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Abstract: New malware is often not really new: malware writers are used to add functionality to existing malware,
or merge different pieces of existing malware code. This determines a proliferation of variants of the same
malware, that are logically grouped in “malware families”. To be able to recognize the malware family a
malware belongs to is useful for malware analysis, fast infection response, and quick incident resolution. In
this paper we introduce DescentDroid, a tool that traces back the malware descendant family. We experiment
our technique with a real world dataset of malicious applications labelled with the family they belong to,
obtaining high precision in recognizing the malware family membership.

1 INTRODUCTION

In the recent years Android platform has increasingly
been targeted by malware (F-Secure, 2015). This high
volume of new malware is not really “new”. As a
matter of fact malware, like any software, evolves.
Malware writers modify existing code in ways that
are typical in software industry and open source land-
scape (Walenstein and Lakhotia, 2012): they add fea-
tures to an existing malware, they can generate mul-
tiple configurations of the same malware to allow the
execution on several platforms, they merge together
components of different malware programs. Other
methods for changing malware include: recompiling
(Rosenblum et al., 2011), packing (Chen et al., 2008),
permuting, obfuscating (Nagra and Collberg, 2009),
or otherwise tweaking programs (Schipka, 2007).

The study of the malware evolution can concern
four different classes of problems: phylogenetic anal-
ysis, lineage reconstruction, variants identification,
and code clones search. Phylogenetic analysis is the
study of similarities and differences in program struc-
ture to find relationships within groups of software
programs, providing insights about new malware vari-
ants not available within the databases of malware sig-
natures (Jilcott, 2015). Lineage reconstruction is the
identification of the ancestor-descendant relationships
among malware samples, identifying, if possible, the
direct samples from which a specific piece of mal-
ware may have been derived (Dumitras and Neamtiu,

2011).
Variants identification consists of localizing mal-

ware samples that introduce an evolution with respect
to an existing malware (Jang et al., 2011). Finally,
finding code clones aims to retrieve which pieces
of codes are reused within a new malware sample
(Farhadi et al., 2014). Recognizing the relationships
among malware programs is at the basis of a variety
of security tasks, from malware characterization to
threat detection and cyber-attack prevention. In mal-
ware triage (Hu et al., 2009; Bayer et al., 2009; Jang
et al., 2011; Battista et al., 2016), lineage can be used
by malware analysts to understand trends over time
and make informed decisions about the best strate-
gies to dissect the malware samples. Moreover, iden-
tifying malware lineage and phylogenetic can help
to face more promptly zero day malware programs,
when they are or contain evolved versions of known
malware. The main limit of the methods already pro-
posed in literature is that they extract features at a
single level of program abstraction; thus, malware
writer could make ineffective the detection technique
by adopting an obfuscation technique at that level of
abstraction.

In this paper we introduce a method able to assign
a malware variant to the family it belongs to by us-
ing three different levels of program abstraction. The
three levels have been chosen to contrast the differ-
ent types of obfuscation that may be adopted by mal-
ware writers at the different layers of a program. We
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consider these levels as: op-code, Control Flow and
Function Call Graphs (CFG and DCG), and the se-
quence of system calls produced by the execution of
the malware. These features are then used for com-
puting two different functions of similarity, that are
considered as the metrics for the classification phase.
In our evaluation, the method showed a very high pre-
cision in recognizing the provenance family of a mal-
ware.

The paper proceeds as follows. Section 2 intro-
duces the related literature divided into two research
topics: the building of malware phylogenesys, and the
identification of malware variants; Section 3 describes
the method and Section 4 discusses the evaluation of
the method; finally, Section 5 draws the conclusions.

2 RELATED WORK

The problem of recognizing the malware families
mainly refers to two areas of research in malware
analysis: the building of malware phylogenesys, and
the identification of malware variants. Goldberg et al.
(Goldberg et al., 1998) studied malware phylogeny by
applying suffix trees to build phyloDAGs.

Erdelyi and Carrera (Carrera and Erdélyi, 2004)
through phylogenetic trees computed the relation-
ships between 6 distinct groups of malware extracting
the function call graphs. Karim et al. (Karim et al.,
2005) used n-perms along with n-grams on op-code
sequences to classify malware and to compare with
existing classification schemes. Ma et al. (Ma et al.,
2006) studied the diversity of shellcode by comput-
ing exedit distances of instruction byte sequences pro-
duced with code emulation. Wehner (Wehner, 2007)
showed how families of internet worms were related
by their normalized compression distance, leveraging
phylogenetic trees. Kong and Yan (Kong and Yan,
2014) introduced the transductive malware classifica-
tion, a paradigm to infer family information of mal-
ware variants under certain circumstances.

Giannella and Bloedorn (Giannella and Bloedorn,
2015) developed a version of spectral clustering ap-
plied to behavior-based malware clustering, which
was a technique proposed and investigated by Rieck et
al.(Rieck et al., 2011). The main limit of this method
stands in the computational cost, which is high with
respect to baseline algorithms, as stated by the au-
thors. Our method outperforms this method in terms
of precision. Zhong et al. (Zhong et al., 2012) pro-
posed a classification method based on function level
similarity comparison. The main difference with our
work is that Zhong et al. take into account only meta-
morphic malware, while our method is thought to ana-

lyze any kind of malware. Zhong et al. (Zhong et al.,
2013) proposed a system that classifies malware by
extracting a set of code metrics from the programs
and computing the distance between programs. The
authors use a dataset that is much smaller than the
one used in our experiment and they measured per-
formances that are lower than ours. Yu and colleagues
(Yu et al., 2010) proposed a byte frequency based de-
tecting model to identify malware variants. Shang et
al. (Shang et al., 2010) presented a method aimed to
identify win32 malware variants computing similar-
ity between two binaries on the basis of their function
callgraph similarity: authors conclude that the method
has many drawbacks to fully realize malware auto-
matic analysis. The approach proposed by Cesare et
al. (Cesare and Xiang, 2011) builds a birthmark of
a malware based on the set of control graphs it has.
Authors conclude that using 10000 samples the false
positive rate is less than 1%. Also Wu et al. (Wu et al.,
2013) based their work on function-call graphs in or-
der to identify metamorphic malware. They evaluate
their technique using more then 200 pairs of malware
vairiants obtaining a similarity score ranging from 0.2
to 0.4. Agrawal et al. (Agrawal et al., 2012) pro-
posed an abstract malware signature based on extract-
ing semantic summaries of malware code, obtaining
a true positive rate equal to 86%. Xiaofang et al.
(Xiaofang et al., 2014) proposed a similarity search
of malware variants using distance metrics based on
locality-sensitive hashing schemes, obtaining a pre-
cision equal to 0.9. Shen et al. (Shen et al., 2014)
proposed a technique consisting in detecting malware
variants generated by various obfuscation techniques,
by using the topology graph of payloads in order to
model relationships between components and the API
sets. They obtained a detection ratio ranging from
78.26% to 100.0%. Azab et al. (Azab et al., 2014) in-
vestigated whether the Trend Locality Sensitive Hash-
ing algorithm is useful to group binaries that belong to
the same variant, using the k-NN algorithm. They ob-
tain an accuracy equal to 0.989 using 878 binaries. As
it emerges from this discussion and at the best knowl-
edge of the authors, the method presented in this pa-
per is new, because it uses three different program ab-
stractions and similarity functions never applied be-
fore.

3 THE METHOD

The main goal of DescentDroid is to identify the mal-
ware family a given malware has the highest proba-
bility to belong to. Our model is made of 4 stages
organized as a pipeline, where each stage generates
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the input for the next one:

1. relative op-code frequency distribution analysis;

2. CFG/FCG extraction;

3. isomorphism analysis with ngrams;

4. classification.

Each malware program m is associated to a vector
of features vm extracted from the code at three dif-
ferent levels of program abstraction: op-code listings,
Control Flow Graph and Function Call Graph, and se-
quences of syscalls.

The first feature we extract is the op-code fre-
quency distribution: previous works (Canfora et al.,
2015), (Canfora et al., 2016), (Mercaldo et al., 2016)
demonstrated that this feature is able to effectively
identify a malware family. Op-code frequency dis-
tribution can be ineffective when obfuscation tech-
niques are adopted. Because of this consideration, we
extract a second class of features, which character-
ize the CFG and the FCG of a malware application.
Some papers (Kinable and Kostakis, 2011) and (Gas-
con et al., 2013) show that it is possible to accurately
detect malware families via call graph clustering and
function call graphs, and such techniques are robust
against obfuscation. In fact, it is observed that the
Control Flow is invariant between different mutations
of a worm (Kruegel et al., 2005).

The third class of features comprehends sequences
of system calls. These features are then used for com-
puting two different types of distances, that will be
used to establish the similarity between malware pro-
gram m and a malware Family F. This similarity is
obtained by the Isomorphism Analysis on the ngram
extracted both by the CFG and by the FCG.

The last stage is the classification of the malware
program mx, accomplished through a similarity eval-
uation between a malware mx and a candidate fam-
ily Fi, computed with two similarity scores, namely:
SC1(mx, Fi), and SC2(mx, Fi).

These scores are functions of the three measures
extracted with the previous steps, described above.

A malware program mx is assigned to a malware
family Fi if and only if the values of both the scores
for the malware compared with the correspondent val-
ues of scores for that family are smaller than the fixed
threshold. Given t1 the threshold for the similarity
score SC1, and t2 the threshold for the similarity score
SC2, mx ∈ Fi ⇐⇒ SC1(mx, Fi) ¡ t1

∧
SC2(mx, Fi) ¡

t2.
The thresholds have been established by empiri-

cal trials with 1000 samples belonging to the training
dataset, choosing the values which maximize the ac-
curacy: 0.0002 for SC1, and 0.10003 for SC2.

In the following subsections we describe each
stage in detail.

3.1 Stage 1: Relative Op-codes
Frequency Distribution Analysis

In this phase we extract the Relative Op-codes Fre-
quency Distribution. The business logic of an An-
droid application is contained in the .dex file used
by dalvik, an implementation of Java virtual machine
for Android environment. We extract the relative fre-
quency of the op-codes from the dex file: there are
255 different op-codes in the Official Dalvik Byte-
code Set Table (Dalvik, 2015). Op-codes implement-
ing similar functions are grouped in the same cate-
gory, e.g. op-code related to move operations (i.e.,
move, move/from16, move/16, move-wide, move-
wide/from16, move-wide/16, move-result, move-
result-wide, move-result-object op-code) are grouped
in move category.

Once extracted, the relative frequency of each op-
code is stored in a fixed-size vector with 29 elements,
where each element represents the op-code category
(a density measure) the corresponding op-code falls
in. Then, we compare the vector extracted from mx
with the vectors representing the families of the train-
ing dataset by using cosine similarity, in order to
obtain the 10 closest vectors (families) to mx. The
Cosine Similarity, is then computed for each of the
Dalvik Op-codes Category. The closer to 1 the dis-
tance is, the more similar two vectors are.

3.2 Stage 2: CFG/FCG Extraction

We extract the CFG and the FCG from the applica-
tions with AndroGuard (Androguard, 2015). Both the
CFG and the FCG of each candidate malware pro-
gram mx is extracted in the form of Adjacency Lists.
These Adjacency Lists are compared with the Adja-
cency Lists of the CFG and FCG of malware samples
contained in the collection of the training set through
a Similarity function for identifying common shared
structures between the candidate malware program mx
and the malware families Fi. Finally, these Adjacency
Lists are ready for the Isomorphism analysis stage
with the n-grams analysis.

3.3 Stage 3: Isomorphism Analysis with
n-grams

In this phase, we detect the contiguous sequence of
the instructions (CFG) or the contiguous sequence
of the invoked syscalls (FCG) that are in common
between the candidate malware program mx and the
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Figure 1: The 4-staged Architecture of DescentDroid.

malware families Fi. This operation is equivalent to
extract common (CFG and FCG) subgraphs between
the candidate malware program mx and the malware
families Fi. We consider 7-grams regarding the CFG
Adjacency Lists and 4-grams with regards to the FCG
Adjacency Lists. The choice of the ngrams param-
eter in the CFG and FCG is driven by an empirical
analysis i.e., we noticed that a smaller sequence is
likely to produce a high number of false positives.
For this reason we chose the smallest n that allows to
consider only the relevant portions of the graph. The
ngrams analysis detects the common maximum sub-
graph of the candidate with the 10 closest malware
samples returned by the op-code Frequency Distri-
bution Analysis. In addition to the ngrams analysis,
phase 3 performs the method-level similarity analy-
sis for the identification of code clones at method-
level. This analysis compares the op-code Frequency
Distribution for each method with the distribution of
the top 10 returned vectors. The choice of compar-
ing the op-code distribution instead of the methods
name is driven by the fact that, in a code-reuse sce-
nario, methods name or more in general identifiers
can be changed or encrypted, while an identical op-
codes distribution still remains indicative of a code
clone. This analysis is resilient at least for type I, and
type II Clones but not for type III and type IV, in fact,
type I and II still have the same op-codes distribution
(Roy et al., 2009).

3.4 Stage 4: Similarity Scores
Computation

The last phase computes the similarity score which
evaluates the affinity of the given malware mx to one
or more malware families Fi through the classifica-
tion. The malware variants detection is based on a

threshold analysis based on isomorphism ratio be-
tween malware samples.

The similarity scores we define take into account
also the numbers of n-grams detected in the Call
Graphs: if there are not ngrams taken from CFG nei-
ther from the FCG, then the Similarity Score is 0. This
means that there is no similarity between the candi-
date mx and the malware families Fi of the training
set. The classification is accomplished through two
Similarity Scores. SC1 is defined as:

max(#7−gramsCFG,#4−gramsFCG)

∗methodSimRatio
(1)

In this formula, we assume that shared n-grams for
CFG or FCG exist: we take the maximum value of
the common n-grams (7-grams for the Control Flow
Graphs, and 4-grams for the Function Call Graphs)
and then multiply it with the methodSimRatio vari-
able. The methodSimRatio is a variable that spans in
the interval [0,1] and is defined as follows:

methodSimRatio =
countO fClonedMethods

totalMethods
(2)

methodSimRatio is the ratio of cloned methods be-
tween the candidate apk and the i-th apk in the train-
ing dataset. 0 means that there are not cloned meth-
ods whereas 1 means that all the methods between
the two apps were cloned. Then we also defined the
OpCodeSimScore spanning in the interval [0,1] as a
variable that expresses the similarity between the Fre-
quency Distribution of the Dalvik Op-codes of the 2
apps. The OpCodeSimScore is a variable defined as
follows:

OpCodeSimScore = cos(θ) =
MiC ·F iC

‖MiC‖‖F iC‖
(3)

where MiC is the Relative Frequency of that i-th Cat-
egory of Op-code for the candidate malware mx and
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FiC is the Relative Frequency of that i-th Category of
Op-code for the Family Fi that is part of the training
dataset. In this formula we don’t take into account the
Relative op-codes Frequency Distribution Sim Score
because, the 10 returned vectors are yet sorted by this
score. SC2 is defined as:

OpCodeSimScore∗ (#7−gramsCFG)∗
(#4−gramsFCG)∗methodSimRatio

(4)

Both the similarity scores are normalized so that when
a similarity score is close to 1 it means that the simi-
larity is maximum (1 means that the app is a perfect
clone), while 0 means that there is not similarity at all.

4 EVALUATION

The aim of the experiment is to evaluate the effec-
tiveness of DescentDroid in identifying the family a
malware program belongs to. The method consists
of classifying malware by using the threshold based
mechanism described previously. The classification
results are measured with three metrics : precision, re-
call, and accuracy. The precision has been computed
as the proportion of the examples that truly belong to
class X among all those which were assigned to the
class:

Precision =
t p

t p+ f p
(5)

where tp indicates the number of true positives and
fp indicates the number of false positives. The recall
has been computed as the proportion of examples that
were assigned to class X, among all the examples that
truly belong to the class, i.e. how much part of the
class was captured:

Recall =
t p

t p+ f n
(6)

where fn is the number of false negatives. Then we
compute the Accuracy defined as the overall correct-
ness of the model, computed as the sum of correct
classifications divided by the total number of classifi-
cations:

Accuracy =
t p+ tn

t p+ f p+ tn+ f n
(7)

4.1 The Dataset

We built a dataset composed of 4000 Android mal-
ware applications of different kinds and covering
a wide spectrum of malicious intents from Drebin
Dataset (Arp et al., 2014; Spreitzenbarth et al.,
2013). Malware dataset is also partitioned according

to the malware families: each family contains samples
which have in common several characteristics, like
payload installation, the kind of attack and events that
trigger malicious payload (Zhou and Jiang, 2012). We
used 3000 malware samples as training dataset, while
the remaining 1000 have been used to test the effec-
tiveness of the proposed technique.

4.2 Analysis of Results

We submitted to DescentDroid 1000 malware sam-
ples labelled with the correspondent provenance fam-
ily: DescentDroid has correctly classified the family
of 979 malware samples, and then we obtained an ac-
curacy of:

Accuracy =
979

1000
= 97.9% (8)

The classification is done with the two features,
namely the Final Similarity Scores 1 and 4 at the fi-
nal stage. Table 1 shows the evaluation results, where
each family is associated to the number of the samples
it includes, and the precision and recall that we ob-
tained with the classification. The malware submitted
belonged to 114 different families, and DescentDroid
identified the malware family with a precision ranging
in most cases from 0.9 to 1. Precisely, all the malware
samples belonging to 82 families were classified in
the right family (i.e., with precision equal to 1) which
corresponds to 57% of cases. This supports the ef-
fectiveness of DescentDroid to trace the provenance
family of a malware. Only in the 9.5 % of cases, we
obtain a precision equal to or smaller than 0.5.

We noticed that several families in the test set are
represented by a few malware samples, thus we won-
der if the classification performances is somehow re-
lated with the family size. For answering this ques-
tion, we plotted in figure 2 and 3 the precision and
the recall obtained from each family with the corre-
sponding size of the family set: each circle repre-
sents a malware family and the radius of the circle
is proportional to the number of samples for that fam-
ily. About Precision, in Fig. 2 we can observe that
DescentDroid achieves a high precision both for mal-
ware families with a few (little circles) or many (big
circles) samples in the training dataset, except for 10
families: for those we measured a value of Preci-
sion under or near 0.5, as stated in Fig. 2. For all
those samples that belong to these families, Descent-
Droid would not behave better than a random classi-
fier. These results mean that the final Precision of the
Classification process does not depend on the num-
ber of samples in the training set, but, could depend
on the level dissimilarity among the samples of the
same family. For strengthening this conclusion we
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Figure 2: Precision obtained by the evaluation.

Figure 3: Recall obtained by the evaluation.

run a correlation analysis between the families size
and the precision obtained, resulting a correlation in-
dex of 0.0658, which corresponds to a very irrelevant
correlation, and thus confirms our conclusion. This
may be a reasonable explanation, since some families
count samples that are strongly different among each
others and share a very small part of code or behav-
ior. In this case DescentDroid lacks its effectiveness,
as our heuristic is based on the measure of the isomor-
phism ratio between malware samples. Then we can
deduce that, if the isomorphism ratio of a given mal-
ware family is low, therefore, the Precision for that
family is low. For the evaluation we used a Apple Mac
Pro 5.1, equipped with a Xeon QUADCore 2.66 GHz,
4GB RAM, and 320GB 7200 rpm HDD. The Execu-
tion Time for the whole analysis of a single malware
sample depends strongly on the size of the sample.
For the execution time, we obtained 0.33 min as the
minimum, 2.15 min as the average, and 5.33 min as
the maximum.

5 CONCLUSION AND FUTURE
WORK

In this paper we present a method for deriving the
family a malware belongs to. To achieve this goal,
we apply a four staged process which extracts three
different types of program abstractions, namely the
op-codes Frequency distribution, CFG/FCG extrac-
tion and the sequence of system calls produced by
the execution of the malware. Thus two similarities
metrics are computed and used for accomplishing a
threshold based classification. The method demon-
strated its effectiveness as the 57% of families are rec-
ognized with precision equals to 1. As future work,
we are improving our method for being effective also
when a family shows a low rate of code and behav-
iors shared among samples, and, we are developing a
method to characterize the multi-family derivation of
a malware.
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Table 1: Precision and Recall obtained with each family,
with the number of samples tested for each family (between
parentheses).

Family P R Family P R
AccuTrack (2) 1 1 Adrd (3) 0.28 0.66
Adsms (1) 1 1 Aks (2) 1 1
Anti (1) 1 0 BaseBridge (3) 0.23 1
BeanBot (2) 1 1 Biige (2) 1 1
Boxer (3) 0.5 0.33 Ceshark (2) 1 1
Coogos (2) 0 0 Copycat (3) 1 0.67
Cosha (3) 1 1 Dabom (1) 1 1
Dialer (1) 1 1 Dougalek (3) 1 1
DroidDream (13) 0.9 0.77 Koomer (1) 0 0
DroidRooter (2) 0.96 0 DroidSheep (4) 1 1
ExploitLinuxL (16) 0.78 0.69 FaceNiff (1) 1 1
FakeDoc (3) 0.6 1 FakeFlash (1) 1 1
FakeInstaller (191) 0.98 0.97 FakePlayer (3) 1 0.33
FakeRun (18) 1 1 FakeTimer (3) 1 1
Fakelogo (4) 1 0.75 Fakengry (2) 1 0
FarMap (1) 1 1 Fatakr (3) 1 1
Fauxcopy (1) 1 1 FinSpy (1) 1 1
Fjcon (2) 1 1 Flexispy (1) 1 1
FoCobers (3) 0.75 1 Fsm (1) 1 1
GPSpy (1) 1 1 Gamex (1) 1 1
Gapev (1) 1 0 Gappusin (8) 0.75 0.75
Geinimi (25) 1 0.72 Generic (1) 1 1
GinMaster (23) 0.53 0.69 Glodream (6) 0.83 0.83
Gmuse (1) 1 1 Gonca (2) 1 1
Hamob (3) 1 1 Hispo (1) 1 0
Iconosys (13) 1 1 Imlog (6) 1 1
JSmsHider (1) 1 0 Jifake (4) 1 1
Kidlogger (2) 1 0.5 Kiser (2) 1 1
Kmin (19) 0.95 1 Ksapp (1) 0 0
DroidKungFu (180) 0.96 0.92 Lemon (2) 0 0
LifeMon (1) 1 1 Luckycat (1) 1 1
Mania (1) 1 1 MobileTx (19) 0.95 1
Mobilespy (3) 0.67 0.67 Mobinauten (1) 0.67 0
Moghava (1) 0.67 0 Nandrobox (3) 0.75 1
Nickspy (2) 1 0.5 NickyRCP (1) 1 1
Nisev (1) 0.33 1 Nyleaker (3) 1 0.33
Opfake (188) 0.99 1 PdaSpy (1) 1 1
Penetho (3) 1 1 Placms (3) 1 1
Plankton (44) 0.82 0.95 Proreso (1) 1 1
QPlus (1) 1 1 Raden (2) 1 0.5
RediAssi (1) 1 1 RootSmart (2) 0.67 1
Rooter (1) 1 1 SMSZombie (2) 1 1
SMSreg (12) 0.83 0.83 Sakezon (2) 0.67 1
SeaWeth (2) 1 0.5 SendPay (8) 0.89 1
SerBG (3) 0.5 1 SheriDroid (1) 1 1
SmsWatcher (1) 1 1 Spitmo (3) 1 1
SpyBubble (1) 1 0 SpyHasb (3) 1 1
SpyMob (1) 1 1 SpyPhone (2) 1 0
Spyoo (1) 1 1 Spyset (2) 1 1
Stealer (2) 1 1 Stealthcell (2) 1 0.5
Steek (3) 1 1 Stiniter (2) 1 0.5
Tapsnake (1) 1 1 TigerBot (1) 1 1
Trackplus (2) 1 0.5 Denofow (1) 1 1
Hippo (2) 0 0 Typstu (2) 1 1
Vdloader (3) 0.33 0.33 Vidro (2) 1 1
Xsider (2) 0.67 1 Yzhc (10) 1 0.9
Zitmo (2) 1 1 Zsone (2) 0.5 1
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