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Abstract: As the most active project in the Hadoop ecosystem these days (Zaharia, 2014), Spark is a fast and general 
purpose engine for large-scale data processing. Thanks to its advanced Directed Acyclic Graph (DAG) 
execution engine and in-memory computing mechanism, Spark runs programs up to 100x faster than Hadoop 
MapReduce in memory, or 10x faster on disk (Apache, 2016). However, Spark performance is impacted by 
many system software, hardware and dataset factors especially memory and JVM related, which makes 
capacity planning and tuning for Spark clusters extremely difficult. Current planning methods are mostly 
estimation based and are highly dependent on experience and trial-and-error. These approaches are far from 
efficient and accurate, especially with increasing software stack complexity and hardware diversity. Here, we 
propose a novel Spark simulator based on CSMethod (Bian et al., 2014), extension with a fine-grained multi-
layered memory subsystem, well suitable for Spark cluster deployment planning，performance evaluation 
and optimization before system provisioning. The whole Spark application execution life cycle is simulated 
by the proposed simulator, including DAG generation, Resilient Distributed Dataset (RDD) processing and 
block management. Hardware activities derived from these software operations are dynamically mapped onto 
architecture models for processors, storage, and network devices. Performance behaviour of cluster memory 
system at multiple layers (Spark, JVM, OS, hardware) are modeled as an enhanced fine-grained individual 
global library. Experimental results with several popular Spark micro benchmarks and a real case IoT 
workloads demonstrate that our Spark Simulator achieves high accuracy with an average error rate below 7%. 
With light weight computing resource requirement (a laptop is enough) our simulator runs at the same speed 
level than native execution on multi-node high-end cluster. 

1 INTRODUCTION 

Spark is an open-source data analytics cluster 
computing framework. It is not tied to the two-stage 
MapReduce paradigm, and promises performance up 
to 100 times faster than Hadoop MapReduce for 
certain applications (Xin et al., 2014). It provides 
primitives for in-memory cluster computing that 
allows user programs to load data into a cluster's 
memory and query it repeatedly (Zaharia, 2011). In 
Spark, data is abstractly represented by RDD, which 
represent a read-only collection of objects partitioned 
across a set of machines that can be rebuilt if a 
partition is lost. Users can explicitly cache an RDD in 
memory across machines and reuse it in multiple 
MapReduce like parallel operations. RDDs achieve 
fault tolerance through a notion of lineage: if a 

partition of an RDD is lost, the RDD has enough 
information about how it was derived from other 
RDDs to be able to rebuild just that partition (Zaharia 
et al., 2010). Spark became an Apache top-level 
project in February 2014 (Apache, 2014). 

Spark user application creates RDDs, transforms 
them and runs actions. This set of operation is called 
a DAG of operators. A DAG is compiled into stages 
then each stage is executed as a series of tasks. The 
Spark task firstly fetches input from an inputFormat 
or a shuffle. The task is then executed and the result 
is materialized as a shuffle or a driver result. In the 
whole Spark workflow some critical software 
components impact Spark performance a lot, such as 
scheduler, shuffle handler, disk writer, serializer, 
deserializer, compressor, decompressor and so on. 
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In Spark performance tuning, memory related 
tuning should be a high priority. As an in-memory 
computing engine, Spark holds most of the data sets 
in memory, not on hard disks, which greatly reduces 
the file access time. When free memory space 
becomes insufficient, data set are spilled to disks and 
this operation causes long latency. Garbage 
Collection (GC) can also occur to release more Java 
Virtual Machine (JVM) heap space thus adding 
significant GC latency. Besides memory hardware 
configuration parameters like capacity and 
bandwidth, Spark also provides a wide range of 
parameters to control the memory behaviour. All 
these parameters and memory related operations have 
a significant performance impact. These parameters 
exist in software at 4 different layers: the Spark 
execution engine, cluster resource management 
(YARN, Mesos, Standalone etc.), JVM and 
Operating System (OS). Since complex interactions 
exist between these parameters, it is very difficult to 
find an optimized parameters configuration that 
would maximize the Spark cluster performance.  

Traditional Cluster design and deployment 
decision are experience or measurement based, which 
can’t meet Spark cluster deployment criterions very 
well. Due to the very new nature of Spark, very few 
users can take sound and accurate decisions based on 
experience. On the other hand, upon cluster 
availability, measurement based optimization is 
extremely time consuming and can be easily 
interrupted by random environment factors like disk 
or network interface card (NIC) failures. 

Simulation based cluster analysis in general is a 
much more reliable approach to obtain systematic 
optimization solutions. Among the various simulation 
methods proposed (Kolberga et al., 2013), (Wang et 
al., 2011), (Kennedy and Gopal, 2013), (Verma et al., 
2011), CSMethod (Bian et al., 2014) is a fast and 
accurate cluster simulation method which employs a 
layered and configurable architecture to simulate Big 
Data clusters on standard client computers (desktop 
or laptop).  

The Spark workflow, especially the DAG 
abstraction, is very different from the Hadoop 
MapReduce workflow. In addition, current 
CSMethod based MapReduce model’s memory 
subsystem is too coarse to meet accuracy 
requirements for Spark simulation. To fill these gaps, 
this paper proposes a new simulation framework 
which is based on and extending CSMethod. All 
performance intensive Spark parameters and 
workflow are modeled for fast and accurate 
performance prediction with a fine-grained multi-
layer memory subsystem.  

The whole Spark cluster software stack is 
abstracted and simulated at functional level, including 
computing, communications and dataset access. 
Software functions are dynamically mapped onto 
hardware components. The timing of hardware 
components (storage, network, memory and CPU) is 
modeled according to payload and activities as 
perceived by software. A low overhead discrete-event 
simulation engine enables fast simulation speed and 
good scalability. The Spark simulator accepts Spark 
applications with input dataset information and 
cluster configurations then simulates the performance 
behaviour of the Spark application. The cluster 
configuration includes the software stack 
configuration and the hardware components 
configuration. 

The following key contributions are presented in 
this paper: 
•  We propose a new framework to simulate the whole 
performance intensive Spark workflow, including: 
DAG generation; RDD input fetch, transfer, shuffle 
and block management; Spill and HDFS access. 
• We describe a fine-grained multi-layer memory 
performance model which simulates the memory 
behaviour of Spark, JVM, OS and H/W layers with 
high accuracy. 
• We implement and validate the Spark simulation 
framework using a range of micro benchmarks and a 
real case IoT (Internet of Things) workload. The 
average error rate is within 7% and simulation speeds 
are very high. Running on a commercial Desktop the 
simulation time is close to the native execution time 
of a 5 node Intel Xeon E5 high-end server cluster. 
• We demonstrate a simulation based Spark parameter 
tuning approach which helps BigData cluster 
deployment planning, evaluation and optimization.  

The rest of this paper is organized as follows. 
Section 2 presents the proposed Spark simulator in 
details. The experimental environment set up and the 
workload are then introduced in section 3. Section 4 
illustrates the evaluation results and its analyses. A 
memory related Spark performance tuning case study 
is then presented in details in section 5. Section 6 
overviews related work. A summary and future work 
thoughts are described in the final section. 

2 SPARK SIMULATION 
FRAMEWORK 
ARCHITECTURE 

In this section, we introduce the proposed Spark 
simulation framework in details. 
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2.1 Spark Behaviour Model 

The proposed Spark model was developed using 
Intel®CoFluent™ Studio (CoFluent, 2016) which 
provides an easy to use graphical modeling tool in a 
System-C simulation environment. 

Simulation speed of our performance simulator is 
faster than general simulators because we abstract 
actual computation down to time estimation. 
1. The software behaviours (data flow) are divided 
into several basic operations such as compression, 
serialization, sorting, partition, match, mathematical 
computation, hash, shuffle, file system/memory 
access, etc. These basic operations are then 
dynamically mapped to hardware timing models 
which would return the timing of these operations. 
2. The hardware models are implemented as a 
global performance library. The timing and utilization 
of hardware resources like CPU, memory, disk, 
network, and cluster topology are modeled. The 
modeling principle is CSMethod which is described 
in another paper (Bian et al., 2014). To provide a fast 
understanding of CSMethod, here we give a short 
example of CPU computing time estimating 
modelling.  

τ = α×β×γ×δ÷ε (1)

Where τ is computing time of a software operation 
like java serialization; α is Cpu Cost which is a 
function of CPI(Clocks Per Instruction) ie. α = f(CPI); 
β is data set size; γ is performance indicator, for 
example, if a processor is running at 1.6GHZ out of 
maximum frequency 2.7 GHZ then γ = 2.7 ÷ 1.6, δ is 
current running thread count which is dynamically 
modeled and tracked by simulator and , ε is CPU core 
count. 

The top level of our Spark behaviour model is 
shown in Figure 1, which includes: a Master, a 
Network, Slaves, Clients and AppMasters. 

Clients submit jobs to the cluster and act as 
workload generators. The Master takes the resource 
management role. The AppMaster analyses the job 
configuration and generates a DAG of tasks to be 
executed by slave nodes in the cluster. The Network 
connects all the components logically and simulates 
the Cluster network topology, bandwidth and latency. 
The Clock model synchronizes the timing between all 
the logic blocks. The Slaves receive tasks generated 
by the AppMaster and launch the TaskRunner to 
execute the tasks with resources provided by the 
NodeResourceManager in themselves.  

As shown in Figure 2 the TaskRunner simulates the 
Spark task workflow behaviour, including: 
fetchInput,      RDD    transfer,   Shuffle   and   result 

 

Figure 1: Top abstraction level of the Spark model. 

computing. Different types of task inputs can be 
fetched by the FetchInput module: HadoopRDD, 
cached RDD, or shuffle RDD tasks. The remote 
shuffle data are copied by the Copier and the Router 
which are connected to the network module to 
simulate shuffle behaviour. Fetched RDD blocks are 
transformed by specific RDD operations in the 
RDDTransform module. Depending on the specified 
Spark task type, the transformed RDD block can be 
used to form the result output or the shuffle output. 
The result output is generated by the ResultTask 
module which computes the final result and writes it 
to HDFS. The shuffle output is generated by the 
ShuffleMapTask module that partitions the output in 
hash keys and then dispatches the output to specific 
shuffle output files. 

 

Figure 2: Middle abstraction level model of the Spark task 
executor. 

Finally the ‘task finish’ signal and the task 
performance metrics are committed to the scheduler, 
then the TaskRunner module waits for the next task 
to be dispatched to it. Performance intensive software 
functions like compress, decompress, serialize, de-
serialize, sort, hash operations are modeled within the 
TaskRunner module. 
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2.2 Memory Model 

The RDD Block manager and the performance library 
are used by the TaskRunner module to simulate 
dataflow events (RDD block read/write, JVM/OS 
memory apply/free, disk read/write, CPU apply/free, 
network transfer, HDFS read/write) and to generate 
the timing information. During the whole simulation 
cycle the cluster hardware resource usage is tracked 
and updated dynamically by the performance library. 

Process Memory Manager

Virtual Address Paging & Swapping Manager

Physical Memory Manager

Physical Memory

Operating System

Global memory performance model Library

GC Manager

Java Object Manager

Java Heap Manager

Java Virtual Machine

 

Figure 3: Structure of multiple layered memory model. 

In order to obtain high accuracy, the Spark 
simulation memory model has been implemented in 4 
different layers: Spark, JVM, OS and physical 
memory. The last three layers are modeled as a global 
memory performance library as shown in figure 3, 
and was called by the Spark layer to simulate RDD 
block management behaviour.       
• Spark software stack layer: Spark RDD block 
management behaviour are modeled by simulating 
RDD block put, get and cache operations.     
• JVM layer: the JVM heap space capacity limits, 
GC triggering mechanism and object management 
behaviour are modeled, so that when JVM heap 
doesn’t have enough free space to hold new object 
then GC happens. 
• OS layer: the virtual space, paging, swapping 
slab and disk file cache/buffer behaviour are 
modeled. The file (usually on disk) access requests 
are cached or buffered by OS managed free system 
memory.   

• Physical memory layer: the physical memory 
bandwidth latency and capacity limits are modeled by 
keeping track of concurrent memory accesses. 

The hierarchy of this memory model is similar to 
real systems, each level is itself a class and has 
respective behaviours and can be inherited. The 
simulation granularity is configurable to achieve the 
simulation trade-off between accuracy and speed, for 
example swapping operation could be done per page 
or per block. 

This memory model simulates the full system 
memory behaviour within a single process in a 
standard personal computer with timely response. 

2.3 Simulator User Input 

The input of the simulator is composed of the Spark 
S/W stack configuration, the H/W components 
configuration and the Spark application/job 
abstraction. 

Table 1: Cluster hardware and software settings. 

Cluster Node number and network topology 
Processor Processor type, core count, thread count 

and frequency 
Storage Storage count and type: SSD or HDD 
Memory Memory type and capacity 
Network NIC count and bandwidth10 or 1 GBit/s 

Table 2: Spark JVM OS parameters. 

Level Modeled Software Parameters 
Spark Spark.executor.memory 

Spark.default.parallelism 
Spark.storage.memoryFraction 

Spark.shuffle.compress 
Spark.shuffle.spill.compress 

Spark.rdd.compress 
Spark.io.compression.codec 

Spark.io.compression.snappy.block.size 
Spark.reducer.maxMbInFlight 
Spark.shuffle.consolidateFiles 

Spark.shuffle.file.buffer.kb 
Spark.shuffle.spill 

Spark.closure.serializer 
Spark.kryo.referenceTracking 
Spark.kryoserializer.buffer.mb 
Spark.shuffle.memoryFraction 

SchedulerReviveInterval 
Akka threads number 

YARN Yarn.scheduler.minimum-allocation-mb 
Yarn.scheduler.increment-allocation-mb 
Yarn.scheduler.maximum-allocation-mb 

Yarn.scheduler.minimum-allocation-vcores 
Yarn.scheduler.increment-allocation-vcores 
Yarn.scheduler.maximum-allocation-vcores 
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Table 2: Spark JVM OS parameters (cont.). 

HDFS Dfs.block.size 
JVM 
 

Heap size 
Young generation ratio 

EdenSurvRatio 
GC drop ratio 

OS Memory flush ratio 
Memory dirty ratio 

Memory flush interval 
Transparent huge page 

The cluster hardware components configuration is 
listed in Table 1. While the Spark software stack 
configuration is listed in Table 2.  

Model abstraction is defined from the following 
aspects: RDD information: size, partition number, 
and storage location (HDFS, shuffle and memory 
cache). Operation information: operation type 
(shuffle or map) and operation CPU cost. 

2.4 Simulator Output 

Timelines, charts and console output windows 
provided by the Intel CoFluent Studio development 
toolkit are used to visualize metrics.  

 

Figure 4: Simulation result visualization. 

The left part of Figure 4 shows the model 
execution timeline which is useful to evaluate the task 
execution order and timings. The middle and right 
plots show system throughput and latency. Many 
other metrics extracted from output result files are 
also observed using spreadsheets. 

3 EXPERIMENTAL SETUP 

This section describes the configuration of our 
experimental setup. It is followed by a presentation of 
the benchmarks used for the evaluation of the model. 

3.1 Experiment Cluster 

Table 3: Cluster hardware and software settings. 

Cluster 5 Nodes, connected by one rack switch 
4 slave worker nodes 1 master node 

Processor Intel® Xeon® E5-2697 v2, 24 cores per node 
with HT disabled  

Disk Direct Attached Storage, 5 x 600GB SSD per 
node, 1 drive for OS, 4 drive for Spark S/W stack 

Memory 128GB, 2 channel DDR3-1333 per node 
Network 10 Gbit/s Ethernet 

OS RedHat6.4 
Java 1.7.0_67 

Spark Spark 1.2 
Platform CDH5.2 

Table 3 lists the target cluster hardware components 
and the software stack elements used for our baseline 
experiments. This setup is representative of 
mainstream datacenter configurations used for Big 
Data processing. 

3.2 Workload Description 

Three workloads are used to conduct the experiments. 

Table 4: Experimental workload baseline configurations. 

K-Means parameters Value 
Input Data set size in GB 40/80/160 

Dimensions 30 
Iteration number 5 
Cluster number 1024 

PageRank parameters  
Input Data set size in GB 11/22/40 

Iteration number 5 
SparkTC parameters  

Edges 200 
Vertices 100/200/400 

• K-Means: 
Widely used in machine learning, K-Means clustering 
is a method of vector quantization, popular for cluster 
analysis in data mining. It aims at partition n 
observations into k clusters in which each observation 
belongs to the cluster with the nearest mean. As an 
iterative application Spark K-Means is often used as 
a typical application to show Spark advantage. The 
configuration is shown in Table 4. 
• PageRank: 
PageRank is another good example of a more 
complex algorithm with multiple stages of map and 
reduce iterations. It benefits from Spark’s in-memory 
caching mechanism with multiple iterations over the 
same data. The algorithm iteratively updates a rank 
for each document by adding up contributions from 
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documents that link to it. The configuration is shown 
in Table 4.  
• SparkTC: 
SparkTC is an implementation of transitive closure. It 
can be thought of as establishing a data structure that 
makes it possible to solve reachability questions (Can 
I get to x from y?) efficiently. After the pre-
processing of the transitive closure construction, all 
reachability queries are answered in constant time by 
simply reporting a matrix entry (Skiena, 2008). The 
configuration is shown in Table 4. 

4 EVALUATION AND ANALYSIS 

In addition to above micro-benchmark, we have also 
validated our simulator with 2 machine learning 
algorithms: SVM, ALS and an IoT real case usage 
scenario, all with error rate less than 7%. As the 
limitation of this paper, this section only describes the 
micro-benchmark validation in detail.  

The Spark simulator accepts 33 parameters for 
each workload simulation, but we only choose several 
parameters to do performance trend study, which are 
related to the system performance bottleneck. Only 
the most sensitive parameters are scaled while the 
other parameters are set as default. 

4.1 Baseline Validation 

Three different workload input data sizes were used 
to illustrate the accuracy of our simulator. The 
detailed workload input parameters are shown in 
Table 4. 

 

Figure 5: Measurement VS simulation of Spark 
performance. 

Figure 5 shows normalized Spark execution times 
as measured on the experimental cluster and as 
predicted by the simulator. As we can see, the 
simulation results are always very close to the real 

hardware measurements, the average error rate is 
4.5%. 

4.2 Memory Model Accuracy Analysis 

The simulation accuracy of memory related 
parameter is evaluated at three different system 
levels: Spark, JVM and OS.  

 

Figure 6: Simulation accuracy of memory model. 

As the model at higher system level are based on 
the lower ones, the simulation accuracy of higher 
level are lower than that of the lower one. As shown 
in Figure 6, all average error rate are less than 7%. 

4.3 Software and Hardware 
Parameters Scalability Analysis 

The scalability analysis has been extended to all 
software and hardware parameters supported by the 
framework which are list in table 1 and 2. It shows 
that the average error rate between actual 
performance and simulated performance is within 6% 
regardless of the type of the software parameter being 
changed. For hardware parameter scaling, the average 
error rate is within 5%.  

 

Figure 7: Normalized execution time of CPU Frequency 
Scaling. 

As software parameter scaling examples will be 
descript in detail in section V, here we focus on a 
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processor scaling example to show the hardware 
parameter scaling ability of our Spark model.  The 
computing intensive K-Means workload was selected 
for this evaluation. 

Figure 7 shows the CPU frequency scaling for the 
K-Means workload. Higher CPU frequencies 
improve the processing performance and reduce the 
workload execution time. The simulated performance 
has the same trend as the measured performance and 
the average error rate is 7.7%. 

 

Figure 8: Normalized CPU Core Count Scaling. 

Figure 8 shows the CPU core count scaling for the 
K-Means workload. More CPU cores reduce the 
workload execution time. Simulated and measured 
performance have the same trend with an average 
error rate of 4.2%. 

4.4 Simulation Speed 

All simulations are running on a standard desktop 
equipped Intel(R) Core i7-5960 CPU and 16GB DDR 
memory. For different benchmarks and 
configurations, the native execution time on 
experiment cluster ranges from 10 min ~ 30 min. To 
predict the native execution time, the simulator would 
cost 15 min to 4 hours. 

 

Figure 9: Simulator execution time of 50GB dataset for 
various node counts. 

Figure 9 shows the actual simulation processing 
time for a 50 GB data set processed by the Spark 
PageRank workload. The cluster size is scaled from 5 
to 60 nodes. The simulation processing time ranges 
from 1 to 2 hours. This simulation speed is slower 
than the lighting fast in memory computing engine: 
Spark, but still acceptable for cluster deployment 
planning evaluation and optimization. 

5 CASE STUDY: MEMORY 
TUNING FOR SPARK 
PERFORMANCE 

Memory tuning is critical in Spark. The Spark 
PageRank optimization is a good candidate to 
illustrate how memory settings at different layers 
impact Spark performance, and how simulation based 
tuning can help optimize Spark application 
performance. Three configuration trade-offs at Spark, 
JVM and OS levels are described in this section. 

Spark PageRank is memory intensive and 
generates a large set of intermediate data which 
pushes up the system memory utilization. These 
intermediate data are also shuffled across cluster 
nodes. Shuffle is the operation that moves data point-
to-point across machines. It has a critical impact on 
Spark performance, as shown in the latest Spark core 
performance optimization work (Xin, 2015). In the 
Spark workflow, intermediate data is held in the 
memory buffer first and then written to disk when the 
buffer is about to become full (buffer spilling). As the 
latency of spill data write process is very long, the 
size of the memory buffer reserved for intermediate 
data heavily impacts the Spark performance.  

5.1 Trade-off at Spark S/W Stack 
Level  

The spill buffer is part of the executor JVM heap, 
whose size is controlled by the Spark parameter 
shuffle.memory.fraction. If the spill buffer is large 
enough to hold all the collected data, then no spill 
occurs, or else, it flushes the buffer first and continue 
to collect shuffle data. 

Larger spill buffer size would reduce the number 
of spill operations hence improving performance. 
However since the spill buffer space is taken from the 
JVM heap, a big spill buffer would leave very few 
memory left for other tasks, such as RDD transfers, 
that share the same JVM heap space. 
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Figure 10: Spark shuffle buffer size scaling. 

Figure 10 represents the Spark PageRank execution 
time for different values of the 
ShuffleMemoryFraction parameter. Best execution 
time is achieved for 0.5. For values close to and less 
than 0.5 scenario, better performance is achieved by 
larger factor value since spill operations are the 
bottleneck. However when above this threshold, too 
much memory is consumed by the spill buffer, so 
other tasks are delayed and overall spark performance 
is pulled down. The accuracy of the simulated 
execution time is mostly within 10% of the real 
measured execution time. 

Optimally setting the spill buffer size is an 
example of difficult task that can be accurately solved 
by simulation instead of less accurate experience 
based decisions.  

5.2 Trade-off at JVM Level  

This study is to show executor memory trade off: A 
big executor with more task slots or many small 
executor memory with few slots. JVM and YARN 
settings determine the executor memory 
configuration and the number of tasks that runs in 
parallel on this executor. We run the simulation with 
three sets of different memory configurations: 

1. 1 executor/96GB memory/16 task slots 
2. 16 executor /6 GB memory/1 task slots 
3. 4 executor /12 GB memory/2 task slots. 

 

Figure 11: Spark executor memory scaling. 

Figure 11 shows the executor memory scaling 
results, in this case a 12GB executor memory would 
be the best configuration. Simulation result also 
paired with the measurement one to show our 
simulation accuracy. 

For the 1st approach, only 1 executor is created 
with 96GB of memory and 16 task slots. The whole 
JVM heap is shared by all the 16 tasks so as to 
improve the utilization of the heap. For example if 
one of the task have much less intermediate data 
generated and cost less memory than the task in other 
task slots, then the other task would use more 
memory, so the whole executor memory utilization 
would be improved. More memory utilization would 
help reduce the spill operation and finally improve the 
cluster performance. But on the other hand, as one 
Spark executor utilize one JVM, 64GB memory for 
one JVM would cause heavy overhead when GC, 
which is another significant Spark performance 
optimization challenge. 

The 2nd approach is the opposite of the former 
case: each executor has only one task slots with 6GB 
of memory available.  

The 3rd approach is a trade-off between 
configuration 1 and 2, 4 executors are created each 
with 8 GB memory and 2 task slots. This approach 
achieves the best performance. 

Generally speaking the impact of these factors on 
performance is highly dependent on the actual 
application type and the input data content. If GC 
overhead is the bottleneck then the 2nd approach 
achieves the best performance, while if the spill 
overhead become the bottleneck the 1st approach 
achieves the best performance. This makes Spark 
cluster performance optimization a difficult 
challenge.  

5.3 Trade-off at OS Level  

Figure 12 describes the final PageRank performance 
changes with reserved OS memory scaling, when 48 
GB of memory is reserved for file system 
cache/buffer, best performance is achieved. 

 

Figure 12: Reserved OS memory scaling. 
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At OS level, IO requests from Spark tasks are 
cached/buffered by the OS when enough reserved 
system memory is available causing significant 
performance impact. For example, disk write requests 
from Spark task’s spill operations are buffered by the 
OS memory buffer since the corresponding disk IO 
accesses can only happen when the disk drive write 
buffer is full. While memory access bandwidth is 
more than 10 times higher than that of disk access, OS 
cache/buffer can bypass actual disk access through 
memory access, that could improve spill operation 
performance by more than 10 times. Linux would use 
all free system memory as file cache/buffer to 
generally benefit system performance. On this point, 
larger reserved memory can benefit system 
performance in the general case.  

While at Spark cluster level, more memory 
allocated to Spark tasks would increase execution 
speed, but in turn reduce the reserved system 
memory, potentially penalizing system tasks. This is 
another system performance optimization trade-off. 
Simplified concept of hierarchical Spark cluster 
memory is shown in Figure 13. 

 

Figure 13: Simplified concept of OS memory JVM heap 
and Spark spill buffer. 

 

Figure 14: OS memory utilization for 45GB reserved 
system memory case. 

 

Figure 15: I/O latency for 45GB reserved memory case. 

 

Figure 16: utilization for 29GB reserved memory case. 

 

Figure 17: System I/O latency for 29GB reserved system 
memory case. 

The performance impact of the OS cache/buffer 
can also be observed in experimental cluster hardware 
measurement metrics. The Figure 14~17 show that 
the disk I/O latency increases (could be found in 
rectangle region) while the system free memory 
decreases, which in turn can be used for additional 
file caching/buffering. The Figure 14, 15 are memory 
and I/O latency charts for 45GB of reserved OS 
memory while the Figure 16, 17 are for 29GB. As 
could be observed from these charts, for the 45GB 
reserved memory case, I/O latency after time stamp 
700 would less than 600 ms, which is smaller than 
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that of 29 GB reserved memory (latency after time 
stamp 700 would longer than 800 ms). 

We presented three application specific trade-
offs. There is no general solution that can satisfy all 
cases but simulation based optimization as 
demonstrated in the following section can be used to 
thoroughly explore the space of possible solutions so 
that the best configuration trade-off can be found.   

5.4 Simulation based Optimization  

Figure 18 demonstrates how simulation based 
optimization can be used in a systematic way to 
explore execution time against the 
shuffle.memory.fraction and the executor memory 
size in GB. Best performance is achieved for a 12GB 
executor memory size combined with a 
shuffle.memory.fraction of 0.5. This represent a 71% 
improvement compared to the default configuration 
(6GB, 0.2). We can use the simulator to predict 
performance for different cluster configuration 
without real cluster deployment. 

 

Figure 18: Simulation based optimization of Spark memory 
system. 

6 RELATED WORK 

Several existing simulator are dedicated to simulate 
the MapReduce computing paradigm, but no Spark 
simulator is currently available. The most closely 
related works are based on full system simulators 
which usually are general purpose functional 
simulators. 

One of this kind is Simics-based (Magnusson et 
al., 2002) cluster simulator that can run any kind of 
unmodified Big Data applications and that can be 
used to characterize Spark and other Big Data 
workloads (BigDataBench, 2016). Simflex is based 
on Flexus simulation engine and SMARTS rigorous 
sampling engine (Simflex, 2016). Flexus was also 
built on Simics, whose simulation speed is very slow 
especially when the node number of the target cluster 

increases. On the other hand Simcs can't provide 
accurate timing information for cluster applications. 

An instruction set simulator-based full system 
simulator (Leon et al., 2009) can run unmodified 
message-passing parallel applications on hundreds of 
nodes at instruction level, but similarly because it is a 
low level simulator its simulation performance is poor 
and it can hardly be used for performance 
optimization. 

Compared to the above mentioned simulators this 
paper proposes a fast and high accuracy layered 
simulation framework. Several hundred nodes 
clusters can even be simulated on a desktop in relative 
short time. 

7 CONCLUSION AND FUTURE 
WORK 

Planning, evaluating and optimization Big Data 
clusters is very challenging due to vast hardware 
diversity and rapidly increasing software complexity. 
Experience or measurement based approaches are no 
longer efficient. 

As the computing core of next Big Data clusters, 
Spark plays an important role in capacity planning 
consideration. It is critical to be able to predict Spark 
performance accurately and efficiently so that the 
right design decisions can be taken. This is however 
a challenging task due to the complex behaviour of 
memory systems. In this paper, we proposed an 
innovative simulator used to simulate Spark cluster 
performance at system level.  

We have validated its accuracy and efficiency via 
several widely used micro-benchmarks. 
Experimental results demonstrate the accuracy and 
capability of our Spark simulator: the average error 
rate is below 7% across the scaling of 33 software 
parameters and 5 group of hardware settings.  

The ability to quickly simulate Spark clusters with 
high accuracy on commodity clients makes our 
simulator a promising approach as a design tool to 
perform capacity planning before real deployment. 
For our 5 nodes 50 GB data set size configuration, 
simulation times vary between 30 minutes and 4 
hours. 

Moreover system engineers could also use this 
simulator to optimize Big Data cluster configuration, 
maximize cluster performance, evaluate server design 
trade-offs and make system-level design decisions.  

For easier Spark development, the Spark 
ecosystem brings additional functionality like MLib 
(machine learning library), GraphX, Spark Streaming 
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and Spark SQL. We will extend our Spark model to 
these functionalities.  
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