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Abstract: Mobile devices such as smartphones, tablets, and e-readers have become the dominant type of computing 
platforms. Energy-efficiency has become a key design and operating requirement for applications running 
on mobile devices. It is further underscored by a growing reliance of consumers on services delivered 
through mobile devices and their growing complexity and sophistication. A detailed measurement-based 
characterization of energy needs of mobile applications is important for both device manufacturers and 
application developers, as it may identify energy-demanding activities and guide optimizations. In this 
paper, we describe an environment for automated energy measurements of applications running on Android 
mobile devices. We discuss hardware and software aspects of the environment and several approaches to 
runtime capturing and timestamping of activities of interest. Finally, we demonstrate the use of the 
environment in several case studies conducted on Google’s Nexus 4 smartphone. 

1 INTRODUCTION 

Mobile computing devices such as smartphones, 
tablets, and e-readers have become the dominant 
computing platforms. According to estimates for 
2015 (Gartner, Inc., 2016; IDC, 2016) vendors 
shipped 1.43 billion smartphones, up 19.2% from 
the prior year, and 241 million ultramobiles (basic 
and premium tablets). The total number of mobile 
devices shipped reached 1.91 billion in 2015, with 
~74.8% being smartphones, and the same correlation 
is predicted to grow to 82% in 2016. At the same 
time, the number of personal computers shipped in 
2015 was 290 million (Gartner, Inc., 2016). Modern 
smartphones and tablets have evolved into powerful 
computing platforms with significant processing 
power, storage capacity, myriad of communication 
interfaces, and numerous sensors. New applications 
have emerged in areas of communication, 
navigation, social networking, mobile health, and 
entertainment. 

Growing dependency of users on services 
delivered through their battery-powered mobile 
devices makes their energy-efficient operation a top 
priority. Energy efficiency is a prime design 

requirement for mobile device manufacturers and 
application developers alike. It is driven by several 
key factors, including (i) limited energy capacity of 
batteries, (ii) cost considerations favoring less 
expensive packaging, and (iii) user convenience 
favoring lightweight designs with small form factors 
that operate for long periods without battery 
recharges. 

A number of recent research studies have 
focused on power profiling and power estimation of 
mobile computing platforms. Carroll and Heiser 
quantified energy consumption of each component 
in a mobile device by performing rigorous tests and 
then simulating a number of usage scenarios on 
mobile devices (Carroll and Heiser, 2010). Rice and 
Hay profiled the energy consumption of connecting 
and transmitting data over a wireless network (Rice 
and Hay, 2010a; 2010b). Bircher and John used 
processor performance counters and system-specific 
models to estimate consumption of CPU, memory, 
disk and I/O (Bircher and John, 2012). Pathak et al. 
(Pathak et al., 2012; 2011) and Li and John (Li and 
John, 2003) used system call tracing and known 
observations of the system to generate models that 
can perform run-time power estimation with fine-
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grained measurements. 
Runtime power measurements on real mobile 

devices running common software platforms such as 
Android, iOS, Tizen, or Windows Phone are 
important for both researchers and mobile 
application developers. Measurement frameworks 
can capture complex interactions between hardware 
and software stacks that become more and more 
sophisticated with introduction of multicore 
processors and a number of hardware accelerators. 
Measurements on real devices can help research 
studies that target power optimizations or those that 
target developing analytical models for energy 
estimation based on parameters derived from real 
platforms. For developers, adding a power 
perspective to application debugging and testing 
may guide optimizations that will result in more 
energy-efficient applications. 

Whereas several prior studies focused on 
capturing power traces on smartphones (Carroll and 
Heiser, 2010; Rice and Hay, 2010a, 2010b) and 
wireless sensor network platforms (Milenkovic et 
al., 2005), they relied on manual control and post-
processing for synchronization of power traces with 
events in profiled programs or focused on early 
smartphones and software platforms. In addition, 
they relied on hardware setups that required 
inserting a shunt resistor on the power supply line, 
thus introducing a slight deviation in the power 
supply of the device under test. 

In this paper, we introduce an environment for 
automated power and energy measurements of 
modern mobile computing devices. Our hardware 
setup includes a mobile device under test, a National 
Instruments’ battery simulator, and a workstation. 
Our custom program running on the workstation 
interfaces both the mobile device and the NI battery 
simulator and offers a number of services for 
automated energy profiling. Specifically, the custom 
program (a) offers a number of configuration options 
to customize the energy profiling, (b) remotely 
controls applications and activities executed on the 
mobile device, (c) synchronizes running applications 
with collecting current samples from the battery 
simulator, and (d) provides scripts for calculating the 
energy consumed. We describe several approaches 
to capturing timestamps that delimit the profiled 
activities. The first approach relies on the native 
Android logging system and does not require any 
changes in applications that are being profiled. The 
second approach also relies on the native Android 
logging system and custom messages inserted in the 
source code by developers. The third approach relies 
on CyanogenMod Android and common Linux-like 

utilities to support launching and timestamping of 
mobile applications. 

Some of the key advantages of the proposed 
measuring setup are as follows: 
 No hardware modifications. The setup requires 

no hardware modifications or instrumentation of 
the mobile device; the device’s battery is simply 
replaced with probes coming from the battery 
simulator; 

 Automated test execution. The measurements are 
fully automated and controlled by scripts 
prepared in advance and thus do not require 
interactive user participation. The scripts can 
control energy profiling of a number of 
applications profiled in a single test run; 

 Automated synchronization. The workstation and 
the mobile device under test are time-
synchronized using standard network 
synchronization protocols, thus allowing for 
precise timestamping of activities of interest; 

 High resolution and accuracy. The setup allows 
collection of up to 200,000 samples per second 
of power supply current with an accuracy of 1 
µA, thus providing a deep insight into inner 
operations of internal components. 

The rest of this paper is organized as follows. 
Section 2 describes the hardware and software 
aspects of the setup for energy measurement. 
Section 3 describes approaches to profiling Android 
applications, including different methods for 
collecting timestamps that delimit in time the 
activities of interest. Section 4 demonstrates the use 
of the setup in estimating energy-efficiency of 
several important activities. Section 5 surveys 
related work, and Section 6 concludes the paper. 

2 MEASURING SETUP 

Our setup for energy profiling of mobile computing 
platforms, shown in Figure 1, consists of a mobile 
platform, an NI PXIe-4154 battery simulator (NI, 
2014a), and a workstation. Figure 2 shows a block 
diagram of the setup, including main components 
and communication channels between them. As an 
example mobile platform, we use a Google’s Nexus 
4 smartphone (Google, 2014a) running Android 
4.3.2 operating system (Google, 2014b). Whereas 
this paper focuses on energy profiling of Android 
platforms, our hardware setup can be used to profile 
applications running on other software platforms 
such as iOS, Tizen, or Windows Phone. The battery 
simulator, a specialized programmable power 
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supply, is connected to an MXI-Express Interface 
card inside the workstation. The battery simulator is 
used to (a) power the smartphone through probes, 
thus bypassing the actual smartphone battery, and 
(b) measure the current drawn by the smartphone 
while running applications. The workstation runs our 
custom program called mLViewPowerProfile that 
interfaces (a) the smartphone to manage activities 
and applications that are being profiled, and (b) the 
battery simulator to capture and record the current 
sample measurements. The following subsections 
shed more light on each component in our setup. 

 

Figure 1: Hardware setup for energy profiling. 

 

Figure 2: Block diagram of the hardware setup for energy 
profiling. 

2.1 Smart Phone 

Google’s Nexus 4 smartphone (Google, 2014a) is 
powered by a Qualcomm’s Snapdragon S4 Pro 
(APQ8064) system-on-a-chip (Qualcomm, 2014) 
that includes a quad-core ARM processor running at 
up to 1.512 GHz clock and an Adreno 320 graphics 
processor. Nexus 4 has 2 GBytes of RAM memory 
and 16 GBytes of built-in internal storage. It uses a 
4.7 inch display, and includes a 1.3 megapixel front-
facing camera and an 8 megapixel rear-facing 

camera. It supports a range of connectivity options 
including WLAN 802.11n, Bluetooth 4.0, USB, 
HDMI, and several cellular network protocols such 
as GSM/EDGE/GPRS, 3G UMTS/HSPA+/DC-
HSP+, and HSDPA+. 

To prepare the smartphone for energy profiling, 
its underlying plastic shield is removed to reveal 
connections on its motherboard and daughterboard 
as shown in Figure 3. The smartphone’s battery is 
removed, and power connectors to the battery 
simulator are added. During power profiling, 
connectors to smartphone components such as LCD 
display, touchscreen, USB, and others can be easily 
unplugged, thus enabling selective profiling that 
excludes energy consumed by these components. 

 

Figure 3: Nexus 4 prepared for energy measurements. 

Nexus 4 runs Android version 4.3.2 (Jelly Bean). 
In some cases, an upgrade to Android may be 
beneficial to (a) support applications and setups not 
readily available on native Android, and (b) to 
further automate performance and energy 
measurements. Our alternative smartphone setup 
requires flashing the smartphone with 
CyanogenMod version 10.2 (CyanogenMod, 2014), 
an open-source operating system for smartphones 
and tablet computers based on official releases of 
Android that includes third-party software. It 
includes cpufrequtils package that enables inspection 
and control of clock frequency ranges and power 
schemes for each processor core. 

2.2 Battery Simulator 

The battery simulator resides inside an NI PXIe-
1073 chassis (NI, 2014b), which is connected to an 
MXI-Express Interface card inside the workstation 
(Figure 2). The battery simulator is a specialized 
programmable power supply optimized for powering 
devices under test, including cellular handsets, 
smartphones, tablets, and other mobile devices. Its 
+6 V, ±3 A Channel 0 is designed to simulate a 
lithium-ion battery cell’s transient speed, output 

PEC 2016 - International Conference on Pervasive and Embedded Computing

30



resistance, and 2-quadrant operation (source/sink) 
(NI, 2014a). The simulator’s ultrafast transient 
response time, <20 µs, allows it to respond rapidly 
to changes in load current with a minimal voltage 
dip. It can sample the voltage and current drawn on 
its channels with a configurable sampling frequency 
of up to 200,000 samples/s and a sensitivity of the 
current measurements of 1 µA. 

To power the Nexus 4 smartphone, we configure 
the battery simulator’s channel 0 to provide 4.1 V 
which corresponds to the voltage of the Nexus 4 
battery when fully charged. 

2.3 Workstation 

The workstation is a Dell T7500 Precision with an 
Intel Xeon processor, 12 GB of system memory, 
running the Windows 7 Pro operating system. The 
workstation connects to the battery simulator 
through an MXI-Express card plugged into its PCI 
Express. The workstation connects to the 
smartphone through either a wireless LAN interface 
or through a wired USB interface. When interfacing 
smartphone over a USB port, we need to take into 
account the energy delivered to the smartphone 
through the USB port. This can be done by powering 
the USB from the second channel of the battery 
simulator. By sampling the current drawn by the 
smartphone on this channel, we can account for the 
energy received through the USB. This energy is 
then combined with the energy measurements on 
channel 0 to determine the total energy. To simplify 
the profiling, in the rest of the paper, we rely on the 
link through the WLAN interface. An alternative is 
to disconnect the USB once running scripts are 
launched. 

mLViewPowerProfile is our custom software tool 
for automated capturing of power traces and 
evaluating energy efficiency of applications running 
on mobile computing platforms. It runs on the 
workstation and controls concurrently both the 
battery simulator and the smartphone. Figure shows 
the mLViewPowerProfile’s graphical user interface. 
A user configures the channels of the battery 
simulator. This involves setting the voltage and the 
current limits, the sampling frequency, the transient 
time, as well as software driver parameters that 
control fetching the current samples from the battery 
simulator. We sample the current at the maximum 
sampling rate of 200,000 samples/s, but we choose 
to average 10 samples, thus recording 20,000 
samples per second in a user-specified file 
(appsSamples.txt). 

 

Figure 4: mLViewPowerProfile user interface. 

The communication with the smartphone is 
carried out over the Android Debug Bridge (adb) 
(Google, 2015). adb is a client-server program that 
includes the following components: a client, which 
runs on the workstation; a server, which runs as a 
background process on the workstation; and a 
demon, which runs on the smartphone. The user 
establishes an adb connection and runs a script 
command file that invokes smartphone applications 
or activities that need to be profiled. The following 
section demonstrates profiling of Android 
applications. 

3 POWER PROFILING OF 
ANDROID APPLICATIONS 

This section describes typical activities in profiling 
uninstrumented Android applications. To detect 
points of interest for energy profiling, the Android 
logging system is used. As an example, we will 
consider playing a video located in the smartphone’s 
file system. 

The first step is to launch a script file to be 
executed on the smartphone. mLViewPowerProfile 
starts a Windows command shell (cmd) that invokes 
the adb shell (adb) and the script file (setupApps.sh) 
as shown in Figure (see Script Name command box). 
Figure shows the content of the setApps.sh script 
file. The first command sets the smartphone’s 
working directory where the video file is located 
(/sdcard/test). The second command invokes a 
command file for playing video, runPlayVideo.sh. 
This script file is prepared in advance and placed in 
the working directory on the smartphone. The run 
video script is executed with the nohup command, 
thus ensuring that its execution continues even when 
we exit the adb shell. The last two commands are 
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used to exit the adb shell and the Windows 
command shell. 

The script file for playing a video file is shown in 
Figure 6. The first line sets a 5 seconds delay during 
which the smartphone is in the idle state, and the 
current drawn by the smartphone corresponds to the 
idle current (IIDLE). The command in line 2 uses the 
Android’s activity manager, am, to start an activity 
that plays a video file called FlyingBirds.mkv. The 
video is played for approximately 24 seconds, 
followed by another delay that puts the smartphone 
in the idle state for 5 seconds after the activity is 
completed. 

1. cd /sdcard/test/ 
2. nohup ./runPlayVideo.sh & 
3. exit 
4. exit 

Figure 5: ADB Shell script (setApps.sh). 

1. sleep 5 
2. am start -n com.android.gallery3d/ 
.app.MovieActivity -d 
'file:///sdcard/FlyingBirds.mkv' 

3. sleep 24 
4. sleep 5 

Figure 6: Run-script for playing a video FlyingBirds.mk. 

mLViewPowerProfile captures a global 
timestamp that corresponds to the first sample and 
logs the current samples in a sample file on the 
workstation during the execution of the entire script 
(~35 seconds). To determine the current samples that 
correspond to the beginning and the end of the 
activity profiled, the smartphone and the workstation 
are synchronized using the network synchronization 
protocol and the Android logging system is used to 
record global timestamps of events of interest for the 
profiled application. 

The Android logging system provides a 
mechanism for collecting and viewing system debug 
output (Google, 2014c). Logs from various 
applications and portions of the system are collected 
in a series of circular buffers, which then can be 
viewed and processed by the logcat command in the 
adb shell. Typically, the circular buffers are cleared 
before the profiling is conducted using logcat -c 
command. After the test is completed, we use logcat 
to extract the log messages including timestamps 
using the following command:  
logcat –d –v time > logcat_output.txt. 

Figure 7 shows an excerpt from the logcat output 
with messages that are relevant to the profiling task. 
The timestamp of the beginning of the script 

execution is 18:55:49.633, the activity manager is 
started approximately 5 seconds later at 
18:55:54.873, the video starts playing at 
18:55.55.624 and ends at 18:56:19.457. Thus, the 
video playing activity takes 23.8 seconds. 

1. --beginning of /dev/log/main 
2. 06-11 18:55:49.633 D/AndroidRuntime( 

8597): >>>>>> AndroidRuntime START 
com.android.internal.os.RuntimeInit 
<<<<<< 

3. ......  
4. --beginning of /dev/log/system 
5. 06-11 18:55:54.873 

I/ActivityManager(  644): START u0 
{dat=file:///sdcard/ 
FlyingBirds.mkv flg=0x10000000 
cmp=com.android.gallery3d/ 
.app.MovieActivity} from pid 8631 

6. ...... 
7. 06-11 18:55:55.624  

E/OMX-VDEC-1080P(  194):  
In OMX vdec Constructor 

8. ...... 
9. 06-11 18:56:19.457  

E/OMX-VDEC-1080P(  194):  
Exit OMXvdec Destructor 

Figure 7: Log messages captured on the smartphone 
during power profiling of video playing activity. 

 

Figure 8: Current drawn by Nexus 4 while playing video. 

Figure 8, top, shows the measured current drawn 
by the smartphone during the execution of the 
runPlayVideo.sh script file. The Start am, Start 
Video, and Finish Video marks illustrate the 
timestamps that correspond to the moments when 
the am command is issued, the video starts playing, 
and when the video finishes playing, respectively. 
The graph on the bottom shows the filtered 
waveform, provided here only to enable easier visual 
inspection by a human of the changes in the current 
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drawn. The unfiltered samples, shown in Figure 8, 
top, are used to calculate the total energy and the 
energy overhead. 

To find the total energy, we first determine 
offsets of the recorded timestamps relative to the 
timestamp that is captured by mLViewPowerProfile 
at the beginning of the measurement (TINIT = 0 s). 
Next, we determine indices of the current samples 
that correspond to the beginning (N.SS) and the end 
(N.ES) of the execution, calculated from the starting 
and ending timestamps and the sampling frequency, 
FS, as shown in (1) and (2). The total energy, ET, is 
then calculated as shown in (3). 

In addition to the total energy, we can calculate 
the energy overhead, EO, caused by the executing 
program alone, which excludes the energy spent 
when the smartphone is in the idle state. The energy 
overhead is calculated as shown in (4). 

 

ܰ. ܵܵ ൌ ௌ்ܶோ் ∙ ௌ (1)ܨ

ܰ. ܵܧ ൌ ாܶே ∙ ௌ (2)ܨ

ܶܧ ൌ  ܫ

ே.ாௌ

ୀே.ௌௌ

∙ ௌܸ ∙ ,ݐ∆ ݐ∆ ൌ ௦ (3)ܨ/1

ܱܧ ൌ ܶܧ െ ூாܫ ∙ ௌܸ ∙ ሺ ாܶே
െ ௌ்ܶோ்ሻ 

(4)

A PERL script takes the processed timestamps and 
the file with the current samples as inputs and 
calculates the energies. The total energy for playing 
video (from Start to Finish Video) is 36.01 J, and the 
energy overhead is 16.72 J. If we measure the 
energy from the moment the video starts playing, the 
energies are 34.91 J and 15.38 J. The measurement 
is conducted on Nexus 4 with active LCD display 
and WLAN interface. 

To determine the impact of powering the LCD 
display alone, the experiment is repeated with LCD 
display disconnected. The total energy for playing 
the video (from Start to Finish Video) is 26.49 J and 
the overhead is 15.17 J. These results show that the 
display alone takes a significant amount of the total 
energy when active. However, a small difference in 
the energy overheads (16.72 vs. 15.17 J) indicates 
that playing the video does not increase significantly 
the energy consumed by the display relative to its 
usual consumption when active. 

3.1 Profiling Instrumented Android 
Applications 

In this section, we look at power profiling using our 
environment from a developer’s perspective. Here 
we assume that a developer wants to determine 

energy-efficiency of a certain activity or its segment. 
Instead of relying on Android system log messages, 
the developer instruments the source code so that 
timestamps are generated and logged at points of 
interest in the application lifetime. 

To help guide energy profiling of particular 
segments of applications, software developers can 
instrument their Android applications by inserting 
custom log messages. Android log messages are 
divided into several categories. For example, Log.e() 
is used for logging serious errors, Log.w() for 
reporting system warnings, Log.i() for information 
logging (e.g., successful connection), Log.d() for 
debugging messages, and Log.v() for all other 
verbose messages (e.g., entering a function). Each 
message can be marked by a custom tag. 

A typical Android application consists of 
different activities that load GUI elements, start 
various functions, services, threads, asynchronous 
tasks, and intents and provide user interaction via 
buttons and other GUI elements that lead to a 
transition from one activity to the next. Using 
custom log messages a developer can instrument any 
part of the application. Particularly, developers may 
utilize the Android lifetime cycle’s state methods 
such as onCreate(), onStart(), onResume(), onStop(), 
onDestroy(), and onRestart(). For example, 
onCreate() is called at the initial start of the activity, 
while onDestroy() is called at the end of the activity. 

To illustrate this approach, we develop a test 
Android application, called testZip. testZip 
compresses an input file using Android’s 
ZipOutputStream class. 

1. //onCreate of Compression activity 
2. private static final String TAG = 

"CompressActivity"; 
3. @Override 
4. public void onCreate(Bundle 

savedInstanceState) { 
5.super.onCreate(savedInstanceState); 
6. setContentView(R.layout.compress); 
7. // LogCat message 
8. Log.v(TAG, "Starting Compression"); 
9. // zip function call 
10. String inputFile = 

"/sdcard/pg32.txt";// input file 
path 

11. zip(inputFile,"/sdcard/pg32.zip"); 
12. Log.v(TAG, "Finishing 

Compression"); 
13. } 

Figure 9: Instrumenting onCreate() method with verbose 
log messages. 
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Figure 9 shows its onCreate() method which 
calls the zip method right after opening and loading 
application layout on the screen. The zip function 
compresses an input file and writes the compressed 
file in the internal file system. To capture execution 
time of this function, the Log.v() messages are 
inserted before the compression (line 8) and after the 
compression (line 12). Figure 10 shows an excerpt 
from the LogCat output with custom messages from 
which the starting and ending timestamps can be 
extracted and used in energy calculations. 

1. 07-30 17:32:04.928 
V/CompressActivity(17991): Starting 
Compression 

2. ... 
3. 07-30 17:32:13:696 

V/CompressActivity(17991): 
Finishing Compression 

Figure 10: Log messages with a custom CompressActivity 
tag. 

Figure 11 shows the filtered measured current 
drawn by the smartphone during the execution of a 
compression test script. The compression is 
preceded and followed by 5 second delays. The Start 
Compression and Finish Compression marks 
illustrate the timestamps recorded inside the 
application before the very start of the compression 
activity and after the compression activity is 
completed. The activity manager starts the test 
application and its interface on the screen at 
TSTART_AM = 5.45 s, and the compression activity 
itself starts at TSTART_COMP = 5.82 s and finishes at 
TFINISH_COMP = 14.59 s. The total energy for 
compressing the input file is 15.28 J (14.62 J for 
compression itself), whereas the overhead energy is 
8.17 J (7.80 J). 

 

Figure 11: Current drawn by Nexus 4 while compressing 
an input file. 

3.2 CyanogenMod Android Setup 

In this subsection, we look at power profiling of 
Android applications from CyanogenMod Android. 
The main difference is that instead of using the 
Android logging system for extracting timestamps of 

relevant events, we use $EPOCHTIME bash variable 
to capture timestamps and write them into a file. 

1. cat $EPOCHTIME >> 
/data/test/timestamps.txt; 

2. sleep 5 
3. cat $EPOCHTIME >> 

/data/test/timestamps.txt; 
4. wget –qP /sdcard/ 

http://lacasa.uah.edu/portal/tmp/ 
pg32.txt 

5. cat $EPOCHTIME >> 
/data/test/timestamps.txt; 

6. sleep 5 
7. cat $EPOCHTIME >> 

/data/test/timestamps.txt; 

Figure 12: Run-script for downloading text over WLAN. 

 

 

Figure 13: Current drawn by Nexus 4 while downloading 
a raw text file (top) and a compressed file with 
decompression (using gzip utility). 

Figure 12 shows a run script, 
runDownloadFile.sh, which downloads a text file 
from a server using the wget utility. The text file of 
15,711,660 bytes (pg32.txt) contains the Project 
Gutenberg Works of Mark Twain. The file download 
is preceded and trailed with 5 second delays (lines 2 
and 6 in the script file) that put the smartphone in the 
idle state. Lines 1, 3, 5, and 7 invoke $EPOCHTIME 
bash variable to generate timestamps with 
nanoseconds resolution that mark the entering of the 
script, the moment just before the file download is 
started, the moment when the file has finished 
downloading, and the moment when the script is 
finished. The timestamps are logged in a text file 
(timestamps.txt) and used in energy calculations as 
described above. 

Figure 13, top, shows the filtered measured 
current during the execution of the 
runDownloadFile.sh script file. The smartphone 
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connects to the local router (Linksys E900 Wireless 
N-300) over the WLAN interface. The Start and 
Finish marks illustrate the timestamps recorded in 
the experiment just before the start of the file 
download (line 3 in the script file) and right after the 
file downloading has finished (line 5 in the script 
file). The current drawn when the smartphone is idle 
with the LCD display off is IIDLE = 0.10 A. The total 
energy consumed by the smartphone to download 
the file is 4.85 J and the energy overhead is 3.36 J. 
From this measurement, we can use the total energy 
to calculate energy efficiency defined as the number 
of Megabytes transferred per Joule of energy 
consumed, EE(raw download) = 3.09 MB/J 
(Milenkovic et al., 2013). 

4 CASE STUDIES 

This section demonstrates how the measuring setup 
can be used to quantify energy needs and improve 
energy-efficiency of Android applications. 

4.1 To Compress or Not to Compress 

Global mobile data traffic continues to grow 
exponentially in the last several years. A report from 
Cisco states that the global mobile data traffic grew 
74% in 2015 relative to 2014, reaching 3.7 exabytes 
per month, which is over 44 times greater than the 
total Internet traffic in 2000 (Cisco, 2016). Data 
compression is crucial in mobile data 
communication. It can help improve operating time, 
lower communication latencies, and make more 
effective use of available bandwidth and storage. 
Whereas media data such as video or audio can 
tolerate lossy compression that typically achieves 
high compression ratios, other types of data typically 
consumed on mobile devices such as binaries, 
medical data, emails, e-books rely on lossless 
compression that achieves modest compression 
ratios. 

Whether data compression reduces latency and 
energy consumption or not on a particular mobile 
device depends on many factors. Those factors 
include a type of communication interface (e.g., 
Bluetooth, WLAN, cellular), communication 
bandwidth, energy costs of communication, the level 
of redundancy in the data, and computational 
complexity and energy costs of a given compression 
or decompression utility. 

In this case study we shed more light on this 
problem by comparing the energy and performance 
costs associated with downloading an e-book from 

the Internet. We have already determined the energy 
costs of downloading the uncompressed file with the 
Project Gutenberg Works of Mark Twain. Using our 
environment we measure the time and energy 
consumed when the compressed file is downloaded 
using wget and piped into the gzip decompressor that 
writes the uncompressed file to the file system. 

Figure 14 shows a run script that downloads a 
compressed text file from a server using the wget 
utility and pipes it to the gzip utility for 
decompression (line 4). 

1. cat $EPOCHTIME >> 
/data/test/timestamps.txt; 

2. sleep 5 
3. cat $EPOCHTIME >> 

/data/test/timestamps.txt; 
4. wget -qO - 

http://lacasa.uah.edu/portal/tmp/ 
pg32.txt.gz | gunzip -c > 
/sdcard/pgwmt.txt 

5. cat $EPOCHTIME >> 
/data/test/timestamps.txt; 

6. sleep 5 
7. cat $EPOCHTIME >> 

/data/test/timestamps.txt; 

Figure 14: Run-script for downloading and decompressing 
text over WLAN. 

Figure 13, bottom shows the current drawn by 
Nexus 4 during the download and decompress 
activity. The total energy consumed by the 
smartphone is 3.08 J and the energy overhead is 2.21 
J. The energy efficiency of this transfer is 4.86 
MB/J, which is over 57% improvement relative to 
the uncompressed data download. 

4.2 To Scale or Not to Scale 

Modern SoCs that power mobile devices support 
dynamic voltage and frequency scaling where the 
clock frequency is adjusted in real-time to either 
preserve energy consumed or reduce heat generated 
by the chip. The cpufrequtils can be used to inspect 
and set clock frequencies for each processor core or 
change the CPU governor which determines 
frequency scaling policy. Nexus 4 supports a range 
of different clock frequencies from 384 MHz to 
1512 MHz. 

In this case study, we want to repeat the tests 
from 4.1, but this time instead of using the on-
demand governor that scales the frequency based on 
the current load, we want to set the processor clock 
frequency at fixed 810 MHz. Figure shows the 
current drawn by Nexus 4 when running at 810 

An Environment for Automated Measuring of Energy Consumed by Android Mobile Devices

35



MHz. The top graph shows the current drawn when 
downloading the uncompressed text file, and the 
bottom graph shows the current drawn for 
compressed download with decompression. 

 

 

Figure 15: Current drawn by Nexus 4 while downloading 
a raw text file and a compressed file with decompression 
(gzip utility). The frequency is set to fixed 810 MHz. 

Table 1: Time and energy for making a phone call: 
comparative study. 

Activity Frequency 
Time 
(T) [s] 

Total 
Energy 
(ET) [J] 

Energy 
Overhead 
(OE) [J] 

Raw 
download 

Ondemand
@ 384-

1512 MHz 
3.55 4.85 3.36 

Raw 
download 

Fixed @ 
810 MHz 

3.55 4.78 3.09 

Zip 
download 
& unzip 

Ondemand 
@ 384-

1512 MHz 
2.13 3.08 2.21 

Zip 
download 
& unzip 

Fixed @ 
810 MHz 

1.72 2.59 1.79 

 

Table 1 summarizes the time and energies for 
both experiments. Whereas the uncompressed 
download requires the same amount of time (3.55 s), 
the total energy consumed and the energy overhead 
are slightly lower when running at fixed 810 MHz. 
However, the compressed download with 
decompression at 810 MHz achieves savings of 19% 
in the total energy and 23% in the energy overhead. 
Thus, running at lower fixed frequency of 810 MHz 
has proved both faster and more energy efficient 
than running with on-demand frequency governor. 

4.3 To Skype or Not to Skype 

Our environment for energy profiling can be used to 
provide insights that can help inform regular 
smartphone users about energy efficiency of certain 

services. To illustrate this we consider making a 
phone call to a telephone number. We can do so 
using (a) Android phone application over the cellular 
interface, (b) Skype utilizing the cellular interface, 
or (c) Skype using the WLAN interface. How do 
these options compare to each other regarding the 
total energy use? 

To find an answer to this question, we conduct 
several tests as follows. First, the Android phone 
application is selected as the default one for making 
phone calls. The caller initiates the call in a script 
file using the activity manager (am start -a 
android.intent.action.CALL tel:256xxxxxxx). The 
callee waits for approximately 7 seconds from the 
first ring to answer the call and then converses for 
approximately 12 seconds. To ensure fairness, the 
second test with Skype is carried out in the same 
way. The Skype is made the default application to 
making calls, and the Skype service is activated to 
avoid delays due to starting the application up. The 
callee follows the same protocol. During these two 
tests, the WLAN interface is turned off. In the third 
test, the WLAN is turned on, and the cellular 
interface is turned off. The LCD display is on in all 
three tests. 

Figure 16 shows the current profiles during the 
tests. The top graph shows the filtered current traces 
when making the phone call using the Android 
phone application. We can see that the delay from 
the start of the activity manager and until the 
establishment of the conversation (including 7 
seconds wait time while the callee phone is ringing) 
is ~15.4 seconds, and the conversation is ~12 
seconds. The total energy for completing the call is 
33.06 J, and the energy overhead is 11.66 J. The 
middle graph shows the filtered current traces when 
making the Skype call that uses the cellular 
interface. We can observe a significant delay from 
the moment the call is launched until the moment the 
callee phone start ringing of almost 35 seconds. The 
total energy for the entire activity is 88.80 J, and the 
overhead is 51.60 J. Finally, the bottom graph shows 
the current traces when making the Skype call that 
uses the WLAN interface. In this case, the energies 
are slightly higher than in the case of the Android 
phone application. 

Table 2 summarizes times to establish the 
connection and energies for all three tests. The 
results indicate that the Android phone application is 
the most energy efficient way followed by Skype 
over WLAN. Using Skype over the cellular interface 
dramatically increases the energy costs of phone 
calls. 
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Figure 16: Current drawn by Nexus 4 while making a 
phone call using Android phone application (top), Skype 
with cellular interface (middle), and Skype with WLAN 
interface (bottom). 

Table 2: Time and energy for making a phone call: 
comparative study. 

Activity 
Time to 
establish 

connection [s] 

Total 
Energy 
(ET) [J] 

Energy 
Overhead 
(OE) [J] 

Android Phone 
over cellular 

interface 
8.4 33.06 11.67 

Skype over 
cellular interface 

34.75 88.80 51.6 

Skype over 
WLAN 

10.42 38.12 15.79 

5 RELATED WORK 

We are aware of several related studies that 
investigate energy efficiency on mobile devices 
using custom measurement environments for 
capturing power traces and logging to capture 
execution history (Milosevic et al., 2013; Rice and 
Hay, 2010a; Shye et al., 2009). 

Rice and Hay (Rice and Hay, 2010a) evaluated 
energy efficiency of Android-based G1, Magic, and 
Hero handsets using their custom measurement 
setup. Their setup includes a replacement battery 
and a high-precision shunt resistor placed in series 
on the power line and an NI data acquisition device 
that samples voltage drop across the resistor. Their 

excellent studies focused on measurement-based 
evaluation and optimization of wireless 
communication in mobile handsets. A similar setup 
is used in our prior study focusing on energy-
efficiency of Pandaboard and Raspberry Pi 
development platforms that run Linux operating 
system (Milosevic et al., 2013). The setup included 
features to allow automated power measurements for 
a number of profiled applications. The setup 
proposed in this paper offers several advantages over 
the setups introduced in (Milosevic et al., 2013; Rice 
and Hay, 2010a). For example, we utilize Android 
Debug Bridge (adb) to remotely control the mobile 
device and launch script command files for 
unobtrusive power measurements. Next, we use 
network time synchronization protocol to precisely 
capture activities on the mobile device and 
synchronize the current samples collected on the 
workstation with these activities. Our use of the 
battery simulator eliminates any voltage changes 
across the shunt resistor due to drainage of the 
battery. Additionally, mLViewPowerProfile offers 
flexible control and automation of experiments. 

A study by Shye et al. (Shye et al., 2009) relies 
on power models and extended activity logging to 
generate power schemes which can provide 
substantial energy saving across the entire system 
while maintaining user satisfaction. Their study was 
based on Android G1 running Android 1.0 firmware. 
They also used a setup based on a shunt resistor to 
capture power traces and a custom logger to 
generate activity traces. However, their setup offered 
a limited sampling frequency of only 1 Hz. 

All these studies demonstrated the importance of 
having power measurement setup for analyzing 
energy consumption on mobile devices. They have 
also shown how such measurement setup can be 
used to directly achieve energy efficiency 
improvements. Using high precision power 
measurement environment and logging capabilities, 
it is possible to create various power models, power 
schemes, or simply to be able to analyze and debug 
power consumption of any given task. Our setup 
with high sampling frequencies, precise current 
readings, and time-synchronized operation can 
analyze shorter and discrete activities on mobile 
devices to help generate more precise models and 
power schemes. 

6 CONCLUSIONS 

This paper introduces an environment for automated 
energy measurements and power profiling of 
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applications running on Android-based mobile 
devices. The environment utilizes a National 
Instruments battery simulator which provides an 
unobtrusive, high-resolution (down to 1 µA) and 
high-frequency sampling (down to 5 µs) of the 
current drawn by a mobile device. Our custom 
program mLViewPowerProfile running on a 
workstation interfaces both the mobile device under 
test and the battery simulator to synchronize the 
collection of samples from the battery simulator and 
running applications on the mobile device. 
mLViewPowerProfile connects to the mobile device 
over Android debug interface and runs script 
commands to allow for a full automation of profiling 
with no user intervention. 

The paper describes several approaches to 
profiling Android applications that give software 
developers and researchers an opportunity to gain a 
deeper insight into application power requirements. 
Finally, we present number of case studies that 
demonstrate capabilities of the proposed setup and 
its usefulness in increasing energy-efficiency of 
mobile devices. 
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