECRYPT 2016 - International Conference on Security and Cryptography

152

trusted);
(A3) messages between C/IdP client and IdP server

are exchanged over HTTPS channels.
If (A1) does not hold, then IdP server could be mali-
cious and C may obtain a fake identity assertion and
login the wrong user. If (A2) is not satisfied, the user
credentials can be stolen by malicious IdP client apps.
Finally, (A3) is needed to avoid that a malicious at-
tacker can sniff or change information during the net-
work communication.

Besides the usual HTTP(S) channels used to inter-
act with the remote entities, it is necessary to consider
the communication mechanisms used inside the mo-
bile device. In FB native SSO solution, as we have
described in Section 3.2, the communication between
two apps is performed using explicit intents and the
startActivityForResult method. Note that, as-
suming
(A4) the integrity of the Android OS,

the Android method, used in FB, cannot be attacked.
Indeed, A4 ensures: (i) app isolation, i.e. the data of
an app cannot be visible to other apps on the device,
(ii) protection against database corruption, i.e. an app
cannot modify files of another app, and (iii) secure
communication mechanisms, i.e., for example, an app
cannot intercept or modify the value released as re-
sult of an Activity invoked by another app using the
startActivityForResult method. In addition, as
FB, we assume:
(A5) the use of explicit intents.

In this way, the system is not vulnerable to a number
of known attacks described in (Chin et al., 2011).

Note that, assumptions (A4) and (A5) ensure: (i)
the confidentiality of the messages sent from C to
IdP client, and (ii) the authenticity of the messages
received by C from IdP client.

3.3.2 Threat Model

Based on the assumptions defined above, an attacker
may be:
Malicious App: an application installed on the users

device that tries to violate the SSO flow. In par-
ticular, if the Malicious App plays the role of C
in the SSO flow, we call it Malicious C. Compare
to a general Malicious App, a Malicious C can
also access security relevant parameters used in
the SSO flow.

Malicious User: a human person that plays the role
of User in the SSO flow and can extract informa-
tion from her smartphone (e.g., having root per-
missions) or use tools to reverse engineering ap-
plications.

Clearly, an attacker can be also a combination of these
attacker types.

3.4 Security Analysis of Facebook
Native SSO

Given that the FB native SSO solution is based on
OAuth, to perform our security analysis we took into
account the security considerations reported in the
OAuth specification (IETF, 2012a, §10), where for
each possible attack the respective countermeasures
are described. Our goal was to check whether the FB
native SSO solution described in Section 3.2—under
the security assumptions and thread models consid-
ered in Section 3.3—is vulnerable to the attacks re-
ported in (IETF, 2012a). To test whether the at-
tacks could be reproduced in the actual deployment,
we used the implementation described in (Facebook,
2015), which requires the use of FB Android SDK,
and playing the role of a malicious app. As a result of
these tests, we have discovered that, even if some im-
plementation choices (e.g., the use of explicit intent
described in Section 3.3.1) protect the FB native SSO
solution from some known attacks, it anyway suffers
from:
• Phishing: malicious apps can create a fake login

form and steal user credentials.
This attack can be easily performed (as pointed
out in (Khorana, nd)). In this case AppT , when
the user clicks on the “Login with Facebook” but-
ton, shows a fake login form, equals to the one
shown by the FB client, and it is thus able to steal
the victim’s credentials. This is possible as the FB
solution allows us to start the authentication pro-
cess from the C apps. Note that, even assuming
that the user is a security expert, she has no way
to discover the ongoing attack as the login form
shown by AppT can be identical to the login form
shown in the FB login flow.

• User Impersonation: as a consequence of this at-
tack, an attacker can login in a benign C as another
user.
To reproduce this vulnerability, we have per-
formed the attack described in Figure 6, where we
play the role of an attacker and Alice is the victim:

– Session 1: AppT (playing the role of a C),
which is installed in the Alice’s smartphone,
obtained a valid token linked to Alice’s iden-
tity.

– Session 2: we (playing the role of a user) ob-
tained a new token for a benign C using our
smartphone. Then, before the execution of Step
11, we changed the token linked to our identity

Security of Mobile Single Sign-On: A Rational Reconstruction of Facebook Login Solution

153

Session 1

C

FB_client

FB_server
Alice

1. click on
login button

3. input
credentials

10.
token_C of Alice

11. token_C of Alice

12. user info of Alice

StartActivityForResult

2. login
request

9. token_C of Alice

6. read
key_hash

steps 4-5, 7-8

Session 2

C

FB_client

Attacker
10.
token_C of Attacker

11. token_C of Alice

12. user info of Alice

StartActivityForResult

2. login
request

9. token_C of Attacker

6. read
key_hash

1. click on
login button

FB_server

3. input
credentials

steps 4-5, 7-8

Figure 6: User Impersonation Attack in the Facebook Native SSO Solution.

with the Alice’s token. This is possible as we
(the attacker) are the owner of the smartphone
where the SSO flow is running.

To mitigate the user impersonation, a C devel-
oper has to check that the token (or in general
the identity assertion) used to retrieve the user in-
formation has been granted to his/her application.
In the FB native SSO solution, the default token
used is a bearer token, thus it does not contain
any information about the authentication process,
the only way to validate the token is to request
the token information to the FB server. The prob-
lem is that, as before, the attacker can manipu-
late this request. For certain types of apps (e.g.,
games), FB suggests to set as response token pa-
rameter in Step 7 of FB native SSO flow the value
signed request (Facebook, 2016) (we do not write
this parameter in Figure 5 as it is not related to the
security analysis). Using this value, a C app can
obtain extra information about users, such as the
age and the origin country. In this way, before
the real use, the C can personalize the app or deny
the access (e.g., for game that requires a minimum
age). This extra info is returned in a Json Web To-
ken (JWT - (IETF, 2015)). We want to observe
that, even using this token, the attack is valid. This
is because the information about the audience of
the token (the client identifier) is missing. So, a
developer can check that a token was sent by FB
and extract the user info, but cannot check if the
token was released for itself.

• Client Impersonation: a malicious C can imper-
sonate another C to the IdP server obtaining user
identities and access protected resources.
As previously explained in Section 3.2, the FB so-

lution is a combination of two OAuth flows, thus
we have to consider two different clients:

– the mobile app (C) in the Implicit flow, and
– the FB client plays the role of C in the RO pass-

word credential flow.

In the first case, we have observed that, perform-
ing the verification of the key hash value (after
Step 7 in Figure 5), the FB solution mitigates the
client impersonation attack. Indeed, a malicious
C cannot have the same certificate of a benign C,
as the certificate depends on the private key of the
C developer.
In the second case (when FB client plays the role
of C), we discovered that the client imperson-
ation attack is exploitable. This is possible as
the knowledge of the user’s credentials is the only
factor used by the FB server to authenticate the
FB client. Thus, being the FB solution vulnera-
ble to phishing attack, a malicious C, after obtain-
ing the user’s credentials, can also impersonate
the FB client sending the same message of Step
4 in Figure 5. To test this, we used the Advanced
Rest Client,8 allowing us to test custom HTTP re-
quests. In detail, we have simulated the call of
Step 4 of Figure 5 and, entering the user creden-
tials, we were able to obtain a valid token. Note
that, to perform this call, an attacker has to gen-
erate the sig parameter. In our test, we was able
to discover the method used to generate the hash
value by reverse-engineering the FB client app. It
is also important to notice that the token obtained
was targeted for the FB client, and so it has no

8Available at https://chrome.google.com/webstore/detail/
advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo.

SECRYPT 2016 - International Conference on Security and Cryptography

154

expiration date and it allows one to access all the
user data.

4 SECURING THE FACEBOOK
SSO SOLUTION

Starting from the FB native SSO solution and taking
advantage of our security analysis, in this section we
propose a native SSO solution capable of mitigating
the vulnerabilities described in Section 3.4. This so-
lution generalizes the one proposed by FB, in such a
way that it can be used as a reference model by any
IdP, willing to provide its own SSO solution.

Our generalized SSO solution involves the entities
described in Section 3.3. The idea is that IdP client
enables the execution of the processes of (delegated)
authorization and (user) authentication, needed by C
to access the user profile, by exchanging messages
with the IdP server. After downloading IdP client,
both a registration phase and an activation phase are
required before the actual execution of the native SSO
flow. Below, we first hint the two preliminary phases
and then describe the routine use of IdP client, called
SSO process.

Registration Phase. The goal is to enable C to in-
teract with IdP client to obtain the user profile. This
registration phase is performed by the C developers
and being in line with the FB registration phase we
have detailed it in Appendix.

Activation Phase. The goal is to enable the
IdP client to securely interact with the IdP server and
store a user session token. Using a web portal made
available by the IdP server, the User generates an ac-
tivation code. Then, using her mobile device, the User
digits it into IdP client.

SSO Phase. The actual execution of the native SSO
flow is shown in Figure 7 and, being similar with the
FB native SSO solution, is described in Appendix.
The two differences are:

• the generation of the sig parameter in Step 5
of Figure 7. Instead of using a value that is
the same for IdP client installation, we use the
activation code value (different for each user);

• the token type of the token C in Step 6 of Fig-
ure 7. Instead of using bearer tokens (the default
tokens of OAuth), we use digitally signed tokens
that contain claims about the user authentication
phase (e.g., a JWT). We required at least three

claims: an issuer identifier (IdP id), a user identi-
fier (u id), the audience that the token is intended
for (C id).

Thus, compared to the FB solution, we propose
the following changes:

• we require the described activation phase that re-
places Steps 3-5 of FB native SSO solution (Fig-
ure 5);

• we use the activation code to obtain the sig pa-
rameter;

• token C contains claims about the user authenti-
cation phase and is digitally signed.

Note that, these changes are enough to mitigate
the security vulnerabilities reported in Section 3.4, in
detail:

• Phishing: is mitigated by the fact that users do
not have to insert their IdP credentials on mobile
native apps. Obviously, our solution cannot avoid
the phishing if a malicious app shows a fake login
form and the user decides to enter her IdP creden-
tials. However, note that, even if an organization
is able to develop a properly secured system, the
phishing attack can be performed exploiting users
lack of attention. Thus, at the basis of the phish-
ing mitigation, there is the user education (e.g.,
do not download email attachments sent by peo-
ple you do not know). In our solution, we will
train our users to not enter their IdP credentials
inside mobile apps. In this way, while in the FB
solution the user (even a security expert) cannot
detect the ongoing attack (a malicious C can cre-
ate the same login form of FB), in our model if
a malicious app asks to insert the IdP credentials,
the user can detect the ongoing attack;

• User Impersonation: to avoid the user imperson-
ation attack, we have decided to adopt the token
type introduced by the OpenID Connect solution.9

In this way, C does not need to ask for user infor-
mation from the IdP server and can directly check
on the phone if the token was released to itself;

• Client (IdP client) Impersonation: is mitigated
as the IdP client app is authenticated by the
IdP server using the sig parameter generating
with an activation code that is different for each
user. By doing so, even if in principle, the
activation code of the IdP client app can be ac-
cessed by the owner of the phone, she cannot

9We want to underline again, that as OAuth, also OpenID
Connect is a browser-based solution and, thus, we cannot
use it directly as it provides only a partial support for the
mobile native SSO scenario.

Security of Mobile Single Sign-On: A Rational Reconstruction of Facebook Login Solution

155

1. click on
 login button

IdP_serverUser

5. token request,
C_id&key_hash&sig 4. user consent

7. token_C(IdP_id,u_id,C_id)

StartActivityForResult

2. login
request,

C_id

6. token_C(IdP_id,u_id,C_id)

3. read
key_hash

C

IdP_client

Figure 7: Our Native SSO Solution.

reuse it for obtaining token related to other users
apart from herself.

We want to stress that the activation phase will be
performed only the first time the user interacts with
the IdP client app. Thus, after the download and the
activation of the IdP client app, users can directly
open the different C apps as usual. A scenario to
be covered is the following: what would happen if
a user starts C without having already activated the
IdP client? A possible solution is described here: if
the IdP client is installed on the phone, C will perform
the login request to the IdP client, and the IdP client
will show an alert saying that the user needs to com-
plete the activation with the IdP client app. Other-
wise, C will show an error requiring the IdP client
installation.

5 RELATED WORK

A first attempt of native SSO standardization is car-
ried out by the OpenID Foundation with the working
group NAPPS (Native Applications) (OIDF, 2014b).
Our model has some similarities with the NAPPS
project, such as the use of digitally signed token, and
the idea of introducing a new entity into the mobile
phone that manages: (i) token exchanges, and (ii) user
authentication and authorization processes. However
being only a draft specification, NAPPS lacks a secu-
rity analysis and many technical details. The NAPPS
group is waiting to deliver a complete specification
of its solution, as the mobile OSs (both iOS and An-
droid) have been developing new features for support-

ing the native SSO (see (Madsen, 2015b; Madsen,
2015a)). They will introduce a new mechanism to
implement browser-based protocol, which is a middle
ground between the two browser solutions currently
used (embedded and external browser). We will per-
form a further analysis as soon as details are available.

There are many studies in the literature, such as
(Armando et al., 2008; Bansal et al., 2012; Sun and
Beznosov, 2012; Wang et al., 2012; Zhou and Evans,
2014), which focus on the analysis of the different
SSO implementations and the description of common
vulnerabilities and attacks caused by incorrect imple-
mentation assumptions. These work, however, per-
formed the analysis of the SSO for web applications,
while the focus of our study is on native apps.

An in-depth analysis of OAuth in the mobile
environment—underlining possible security prob-
lems and vulnerabilities—is performed by (Chen
et al., 2014) and (Shehab and Mohsen, 2014). In
(Chen et al., 2014), the two main problems addressed
are: (i) the use of OAuth as an authentication proto-
col, and (ii) the lack of a mechanism to securely per-
form redirection in mobile platforms. The difference
between (Chen et al., 2014) and our work is the goal
that we want to achieve. (Chen et al., 2014) aims to be
a warning about the need for a clearer OAuth guide-
line for mobile app developers, whereas we want to
propose a reference model for native SSO. In the con-
text of authorization, (Shehab and Mohsen, 2014) has
a similar goal. They propose a new framework for
securing the OAuth flow in smartphones. This frame-
work requires the use of an embedded browser man-
aged by a trusted app. In this way it does not require
the download of an app for every different IdP and

SECRYPT 2016 - International Conference on Security and Cryptography

156

provides the required separation between C and the
UA. However, the level of detail provided is not suf-
ficient to clarify, for example, how this solution pre-
vents phishing and client impersonation attacks (de-
scribed in Section 3.3).

About the Facebook solution for native apps, we
based our study on the examples of attacks found in
(Khorana, nd; Homakov, 2013; Goldshlager, 2013;
Yao, 2010; Wulf, 2011).

6 CONCLUSIONS

The lack of security guidelines for mobile native SSO
solutions has driven us to perform a detailed analysis
of Facebook login current implementation. Starting
from this analysis, we have contributed in this way:
(i) we have extracted a rational reconstruction of the
Facebook native SSO flow, (ii) we have performed
a security analysis clarifying which are the security
and trust assumptions and threat model for a native
SSO scenario, and (iii) we have generalized the Face-
book solution in a SSO model capable of mitigating
the identified vulnerabilities.

As future work, we plan to (i) provide an imple-
mentation of our proposed solution, (ii) use a formal
technique to provide a formal analysis of our solution,
and (iii) refine our solution taking into account the au-
thorization aspect.

ACKNOWLEDGEMENTS

This work has partially been supported by the Activity
no. 16298, “Federated Identity Management System”
(FIDES), funded by the EIT Digital.

REFERENCES

Armando, A., Carbone, R., Compagna, L., Cuéllar, J., and
Tobarra, L. (2008). Formal Analysis of SAML 2.0
Web Browser Single Sign-On: Breaking the SAML-
based Single Sign-On for Google Apps. In Proceed-
ings of the 6th ACM workshop on Formal methods in
security engineering (FMSE ’08), pages 1–10.

Bansal, C., Bhargavan, K., and Maffeis, S. (2012). Dis-
covering Concrete Attacks on Website Authorization
by Formal Analysis. In 25th IEEE Computer Security
Foundations Symposium (CSF’12), pages 247–262.

Boyd, R. (2012). Getting Started with OAuth 2.0. http://it-
ebooks.info/read/664/.

Chen, E., Pei, Y., Chen, S., Tian, Y., Kotcher, R., and Tague,
P. (2014). OAuth Demystified for Mobile Application

Developers. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS).

Chin, E., Felt, A. P., Greenwood, K., and Wagner, D.
(2011). Analyzing Inter-application Communication
in Android. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Ser-
vices, pages 239–252.

Facebook (2015). Getting Started with the Facebook
SDK for Android. https://developers facebook.
com/docs/android/getting-started/facebook-sdk-for-
android/.

Facebook (2016). Signed Requests. https://developers.
facebook.com/docs/reference/login/signed-request.

Goldshlager, N. (2013). How I hacked any Facebook Ac-
count...again! http://www.nirgoldshlager.com/2013/
03/how-i-hacked-any-facebook-accountagain.html.

Homakov, E. (2013). How we hacked face-
book with OAuth2 and Chrome bugs.
http://homakov.blogspot.no/2013/02/hacking-face
book-with-oauth2-and-chrome.html.

IETF (2012a). The OAuth 2.0 Authorization Framework.
http://tools.ietf.org/html/rfc6749.

IETF (2012b). The OAuth 2.0 Authorization Frame-
work: Bearer Token Usage. https://tools.ietf.org/html/
rfc6750.

IETF (2015). JSON Web Token (JWT).
https://tools.ietf.org/html/rfc7519.

Khorana, T. (n.d.). Fake Facebook Phishing Attack.
https://sites.google.com/site/mobilesecuritylabware/9-
mobile-phishing/post-lab-activities/lab-1-fake-
facebook-phishing-attack.

Madsen, P. (2015a). Mobile OS Develop-
ments & Native Application Authentication.
https://www.pingidentity.com/en/blog/2015/06/19/
mobile os developments native application authentica
tion.html.

Madsen, P. (2015b). NAPPS has left the
building (but is still on the front lawn).
https://www.pingidentity.com/en/blog/2015/07/22/
napps has left the building but is still on the front
lawn.html.

OASIS (2005). SAML V2.0 technical overview.
https://docs.oasis-open.org/security/saml/v2.0/saml-
core-2.0-os.pdf.

OIDF (2014a). OpenID Connect Core 1.0. http://openid.
net/specs/openid-connect-core-1 0.html.

OIDF (2014b). OpenID Connect Native Application To-
ken Agent Core 1.0. http://openid.bitbucket.org/draft-
native-application-agent-core-01.html.

Shehab, M. and Mohsen, F. (2014). Towards Enhancing the
Security of OAuth Implementations in Smart Phones.
In IEEE International Conference on Mobile Services
(MS), pages 39–46.

Sun, S. and Beznosov, K. (2012). The Devil is in the
(Implementation) Details: An Empirical Analysis of
OAuth SSO Systems. In Proceedings of the ACM
Conference on Computer and Communications Secu-
rity (CCS’12).

Wang, R., Chen, S., and Wang, X. (2012). Signing Me
onto Your Accounts through Facebook and Google: A

Security of Mobile Single Sign-On: A Rational Reconstruction of Facebook Login Solution

157

Traffic-Guided Security Study of Commercially De-
ployed Single-Sign-On Web Services. In IEEE Sym-
posium on Security and Privacy (SP), pages 365–379.

Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., and
Gurevich, Y. (2013). Explicating SDKs: Uncovering
Assumptions Underlying Secure Authentication and
Authorization. In Proceedings of the 22Nd USENIX
Conference on Security (SEC’13), pages 399–414.

Wulf, A. (2011). Stealing Passwords is Easy
in Native Mobile Apps Despite OAuth.
http://welcome.totheinter.net/2011/01/12/.

Yao, Y. (2010). A serious OAuth security
hole in Facebook SDK. http://security-n-
tech.blogspot.it/2010/11/serious-oauth-security-
hole-in-facebook.html.

Zhou, Y. and Evans, D. (2014). SSOScan: Automated
Testing of Web Applications for Single Sign-On Vul-
nerabilities. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 495–510.

APPENDIX

For further information, we describe below the entire
flow of our native SSO solution.

Registration Phase. We require a registration
phase similar to the one of FB, where C developer has
to enter the certificate fingerprint of C (key hash) and
obtains a C identifier (C id). This is to avoid the client
impersonation threat described in Section 3.3. In ad-
dition, in this phase, C and IdP server have to agree
on a signature algorithm and exchange the required
public key.

Activation Phase. Using a web portal made avail-
able by the IdP server, the User generates an activa-
tion code. Then, using her mobile device, the User
digits it into IdP client.

SSO Phase. The SSO flow, shown in Figure 7, is
composed by the following steps: in Step 1, the
user opens C and clicks the login button. When
a user clicks on the login button an Activity from
IdP client using an explicit intent and the method
startActivityForResult is invoked (Step 2). C
is put on wait for the Activity to return a result.
In Step 3, IdP client read the certificate fingerprint
(key hash) of C, and in Step 4, presents a form that
asks the user whether to authorize C to access her dig-
ital identity. In Step 5, IdP client sends a request to
IdP server to get a fresh access token for C. The re-
quest contains C id, key hash and the sig parameter (a
hash value obtained using the activation code value).
IdP server checks whether the provided key hash

matches the one previously provided in the registra-
tion phase for the given C id. If there is a mismatch
then the flow is interrupted returning an error, oth-
erwise the response (Step 6) contains a fresh token
(token C). In Step 7, IdP client returns control to C
and provides the token C as result of the invoked Ac-
tivity (see Step 2). C must validate the signature of the
token according to the algorithm and using the public
key specified in this registration phase. If the signa-
ture is valid, C has to perform two other steps: (i) ver-
ify if the issuer field correspond to the IdP server, and
(ii) check if the value of the audience field matches
with the C id. If the token is valid, C can extract the
user information. This proves that C is under control
of the corresponding user.

SECRYPT 2016 - International Conference on Security and Cryptography

158

