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Abstract: Several major advances in Cell and Molecular Biology have been made possible by recent advances in live-
cell microscopy imaging. To support these efforts, automated image analysis methods such as cell 
segmentation and tracking during a time-series analysis are needed. To this aim, one important step is the 
validation of such image processing methods. Ideally, the “ground truth” should be known, which is 
possible only by manually labelling images or in artificially produced images. To simulate artificial images, 
we have developed a platform for simulating biologically inspired objects, which generates bodies with 
various morphologies and kinetics and, that can aggregate to form clusters. Using this platform, we tested 
and compared four tracking algorithms: Simple Nearest-Neighbour (NN), NN with Morphology and two 
DBSCAN-based methods. We show that Simple NN works well for small object velocities, while the others 
perform better on higher velocities and when clustering occurs. Our new platform for generating new 
benchmark images to test image analysis algorithms is openly available at 
(http://griduni.uninova.pt/Clustergen/ClusterGen_v1.0.zip). 

1 INTRODUCTION 

Recent advances in live-cell microscopy imaging 
have enabled the acquisition of images with higher 
quality and resolution and the development of 
techniques for detecting and observing recently 
discovered cellular structures and their kinetics 
(Danuser, 2011; Sung and McNally, 2011). 

The main challenges in live-cell imaging can be 
divided into two areas. The first relates to processes 
that occur before and during image acquisition in the 
microscope, associated with the refinement of 
processes, such as illumination, focus, drift 
correction, stage positioning and refinement of 
microscope components (e.g. shutter, lens, camera, 
stage) (Coutu and Schroeder, 2013). The second is 
related to post processing limitations, associated 
with storage of large amounts of data and image 
processing (e.g., image registration, segmentation, 
tracking, statistical quantification and background 
correction) (Coutu and Schroeder, 2013; Bonnet, 
2004). 

Automatic correction algorithms are normally 
included in microscope software packages (Frigault 

et al., 2009), while the process of image registration 
(overlaying two or more images of the same location 
taken at different time frames and/or from different 
viewpoints and/or by different sensorial devices) has 
been extensively studied and several methods are 
available. These are classified based on modality, 
intensity, type of data, dimensionality, domain and 
type of transformation, and registration 
methodologies (Deshmukh and Bhosle, 2011; 
Wyawahare et al., 2009). 

The next step is related to the segmentation of 
cells or cellular structures of interest (Meijering 
2012), where these segmented objects are detected, 
located, and separated from the background. The 
main challenge is to automatize this process and 
provide it with a high specificity and sensitivity for a 
vast number of cases. Presently, most algorithms are 
made available in open-source platforms and apply 
several approaches, such as intensity thresholding, 
feature detection, morphological filtering, region 
accumulation, deformable model fitting, etc. 
(Meijering, 2012). 

When handling a time series, one needs to link 
the segmented objects in the actual frame with the 
ones from the previous frame, so as to extract the 
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object’s trajectory over time. Having available the 
information describing the target, defined by the 
state sequence Xk, kϵԳ (where Գ is the set of 
frames), and the measurements defined by Zk, the 
objective of tracking is to estimate Xk, given all 
measurements until the moment Z1:k (Tissainayagam 
and Suter, 2005). This is made difficult by noise, 
occlusions, illumination changes, complex motions 
and object’s shape dynamics, which can enhance the 
misidentification of object tracks over time (Yilmaz 
et al., 2006). 

Presently available tools for segmentation and 
tracking in different microscopy settings include the 
‘Cell-C’, based on DAPI staining and fluorescence 
in situ hybridization images (Selinummi et al., 
2005), ‘CellTracer’, which applies morphological 
methods to automatically segment bacterial cells, 
yeast and human cells (Wang et al., 2010), 
‘MicrobeTracker’ and its accessory tool 
‘SpotFinder’, which segment Escherichia coli and 
Caulobacter crescentus cells and detected 
fluorescent spots within (Sliusarenko and Heinritz, 
2011), ‘Schnitzcells’, which segments and tracks E. 
coli cells in confocal or phase contrast images 
(Young et al., 2012) and, ‘CellAging’, which was 
developed for cell segmentation and tracking in 
order to study the segregation and partitioning in cell 
division of protein aggregates (Häkkinen et al., 
2013). 

Validation of these image processing tools and 
techniques they use require the use of gold-standard 
images, usually manually annotated by biology 
experts. This is problematic, as it is expert-
dependent (both inter-user and intra-user variability 
can be high) and are impractical in high-throughput 
data-sets (Coelho et al., 2009). To overcome this 
problem, a viable alternative is to generate artificial 
images using biologically inspired models. These 
images, whose ground truth is known, can be used 
for the accurate quantitative evaluation of image 
processing algorithms (Bonnet, 2004). 

In Section 2, we give a comprehensive literature 
review of existing tools for simulation of synthetic 
microscopy images and the recent developments on 
cell tracking algorithms. In Section 3 we present the 
contributions to the development of the image 
simulation tool (models and parameters) and the 
implementation of three different tracking 
algorithms. In Section 4 the tracking results of 
several examples are presented using different 
parameters. Finally, in Section 5 we present final 
remarks on the development of the simulation tool 
and the results of the three algorithms, along 
potential future endeavours. 

2 STATE OF THE ART 

2.1 Synthetic Image Generators 

There have been several contests and open 
challenges, usually requiring that each methodology 
is tested on the same benchmark data-sets (acquired 
by an independent laboratory or created by artificial 
image generators) (Meijering, 2012). Such artificial 
image generators require realistic biological models, 
and commonly use theoretical and experimental 
information regarding the statistical distributions of 
the object’s behaviour (Xiong et al., 2010) but also 
spatial and temporal data from the object (Kruse, 
2012; Misteli, 2007). If the object studied is a cell, 
these models should include morphology parameters 
such as cell shape and size, location of subcellular 
structures, kinetic and spatial statistics of cell 
growth, cell division, cell migration and models of 
internal cell functions. 

The modus operandi of presently available tools 
to simulate microscopy images based on biological 
models can be divided in three stages: the digital 
phantom object generation, the simulation of the 
signal passing through the optical system and, the 
simulation of the image formed on a specific sensor 
(Svoboda et al., 2009). 

Simulators such as ‘SIMCEP’ (Lehmussola et 
al., 2007) have provided a gold-standard platform to 
validate and test various image processing tools, 
such as the previously mentioned ‘CellC’ 
(Selinummi et al., 2005), the open-source and Java-
based image processor ImageJ, and the 
commercially available MCID Analysis (Imaging 
Research Inc., Catharines, ON, Canada; Evaluation 
ver. 7.0), along with other image processing tools 
(Ruusuvuori et al., 2008). The phantom objects are 
generated with different cell parameters, such as 
probability of clustering, cell radius, and cell shape 
and with parameters related to the sensors and the 
optical system such as background noise and 
illumination disturbance (Ruusuvuori et al., 2008; 
Lehmussola et al., 2011). 

Another toolbox, ‘CytoPacq’, was developed 
specifically to simulate all three phases, by being 
equipped with three different modules. The first 
module (‘3D-cytogen’) generates the digital object 
phantom, which imitates the cell structure and 
behaviour and can generate microspheres, 
granulocytes, HL-60 Nucleus and images of Colon 
Tissue. The second module (‘3D-optigen’) simulates 
the transmission of the signal through the lenses, 
objective, excitation filter and emission filter 
(various sets of equipment can be simulated). The 
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last module, ‘3D-acquigen’ is the digital CCD 
camera simulator of the phenomenons that occur 
during image capture (noise, sampling, digitization) 
by changing the camera selection, the acquisition 
time, the dynamic range usage and the stage z-step 
(Svoboda et al., 2007; Svoboda et al., 2009). The 
same group also introduced a novel versatile tool 
(‘TRAgen’), capable of generating 2D time-lapses 
by simulating live cell populations as a ground-truth 
for the evaluation of cell tracking algorithms. They 
include models of cell motility, division and 
clustering up to tissue-level density (Ulman et al., 
2015). Both simulators have been an important step 
in the simulation of cellular dynamics, such as 
measuring protein or RNA levels or even observing 
cell migration, division and growth (Coutu and 
Schroeder, 2013; Sung and McNally, 2011). 

A recently developed toolbox called ‘SimuCell’ 
(Satwik et al., 2012) is capable of generating 
artificial microscopy images with heterogeneous 
cellular populations and diverse cell phenotypes. 
Each cell and their organelles are modelled with 
different shapes, having distinct distributions of 
biomarkers over each shape, which can be affected 
by the cell’s microenvironment, showing the 
importance of good cell placement (e.g. in clusters, 
overlapping existing cells) (Satwik et al., 2012). 

The ‘CellOrganizer’ toolbox was developed 
using a different approach, collecting laboratory data 
and using machine-learning techniques to generate 
the entire cell, including structures such as the 
nucleus, proteins, cell membrane and cytoplasm 
components (Murphy, 2012). Although the learn-
based model was capable of extracting a very 
precise shape model, it could not be described it in 
precise mathematical terms (Zhao and Murphy, 
2007). 

Most image generators have focused on the 
simulation of morphological features and spatial 
information of the cell. Morphological information 
can suffice to create multidimensional images, but it 
cannot simulate time-lapsed multimodal and 
functional images, where important time-dependent 
processes are present. To simulate such images of 
bacterial cells, the ‘miSimBa’ (Microscopy Image 
Simulator of Bacterial Cells) tool has been under 
development (Martins et al., 2015). The simulated 
images can reproduce spatial and temporal bacterial 
time-dependent processes by modelling cell growth, 
division, motility and morphology: shape, size and 
spatial arrangement (Martins et al., 2015). 
Relevantly, these simulation tools can also be used 
to generate “null-models” (Gotelli and McGill, 
1996) to study statistical patterns in absence of a 

particular mechanism (e.g. removing the nucleoid to 
study how it influences the spatial distribution of 
protein aggregates). 

2.2 Cell Tracking 

Several tracking methods have been proposed, 
differing mainly in how to process the available 
object features and on the type and number of 
tracked objects (Yilmaz et al., 2006). In order to 
decide which approach to follow, the object’s 
representation, defined during the segmentation 
process, must be taken into account. Objects can be 
represented through points, geometric shapes, 
silhouette and contour, articulated shape model or 
skeletal model, leading to the development of 
different approaches (Yilmaz et al., 2006). In the 
same review, tracking methodologies were divided 
into three main categories: Point Tracking, Kernel 
Tracking and Silhouette Tracking. Objects in Point 
Tracking are represented by points and tracked 
based on their position and motion. The main issues 
of this methodology are the presence of occlusions 
and the entries and exits of objects from the field of 
view. This category has been split in Deterministic 
and Statistical methods. Deterministic methods 
associate each object with the application of motion 
constraints, while statistical methods take into 
account random perturbations and noise during the 
tracking process (Yilmaz et al., 2006). Nearest 
neighbour (NN) is the source of all deterministic 
approaches and uses only the distances between 
objects in k and k-1 matching the objects with the 
smallest distances. This distance can be based on 
position, shape, colour and size (Elfring et al., 2010). 

An efficient visual object tracking algorithm was 
proposed by (Gu et al., 2011) that combines NN 
classification with descriptors based on the scale-
invariant feature transform, efficient sub-window 
search and an updating and pruning method to 
achieve balance between stability and plasticity. 
This method successfully handles occlusions, clutter, 
and changes in scale and appearance. 

The probabilistic data association filter (PDAF) 
and the joint probabilistic data association filter 
(JPDAF) are the basis for the statistical methods. 
PDAF uses a weighted average of the measurements 
as input, modelling only one target and considering 
linear dynamics and measurement models. JPDAF is 
an extension of PDAF, allowing multiple target 
tracking. The assumptions are the same, calculating 
the target’s association probabilities jointly. In both 
methods, if the model is linear then the Kalman 
Filter has a relevant influence. One of the problems 
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of these methods is the incapacity to recover from 
errors, because only the last measurement is used 
(Elfring et al., 2010). The Kalman filter is an 
optimal estimator, which means that it assumes 
parameters from indirect, inaccurate and uncertain 
observations and if all noise is Gaussian, the linear 
Kalman filter minimizes the mean square error of 
the estimated parameter. This filter is widely used to 
obtain the optimal state estimate (Elfring et al., 
2010). 

A different method (Gorji and Menhaj, 2007) 
combining the JDPAF and a particle filtering 
(Smith, 1993) was proposed and was named ‘Monte 
Carlo JPDAF’. This method uses three models: the 
first with near constant velocity, the second with 
near constant acceleration and a third with both 
models, which achieved the best performance. 

Another statistical method is the multiple 
hypothesis tracking (MHT), which is one of the most 
used with point features, but has computational 
limitations both in time and memory (Tissainayagam 
and Suter, 2005). This method postpones data 
association until enough information is available. 
The MHT starts by formulating all possible 
hypotheses, which develop into a set of new 
hypotheses each time new data arrives, generating a 
tree of hypothesis (Elfring et al., 2010). For each 
hypothesis, the position of the object in the next 
frame is predicted and then compared with the 
measurements, calculating their distance. The 
associations are made for each hypothesis, 
generating new hypotheses for the next iteration 
(Yilmaz et al., 2006). The tree of hypotheses should 
be cut, because it grows exponentially with the 
measured data. This can be done by clustering, i.e., 
measurements are subdivided into independent 
clusters. If a measurement cannot be associated with 
an existent cluster, a new one is created. Another 
way of cutting the tree is pruning, meaning that as 
new iterations are added, a part of the tree is deleted 
(Elfring et al., 2010). 

Unlike PDAF and JPDAF, the MHT method can 
deal with objects entering, exiting and being 
occluded from the field of view. Kernel Tracking 
can be done using templates and density-based 
appearance models or multi-view appearance 
models. Templates use basic geometric shapes, 
while multi-view models encode different views of 
the object (Yilmaz et al., 2006). Mean shift and KLT 
(Kenade-Lucas-Tomasi) are examples of template 
and density-based appearance models. 

In mean shift, the appearance of objects being 
tracked is defined by histograms. Similarities are 
measured using the Bhattacharyya coefficient 
(Bhattacharyya, 1943) and the Kullback-Leibler 

divergence (Joyce, 2014). The process tries to 
increase similarity between histograms, by repeating 
each iteration until they converge (Zhou et al., 
2009). 

KLT is an optical-flow method, which uses 
vectors to show the changes in the image (i.e. 
translation). A version of this method was proposed 
in which the translation of a region centred on an 
interest point is iteratively computed. Then, the 
tracker evaluates the tracked patch, computing a 
transformation between the corresponding patches in 
consecutive frames (Shi and Tomasi, 1994). These 
methods are effective while tracking single objects, 
but have problems dealing with multiple objects.  

Silhouette Tracking consists in using precise 
information about the shape of the objects, using 
Shape Matching and searching for an object 
silhouette and its model in each frame. Each 
translation from frame to frame is handled separately 
by finding corresponding silhouettes detected in two 
consecutive frames. Another approach is based on 
the evolution of the object contour, connecting the 
correspondent objects by state space models or by 
minimizing the contour energy (Yilmaz et al., 2006). 
When tracking objects, one usually obtains multiple 
measurements and the incorrect ones are referred to 
as false measurements or clutter. The measurement 
with highest probability of being originated from the 
tracked object is then selected. If the algorithm 
selects the wrong measurement or if the correct 
measurement is not detected, a poor state is 
estimated. To solve this issue (reducing the 
computational cost), a validation region 
(measurement gate) is selected. The measurement 
gate is a region in which the next measurement has a 
higher emergence probability (Elfring et al., 2010). 

3 METHODOLOGIES 

3.1 Implementation of the Image 
Generator - Tool Interface and 
Basic Functionalities 

The image generator interface and the tracking 
methods were implemented using the C# language 
from Visual Studio 2015. This sub-section focuses 
on the implementation of the image generator and 
the basic features. An intuitive and easy to 
understand interface was designed in order to 
facilitate the analysis of the tracking algorithms. The 
time-series generator allows the user to change a set 
of settings such as the number of objects, frames, 
clusters, and their features. The generator creates a 
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csv file for each of the object’s properties (position 
in x and y coordinates and a shape-related factor 
called “morphology”, which is a rational number 
between 0 and 1). In this generator, objects are 
represented by circles and the morphology factor is 
assumed to be the radius. There is a conversion 
factor that determines the maximum radius of the 
objects (corresponding to morphology value 1). By 
default, this factor is initialized at 30. More factors 
and parameters can be added to the algorithm, 
increasing its complexity. 

The tool interface is shown in Figure 1. At the 
top row of the window there are frame handlers, to 
advance forward and backward in the time-series, or 
to go directly to a specific frame. The “Time-Lapse” 
button reproduces the full time-series, one frame per 
40 milliseconds. 

The left bar contains the boxes to write the 
desired width and height of images, in pixels. Then 
the user can choose the number of objects in each 
frame, and the total number of frames. The 
“Maximum Velocity” is the maximum distance, in 
pixels, that an object can travel between frames, 
while the “Maximum Morphology Difference” is the 
maximum difference of the “morphology” factor 
that an object can have between frames, in 
percentage. The “Physical Move” button controls the 
option of giving objects physical limitations to their 
kinetics. If it is selected, each object has a velocity 
and orientation assigned to it, meaning that its 
position dynamics will depend on these two 
variables. If it is not selected, objects will move 

arbitrarily between frames.  
One can also select “Allow Entries/Exits”, to 

allow the objects to enter and exit the image limits. 
If unselected, objects collide with the edges of the 
image when reaching them. 

Overlapping of cells is possible, using the 
“Allow Occlusions” option. When this option is 
selected, objects move without restrictions due to 
superposition between them. If it is not selected, 
objects will collide between them similarly as when 
colliding with the edges.  

One can also force the objects to organize into 
clusters, by checking the “Create Clusters” option. 
When selected, all objects of each cluster have the 
same physical features. In this setting, “Physical 
Move” is automatically selected and “Allow 
Occlusions” is deselected, blocking the 
correspondent checkboxes. The button “Cluster 
Properties” (shown in Figure 2) leads to a new 
window with the options for clusters’ creation. Here, 
one can choose the desired number of clusters, the 
number of objects per cluster, and the size of the 
clusters in pixels. It is also possible to choose 
between two types of objects’ kinetics: “Follow the 
Leader” and “Alternative Movement”. The 
application of “Cluster Centre Force” and its 
strength are shown in Figure 3 and explained in 
Section 3.2.2. 

3.2 Object Modelling 

This sub-section focuses on the modelled features,
 

 

Figure 1: Image Generator Tool interface. 
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namely object movement and cluster, based on 
biologically inspired objects, such as bacteria cells. 

3.2.1 Object Motility 

According to the user’s selection, objects can have 
movement respecting a number of physical rules. If 
this option is deactivated, objects will move 
arbitrarily through the image.  

Objects in each frame are only represented by 
their position in coordinates in x and y and their 
morphology factor. In each frame, each object can 
move to a new x and y coordinates by an arbitrary 
distance that cannot be higher than the “Maximum 
Velocity” value in pixels. 

With occlusions and “exits and entries” also 
deactivated, objects will avoid the positions where 
they collide with other objects or go out the image 
boundaries, searching for a position considering 
these limitations and the maximum distance they can 
move between frames. 

If the user chooses to give objects “Physical 
Move”, in addition to previous features, each object 
will have a velocity and an orientation (physical 
parameters) assigned to it, meaning that their 
position dynamics will depend on these two values. 
In each frame, each object will have new x and y 
coordinates distanced “d” (no bigger than 
“Maximum Velocity”) from the previous frame 
coordinates, direction “o” (between 0 and 2pi 
radians), with both components using an 
independent random variable.  

If entries and exits are deactivated and if an 
object is heading to the image boundary, it is 
reflected respecting Snell’s Law, causing a change 
in the angle’s direction of movement. If occlusions 
are deactivated, when two objects are about to 
collide, they change to opposite orientations in an 
approximation to the reflection laws, but ignoring 
differences in their morphologies. 

3.2.2 Cluster Creation 

When selecting the option “Create Clusters”, the 
Generator will create a time-series with the number 
of clusters, objects and size of cluster chosen by the 
user.  

These options (shown in Figure 2) must be 
consistent and take into consideration the image 
size. 

In “Alternative Movement” (as shown in Figure 
3-A) all objects of each cluster have the same 
physical parameters, which means that they move in 
the same direction with the same speed (with a small 
independent arbitrary component). 

 

Figure 2: Interface options for cluster properties. 

In the “Follow the Leader” movement mode (as 
shown in Figure 3-B), each cluster has a leading 
object. The characteristics of the other objects of the 
same cluster are dependent on the leader’s 
behaviour. The leader “receives” the physical 
parameters at first frame (velocity and orientation) 
and at each frame the other objects of its cluster will 
move in the leader’s direction, minimizing the 
distance to it, but respecting the “non-collision” rule. 
If two objects from different clusters collide, one of 
them will start belonging to the other cluster. This 
may cause the “merging” of clusters. 

 

Figure 3: Exemplificative frames of (a) ‘Alternative’ 
Movement (b) ‘Follow the leader’ Movement. 

The “Cluster Centre Force” feature is exclusively 
for “Alternative Movement” that creates an 
attraction force at the cluster’s centre, with a 
selectable strength selected by the user. This force 
keeps cluster’s objects together, even when colliding 
with the image borders or other objects. Increasing 
the strength, the objects will move faster to the 
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cluster’s centre. In this mode of motility, when 
objects from different clusters collide, they will be 
“left behind” by their cluster until they can join it 
again. 

3.3 Tested Tracking Algorithms 

3.3.1 Simple Nearest-Neighbour Algorithm 

The first tracking algorithm tested was the Simple 
Nearest-Neighbour (NN). This method only takes 
into consideration the position of each object in each 
frame of the time-series, and uses the Euclidian 
Distance between points to find matching objects 
between frame n and n+1. Being ݀௣ the distance 
between two objects: 
 

݀௣ ൌ ඥሺݔ௡ െ ௡ାଵሻଶݔ ൅ ሺݕ௡ െ ௡ାଵሻଶ (1)ݕ
 

Where ݔ௡ and ݕ௡	are the positions of each object in 
frame n and ݔ௡ାଵ	and ݕ௡ାଵ	are the positions in frame 
n+1. Having the distance between each object in 
frame n and all objects in frame n+1, 
correspondences are made based on the minimum 
distance. The object in frame n+1 closer to each 
object in frame n is assigned to it. If two objects in 
n+1 are assigned to the same object in n, the closer 
object is assigned, until all correspondences between 
frames are unique (Elfring et al., 2010). 

3.3.2 Nearest-Neighbour with Morphology 
Algorithm 

The next algorithm tested was the Nearest 
Neighbour with Morphology (NNm). This method 
accounts not only for the differences between the 
positions of each object in each frame, but also for a 
shape-related factor, called morphology. 

This algorithm calculates the distance percolated 
by each object between frames n and n+1 using 
equation (1). Being ݉௡ the morphology of each 
object in frame n, and ݉௡ାଵ the shape factor in n+1, 
the difference, ݀௠, between these variables is 
calculated by: 
 

݀௠ ൌ 	 |݉௡ െ݉௡ାଵ| (2)
 

The total difference,	݀௧, between each object in  
each frame pair is given by (3) with ߙ and ߚ being 
the weights given to each partial distance. 

݀௧ ൌ ߙ	 ∙ ݀௣ ൅ ߚ ∙ ݀௠ (3)
 

Here different weights are used (as presented in the 
Results section), in order to study the best way to 
combine them, to achieve the best possible results. 

3.3.3 Cluster Tracking 

Identifying clusters is one of the most complex 
issues of image characterization (Czink et al., 2006). 
In this work, the problem lays in tracking objects 
knowing that they are grouped in clusters. Bacteria 
often group in this way, so the goal is to find a 
method that improves tracking of clustered objects. 
One of the main problems of clustered objects is 
illustrated in Figure 4-A. Using Nearest-Neighbour 
(or Nearest Neighbour with Morphology) to track 
these frames, the algorithm will immediately 
misidentify at least two of the objects of frame n+1. 
This will occur in objects 1’ and 3’, and it happens 
because their position in n+1 is exactly the same that 
objects 2 and 4 have in n. 

 

Figure 4: (A) Example of a possible misidentification 
using the Nearest-Neighbour Algorithms. (B) After 
defining  ‘MinPts’ as the minimal number of objects in the 
neighbourhood, and Eps as the neighbourhood radius, we 
can define a core object (Red) when its local density is 
higher than ‘MinPts’ and a border object (Orange) if its 
local density is less than ‘MinPts’. Two density-reachable 
objects are defined if there exists a chain of core objects 
with distances between them smaller than Eps. Adapted 
from (Tran et al., 2013). 

To solve this problem we choose to implement a 
novel tracking algorithm that considers the cluster’s 
features and singularities. The developed method to 
track clustered objects has several steps, and the first 
is to correctly identify the clusters and objects 
belonging to them. The method is called Density-

SIMULTECH 2016 - 6th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

50



 

Based Spatial Clustering of Applications with Noise 
(DBSCAN) (Ester et al., 1996) in its revised version 
(Tran et al., 2013). This method formalizes the 
notion of “cluster” and “noise”, using the definition 
of density to characterize clusters, which means that 
to define a cluster, the density of the neighbourhood 
of each point has to be higher than a given threshold. 
‘MinPts’ are the minimal number of objects in the 
neighbourhood, and Eps is the neighbourhood radius 
(see figure 4-B). 

Objects can be divided in three categories: core, 
border and noise (see figure 4-B). An object is a core 
object if its local density is higher than ‘MinPts’. It 
is considered a border object if its local density is 
less than ‘MinPts’ and it belongs to the 
neighbourhood of a core object. An object is 
classified as a noise if in its  Eps radius there are less 
than ‘MinPts’ objects and none is a core.  

Finally, we identify two density-reachable 
objects if there exists a chain of core objects 
between them (see Figure 4-B), with distances 
between them smaller than ‘MinPts’ (Tran et al., 
2013). 

This approach improves clustering identification 
when data has dense adjacent clusters (Tran et al.,, 
2013). They also introduced the core-density-
reachable objects, which are the same as the chain of 
density-reachable objects, but cutting border objects 
from chain’s ends and staying unclassified until all 
core objects are identified (Tran et al., 2013). 

The algorithm has two main steps: ‘dbscan’ and 
‘ExpandCluster’. The first step lies in covering each 
object and running ‘ExpandCluster’ if the object is 
unclassified. Then, it returns all objects that are 
core-density-reachable from that one. If it is a core 
object, a cluster is produced. If it is a border object, 
it has no core-density-reachable objects, and follows 
to the next one. After all chains from the core object 
are known, it is assigned to its best density-reachable 
chain and all border objects. 

After identifying the clusters in all frames with 
DBSCAN, a novel algorithm for object tracking was 
developed. This algorithm assumes that objects are 
grouped and move in clusters, treating each cluster 
as a separate individual while tracking. The first step 
(with all clusters identified) is to isolate the clusters 
and calculate their centroid, in coordinates x and y: 
 

௖௘௡௧௥௢௜ௗݔ ൌ 	
∑ ௜ݔ
ே
௜ୀଵ

ܰൗ  (4)
 

After all centroids are calculated, they are processed 
as objects, since they have their own coordinates. 
The Nearest-Neighbour algorithm is then applied to 
these coordinates, tracking the clusters and resulting 
in a sequence of results similar to object tracking but 

treating a cluster individually. 

4 RESULTS AND DISCUSSION 

We generated several time-series that can be used as 
a benchmark to test tracking algorithms. For this, we 
simulated examples with different starting number 
of objects (20 to 160) and ‘Maximum Velocity’ 
(V=5, 10, 15, 20 and 30).  

The generated images have a 1000x500 pixel 
size (first and second experiment) and 1500x100 
(third experiment). The implemented Tracking 
Algorithms automatically processes the csv files 
with the objects’ true positions produced by the 
Image Generator. The detected object tracking is 
then compared with the gold standard, where one 
error is counted when one object is incorrectly 
tracked from one frame to another it is considered a 
False Positive (FP). When one object is tracked 
correctly between two consecutive frames it is 
considered a True Positive (TP). It is important to 
notice that errors that occur in the beginning of the 
time series are typically propagated through the 
entire sequence. We present in the following tables 
the tracking errors (false discovery rate), calculated 
as FP/(FP+TP). 

4.1 Simple Nearest-Neighbour 
Algorithm 

We tested 10 time-series of 100 frames for each 
example with different objects and different 
maximum velocity. In Table 1, we present the 
tracking performance of the Simple Nearest-
Neighbour Algorithm, based on the ground-truth 
produced by the image generator. A tracking error is 
calculated on every frame and accumulated to the 
end of the time-series.  

Table 1: Tracking errors of the Simple Nearest-Neighbour 
Algorithm. 

Obj. V=5 V=10 V=15 V=20 V=30 

20 0,00 0,92 1,06 4,19 19,20 

40 0,26 1,27 3,23 5,93 24,01 

60 0,06 1,58 5,63 12,38 39,66 

80 0,24 1,84 6,62 15,74 45,06 

100 0,27 1,20 7,85 19,94 49,76 

120 0,22 1,69 10,57 21,16 51,86 

140 0,55 3,71 14,16 26,57 58,07 

160 0,42 4,12 14,91 33,74 63,89 
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In this case, the morphology shape-related factor 
called was set at 0.05 (this value was chosen to 
emulate biologically inspired objects that slowly 
change their shape over time). 

The results from Table 1 show that this simple 
algorithm can still handle the increase in the number 
of objects while keeping a small velocity, and that 
increasing the velocity from 15 to 20 and 30 the 
tracking performance was significantly reduced. 

4.2 Nearest-Neighbour with 
Morphology Algorithm 

In this second experiment, we show how tracking 
taking into account the morphology of the object can 
be helpful in the worst case scenario of the last 
experiment. In Table 2, we present the results of the 
tracking performance of the Nearest-Neighbour with 
Morphology Algorithm.  

In this case we also produced 10 time-series of 
100 frames for each example with different objects 
and different maximum velocity, but also with 
distinct morphology factors.  

We tested the algorithm in two configurations; 
the first giving a 60% importance to the calculated 
distance between objects (ߙ factor in equation 3) and 
40% to the calculated morphology difference (ߚ 
factor). For the second configuration we used 40% 
for ߙ and 60% for ߚ. Here we also changed the 
shape-related factor and used both 0.05 and 0.1 
values. 

Table 2: Tracking errors of the Nearest-Neighbour with 
Morphology Algorithm. 

 40%=ߚ and 60% = ߙ 

 m factor= 0.05 m factor= 0.1 

Obj. V=15 V=20 V=30 V=15 V=20 V=30 

100 6,02 14,71 41,60 6,03 17,79 40,55 

120 6,27 14,92 42,05 9,24 19,68 44,45 

140 9,29 18,34 48,96 8,34 21,59 48,90 

160 10,32 25,49 55,35 10,26 25,39 55,32 

Obj. 40% = ߙ and 60%=ߚ 

100 4,26 10,57 33,37 3,96 12,07 32,44 

120 4,53 10,80 33,95 6,39 14,07 37,09 

140 6,36 14,58 39,30 5,34 15,18 41,36 

160 7,27 20,78 46,81 8,06 18,93 49,38 

 

From Table 2, we observe that tracking results 
can be improved by using the Morphology 
Algorithm (e.g. in the worst case scenario the error 
percentage was reduced from 64% to 47%). 

4.3 Cluster Tracking 

The Create Clusters property was used to test the 
same tracking algorithms (Simple NN and NN with 
Morphology Algorithms with 40% = ߙ). The 
simulated parameters were: number of clusters (1, 5 
or 10), number of objects per cluster (10 or 15), 
maximum velocity (5 or 10), Alternative Movement, 
Center Force (4) and morphology factor (0 or 0.05). 
The tracking results are presented in table 3. 

Table 3: Tracking errors, within clusters with different 
properties, using the Simple and Morphology Nearest-
Neighbour Algorithms.  

  Simple NN Algorithm 

Nº of 
Clust 

Obj. / 
Clust. 

m factor= 0 m factor= 0.05 

V=5 V=10 V=5 V=10 

1 10 7,79 30,42 9,88 23,33 

1 15 11,74 50,91 10,74 38,06 

5 10 7,48 34,71 10,95 31,89 

5 15 17,43 45,22 16,06 44,51 

10 10 12,20 38,26 11,64 42,47 

10 15 21,14 53,90 23,52 57,34 

  NN with Morphology 

1 10 1,27 4,879 5,52 13,83 

1 15 3,76 21,15 4,63 20,76 

5 10 1,80 12,98 4,69 15,93 

5 15 7,16 20,77 5,94 22,07 

10 10 3,78 16,15 4,55 19,71 

10 15 8,73 28,36 10,13 34,12 

 

For the Cluster creation, we used 10 time-series 
(and averaged the results) of 200 frames and 
calculated the object tracking on every frame and 
accumulated to the end of the time-series.  

The DBSCAN algorithm tries to separate each 
cluster in every frame. Therefore, if the number of 
clusters is the same between the actual frame and the 
previous one (t and t-1), then they are matched using 
NN, treating them as isolated objects and aligned 
using their centroids. If the number of clusters 
changes, we skip the first step and check the number 
of objects inside each cluster. When there are more 
objects in t then in t-1, these ‘extra’ objects are 
called ‘Possible Entry’, if there are less objects, they 
are called ‘Possible Exit’.  

This classification is done temporarily and 
compares the "Possible Exit" features to the features 
of all other objects of the frame t-1, linking it to a 
"Possible entry" in another cluster (meaning that it 
left one cluster to join another), classifying it as 
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noise, or as an object leaving the image. The main 
difference between the two DBSCAN Algorithms is 
that, in the first, this classification is done after the 
tracking and in the second it is done before the 
tracking, equalizing the number of objects between 
the clusters.  

Results from both DBSCAN Algorithms are 
presented in Table 4. We can see that DBSCAN 
Algorithms do not improve significantly over the 
Nearest-Neighbour with Morphology.  

Table 4: Tracking errors, within clusters with different 
properties, using two different DBSCAN Algorithms. 

  DBSCAN 1 

Nº of 
Clust 

Obj. / 
Clust. 

m factor= 0 m factor= 0.05 

V=5 V=10 V=5 V=10 

1 10 5,55 2,97 9,64 9,14 

1 15 1,92 12,94 3,87 10,49 

5 10 5,43 13,71 6,42 16,61 

5 15 5,84 19,29 6,49 20,84 

10 10 5,81 17,55 6,42 21,07 

10 15 8,65 28,29 9,91 34,52 

  DBSCAN 2 

1 10 4,67 2,97 9,64 7,82 

1 15 2,59 12,96 3,87 10,49 

5 10 5,54 14,56 7,55 17,37 

5 15 5,74 19,35 6,19 20,82 

10 10 6,00 17,57 6,43 21,42 

10 15 8,65 28,29 9,98 34,52 

 

A strange behaviour with just 1 cluster was 
identified in the DBSCAN algorithms, where 
increasing the objects actually decreased the 
tracking errors. This behaviour could be due to a 
bigger movement restriction within clusters with 
higher objects, but further studies are required to 
analyse this behaviour. 

5 CONCLUSIONS AND FUTURE 
WORK 

To support high-throughput experiments of single 
cell imaging, reliable automated image processing 
methods are required. Although most studies focus 
on automatic segmentation of cells or cellular 
structures, in a time-series a proper object tracking is 
also necessary, particularly since errors in tracking 
are propagated, meaning that even small tracking 
errors (particularly on the initial frames) can lead to 

a high percentage of misidentified tracks.  
To validate such Tracking Algorithms, it is 

necessary to use a labelled ‘ground truth’. 
Sometimes this ground-truth is manually processed, 
which can be unfeasible in a Big Data scenario. A 
more viable alternative is to generate artificial 
images by simulating biological cell models. To 
produce such artificial images we developed an open 
source platform that can simulate biologically 
inspired bacterial systems, by creating cells with 
different morphologies, physical movement and 
cluster creation. Using this Platform, we evaluated 
three tracking algorithms (Simple Nearest-
Neighbour, Nearest-Neighbour with Morphology 
and two variations of the DBSCAN Algorithm).  

The obtained results showed that, for cases with 
lower maximum velocity, the Simple Nearest-
Neighbour Algorithm was able to track objects even 
with a significant increase in the number of objects. 
The Nearest-Neighbour with Morphology algorithm 
can help in reducing tracking errors when the 
velocity is increased. In the example where we 
forced the creation of clusters, both the Nearest-
Neighbour with Morphology and the DBSCAN 
algorithms showed similar results. In the near future, 
we plan to study and compare other tracking 
methodologies in different cluster configurations. 

We expect this open-sourced tool (available at: 
http://griduni.uninova.pt/Clustergen/ 
ClusterGen_v1.0.zip) to help future endeavours in 
the development of new tracking algorithms, as it 
can produce huge amount of benchmarked data in 
various configurations.  

Future developments of this tool involve adding 
an object division module, which can be used to test 
division tracking in dense clusters. We also plan to 
add a module that introduces secondary bodies 
inside the primary objects, simulating internal cell 
organelles and structures. A future application will 
also be made available as a web-based system to 
improve usability and compatibility. 
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