
Identifying Technical Debt through Code Comment Analysis

Mário André de Freitas Farias1,2, Methanias Colaço5, Rodrigo Oliveira Spínola3,4
and Manoel G. de Mendonça Neto2

1Federal Institute of Sergipe, Lagarto, Brazil
2Department of Post-Graduate in Computer Science, Federal University of Bahia, Salvador, Brazil

3Fraunhofer Project Center at UFBA, Salvador, Brazil
4Salvador University, Salvador, Brazil

5Federal University of Sergipe, Itabaiana, Brazil

1 RESEARCH PROBLEM

The term Technical Debt (TD) is being increasingly
used to discuss technical compromises admitted by
the development team during the phases of the
software life cycle. Thus, this metaphor defines the
Trade-off between internal tasks you choose do not
perform at present, and the risk of causing future
problems (Izurieta et al., 2012). Currently, this may
include immature software artifacts such as issues in
the software design and in the software architecture,
incomplete or insufficient documentation,
incomplete design specification, insufficient code
comment, lack of adequate testing, or inadequate
technology (Alves et al., 2014).

The identification of TD is the first step to
effectively manage TD, it is necessary to identify
TD items in the project before prioritizing them and
select those which should be paid or not (Guo et al.,
2014). The term “TD item” represents an instance of
TD for the purpose of this study.

Recent systematic reviews (Li et al., 2014)
(Alves et al., 2016) reported that code quality
analysis techniques have been frequently studied to
support the identification of TD. In this sense,
automatic analysis tools have used software metrics
extracted from the source code to identify TD items
by comparing values of software metrics to
predefined thresholds (Mendes et al., 2015).

Li et al. (Li et al., 2014) analyzed and classified
29 different tools. Only one (FxCop) takes .NET
assemblies as input, one (RE-KOMBINE) takes
requirements and solutions as input, and one (CLIO)
takes compiled binaries as input. Most 86% of the
tools take source code as input, some of these tools
are mentioned as follows: (i) SIG Software Analysis
Toolkit is used to calculate code properties to
identify code TD (Nugroho et al., 2011), (ii)
Resource Standard Metrics calculates source code
metrics and analyzing code quality to find style

violations and logic problems. This tool can identify
design and code TD, and (iii) CodeVizard is a tool
for detecting design TD thought code smells
identification (Zazworka and Ackermann, 2010).

Although these tools and techniques have shown
useful to extract structural information and support
the automated management of some types of debt,
they do not cover its real meaning and human factors
(e.g., tasks commented as future work), taking aside
them on it (Zazworka et al., 2013) (Potdar and
Shihab, 2014). Thus, they may not point to a
relevant TD or not report a piece of code which is
really considered a TD by developers. Besides, some
types of debt are undetectable by tools and may not
be directly identified using only metrics collected
from the source code (Farias et al., 2015).

In this sense, pieces of code that need to be
refactored to improve the quality of the software
may continue unknown. In order to complement the
TD identification with more contextual and
qualitative data, human factors and the developers’
point of view should be considered.

2 OUTLINE OF OBJECTIVES

2.1 General Objective

Our objective is to propose an approach to support
and automate the identification and management of
different TD types through code comment analysis
by considering the developers’ point of view.

2.2 Complementary Objectives

 Perform a systematic mapping study with the
aim of investigating how research is being
conducted in the mining software repositories
field. This allowed us to identify the main
approaches with focus on comment analysis;

Farias, M., Colaço, M., Spínola, R. and Neto, M.
Identifying Technical Debt through Code Comment Analysis.
In Doctoral Consortium (DCEIS 2016), pages 9-14

9

 Analyze and categorize contextualized terms,
combinations, and patterns to understand how
they may be combined to support the
identification and management of different TD
types through the comments analysis;

 Create a structure that systematically allows
combining terms providing a large vocabulary to
support the TD identification;

 Develop an automated tool in order to quickly
analyze developer’s comments embedded in
source codes;

 Propose and plan a family of experiments. From
them, we intend to evaluate and evolve our
approach with the purpose of characterizing its
overall accuracy and factors affecting the
identification of TD through code comment
analysis.

 Improve our proposed model, vocabulary, and tool;

3 STATE OF THE ART

3.1 Code Comments

Comments are a generic type of task annotation
where developers insert documentation directly into
source code (Storey et al., 2008). These annotations
are richness of semantic information written in
natural language.

Despite there are different syntaxes and types of
comments according to the programming language,
they are divided into two categories: (i) inline
comments, which only permit the insertion of one
line of comment, and (ii) block comments, which
permit the insertion of several lines. Developers write
comments in a sublanguage of English using a limited
set of verbs and tenses, and personal pronouns are
almost not used (Davis and Bowen, 2001).

Code comments and the source code itself are an
important documentation to help the software
comprehension (Souza et al., 2006). These
descriptions may reveal important information, such
as the reason for adding new lines to source code,
knowing about the progress of a collective task, or
even why relevant changes were performed. Thus,
comments may be used to describe issues that may
require work in the future, notice emerging problems
and what decisions need to be taken about them
(Maalej and Happel, 2010) (Shokripour et al., 2013).

3.2 Code Comment Analysis

When the source code is well commented, we can
understand what a piece of code does, what issues it

has, and whether it needs to be fixed or improved,
without needing to analyze its implementation. In
general, comments are used by developers to
understand unfamiliar software because comments
are written in natural language (Freitas et al., 2012).
Comments provide an important set of information
which may help to understand software features, and
make easier software comprehension.

In fact, comments have been used to describe
issues that may require future work, emerging
problems and decisions taken about those problems
(Maalej and Happel, 2010). These descriptions
facilitate human readability and provide additional
information that summarizes the developer context.

In this sense, authors have conducted
experiments using code comments as data source in
several research works in order to discuss and
analyze their importance on the software
comprehension.

In (Storey et al.,, 2008) the authors described an
empirical study that explored how code comments
play a role in how developers deal with software
maintenance tasks, investigating how comments
may improve processes and tools that are used for
managing these tasks. In similar approach, (Maalej
and Happel, 2010) analyzed the purpose of work
descriptions and code comments aiming to discuss
how automated tools can support developers in
creating them.

Some research works from Mining Software
Repository (MSR) have focused on code comments.
Yang and Tan (Yang and Tan, 2012) proposed an
approach that analyses the word context in code
comments. The main idea is to discover semantically
related words. Many words that are semantically
related in software development process are not
semantically related in English. In this same sense,
Howard et al. (Howard et al., 2013) also presented
an approach to augment natural language thesauri
with code-related terms.

(Freitas et al., 2012) presents an approach to
locate problem domain concepts on comments, and
identify the relevant code chunks associated with
them. The authors also introduce Darius, a tool to
implement their proposal for Java programs. Darius
identifies and extracts inline, bock, and Javadoc
comments and provides some metrics. They
concluded that higher level source entities tend to
have comments oriented for problem domain
information, whereas comments of lower level
source entities tend to include more program domain
information.

In other work, Gupta et al. (Gupta et al., 2013)
suggested a Part-of-speech tagging of program

DCEIS 2016 - Doctoral Consortium on Enterprise Information Systems

10

identifiers to understand how a program element is
named. Considering identifiers and comments,
(Salviulo et al., 2014) performed an experiment with
students and young professional developers in order
to understand how they perceive comments and
identifier names.

3.3 Using Code Comments to Identify
TD

More recently, code comments have been explored
with the purpose of identifying TD. Potdar and
Shihab (Potdar and Shihab, 2014) analyzed code
comments to identify text patterns and TD items. For
that, the authors used the srcML toolkit (Maletic et
al., 2002), a command line tool that parses source
code into XML file, to extract the comments. In this
step, the authors considered all types of comments.
This decision may bring a lot of unnecessary effort
because it considers comments that are not important
to TD scope, such as license and Auto-generated
comments. After the data extraction, the authors
identified comments that indicate TD.

They read more than 101K code comments, and
organized 62 text patterns that were used to quantify
how much TD exist in four different projects
(Eclipse, Chromium OS, ArgoUML, and Apache
http). Their findings show that 2.4 - 31.0% of the
files in a project contain self-admitted TD. In
addition, the most used text patterns were: (i) “is
there a problem” with 36 instances in the Eclipse,
(ii) “hack” with 17 instances in the ArgoUML, and
(iii) “fixme” with 20 instances in the Apache, and
761 instances in the Chrominum OS.

In another TD identification approach,
Maldonado and Shihab (Maldonado and Shihab,
2015) evolved the work of Potdar and Shihab
(Potdar and Shihab, 2014), proposing four simple
filtering heuristics to eliminate comments that are
not likely to contain technical debt. For that, they
read 33K code comments from five open source
projects (Apache Ant, Apache Jmeter, ArgoUML,
Columba, and JFreeChart). Their findings showed
that self-admitted technical debt can be classified
into five main types: design debt, defect debt,
documentation debt, requirement debt, and test debt.
According to the authors, the most common type of
self-admitted TD is design debt (between 42% and
84% of the classified comments).

In the same sense, Farias et al. (Farias et al.,
2015) proposed a model aiming to support the
detection of different types of debt through code
comment analysis.

These research works provide preliminary

indication that comments can be effectively used to
support TD identification. However, the factors that
may affect its accurate usage are still unknown.

4 METHODOLOGY

Research works in software engineering have widely
been conducted with focus on quantitative analysis.
In general, this type of study analyzes treatment of
variables, control groups, and statistical data
(Wohlin et al., 2012).

Differently from quantitative analysis, qualitative
one appears to be unusual in software engineering
approaches. Using this method is possible to achieve
aspects behind the problem under study, analyze
data, and suggest conclusions to which other
methods would be blind (Segal et al., 2005).

In order to include the combining of quantitative
and qualitative approaches as complementary
methods, we will use triangulation methodology to
analyze how code comment analysis supports the
TD identification.

Triangulation is a research strategy described as
a convergent methodology with multiple
operationalisms (Campbell and Fiske, 1959). The
main idea is to analyze evidences from different
sources, be collected using different methods, have
different forms, be analyzed using different
methods, or come from a different study altogether
(Shull et al., 2008). In this methodology, researchers
can improve conclusions on their judgments through
collecting and analysis of different data considering
the same phenomenon (Jick 1979).

4.1 Overview

Figure 1 presents an overview of the research. We
explore code comments using a systematic mapping
study, and a family of experiment in order to
propose methods and techniques to support the
identification and management of different TD
types. With the results of the studies, we expected
advance the set of knowledge on how improve the
TD identification process through code comment
analysis. We briefly describe each step following the
numbers of Figure 1.

To begin with, we performed a systematic
mapping study (1) in order to understand the mining
software repositories area and to identify its current
targets and gaps, regarding mainly source codes and
comments analysis (Farias et al., 2016). We
identified some important studies on usage of
comments for software comprehension, and some

Identifying Technical Debt through Code Comment Analysis

11

Figure 1: Overview of Research.

techniques and tools used to extract and analyze
comments.

Second, we developed a Contextualized
Vocabulary Model for identifying TD on code
comments (CVM-TD) (2). CVM-TD uses word
classes and code tags to support TD identification.
The model provides a structure that systematically
allows combining terms creating a large vocabulary
on TD (Farias et al., 2015).

Next, our work proposes a family of experiment
called FindTD composed by five experiments, two
exploratory studies, and three controlled
experiments. A family of experiments involves not
only replications, but variations among the
experiments (Basili et al., 1999). In this respect, we
intend to perform experimental variations in order to

evaluate and evolve our set of knowledge on the
proposed model and techniques to identify TD using
code comments.

In the first experiment (FindTD I), an exploratory
study (3) was performed to characterize the feasibility
of the proposed model to support the detection of TD
through code comments analysis. For that, we
developed a tool to extract comments from the software
code, the eXcomment. This tool extracts and filters
candidate comments from source code using the
contextualized vocabulary provided by the model.

Following, the promising initial outcomes
motivated us to further evaluate CVM-TD with other
data sources. Thus, we performed a controlled
experiment (FindTD II) (4). Therefore, in this
evaluation we extend Farias et al. (Farias et al.,
2015) with an additional quantitative study. We
analyzed the use of CVM-TD with the purpose of
characterizing its overall accuracy when classifying
candidate comments and factors that influence the
analysis of the comments to support the
identification of TD in terms of accuracy. For each
candidate comment listed in a form, the participants
chose "Yes" or "No", and their level of confidence
on their answer. They used an ordinal scale of one to
four to represent the confidence. Besides, for each
comment marked as yes, they should highlight the
pieces of text that was decisive for giving this
answer (set of comment patterns).

Our findings indicate that CVM-TD provided
promising results considering the accuracy values. We
observed that many comments had high agreement, and
almost 60% of comments filtered by terms that belong
to the vocabulary (candidate comments) proposed in
(Farias et al., 2015) were identified as good indicators
of TD (Farias et al., 2016).

Next, we designed FindTD III (6) from insights
of FinTD II, by changing the setup and controlling
other variables. Our main goal in this experiment is
to analyze the set of comment patterns identified and
classified in previous experiment. We intend to carry
out a qualitative analysis in order to improve the
model and the vocabulary, identifying the most
important patterns, and the relationship between
comment patterns and TD types. To do this, we will
perform a coding to group patterns into different
comment indicators.

Coding is a method that enables researchers to
organize and group similar data into categories or
themes, attaching labels or codes to different
segments - the beginning of themes. Information
from different sources can be easily sorted and
compared. A theme is an outcome of coding,
categorization, and analytic reflection, not

DCEIS 2016 - Doctoral Consortium on Enterprise Information Systems

12

something that is, in itself coded (Cruzes and Dyba,
2011) (Ellsberg and Heise, 2005).

This experiment will provide us inputs to
improve CVM-TD, resulting a new release of the
contextualized vocabulary. We also intend to
develop new features in eXcomment. This feature is
associated with the new vocabulary to quickly
support the interpretation of comments (7).

After this study, we planned to perform a controlled
experiment (8). In this experiment, besides evaluating
the new release of the contextualized vocabulary and
tool, we expect to compare the overall accuracy when
classifying candidate comments between two groups,
one using the tool to analyze comments and another
one without the tool.

In FindTD V (9), we expected to perform an
exploratory study in the software industry. In this
study, we purpose to compare patterns and TD items
identified into open source code and closed code
developed in an industrial environment.

The last one is the FindTD VI (10). We intend to
compare our approaches to different tools that use
metrics extracted from the source code to identify
TD items.

Our methodology might set some limitations on
what can be experimented. The first considers the
power of the proposed vocabulary. It is possible that
the set of terms and combinations used by our model
and vocabulary are simply too many to be studied.
An alternative would be to limit the studies to a very
specific context and software. Other risk involves
the effort to carry out all studies because of the
difficulty of performing experiments in this area.

5 EXPECTED OUTCOME

In the context of our empirical investigation, we are
interested in findings that help us to comprehend
how code comments analysis can support the
identification and management of different TD
types, considering the developers’ point of view.

We hope to develop a rich contextualized
vocabulary and a tool to support the TD
identification through comment analysis. We believe
this approach can improve methods of identifying
and classifying TD items, analyzing code comments.

6 STAGE OF THE RESEARCH

In accordance with proposed methodology described
in Section 4 and shown in Figure 1, we purpose a

systematic mapping study and a family of
experiment in order to discuss our goals. Figure 1 is
broken down into two parts. The tasks that have
already performed were organized on top of the
figure (part A), and the tasks that will be performed
in the future were organized on bottom of the figure
(part B).

In this sense, we have: (i) performed the
systematic mapping study, (ii) developed a
Contextualized Vocabulary Model, (iii) performed
the first exploratory study and its analysis, (iv)
performed the first controlled experiment and its
analysis, and (v) designed the FindTD III and carried
out the experiment. Currently, we are analyzing data
from this study, using qualitative methods.

REFERENCES

Alves, N.S.R. et al., 2016. Identification and Management
of Technical Debt: A Systematic Mapping Study.
Information and Software Technology, 70, pp.100–
121.

Alves, N.S.R. et al., 2014. Towards an Ontology of Terms
on Technical Debt. In Sixth International Workshop
on Managing Technical Debt (MTD). pp. 1–7.

Basili, V.R., Shull, F. and Lanubile, F., 1999. Building
knowledge through families of experiments. IEEE
Transactions on Software Engineering, 25(4), pp.456–
473.

Campbell, D.T. and Fiske, D.W., 1959. Convergent and
discriminant validation by the multitrait-multimethod
matrix. Psychological Bulletin, 56(2), pp.81–105.

Cruzes, D.S. and Dyba, T., 2011. Recommended Steps for
Thematic Synthesis in Software Engineering. 2011
International Symposium on Empirical Software
Engineering and Measurement, (7491), pp.275–284.

Davis, C.G. and Bowen, L.L., 2001. The language of
comments in computer software : A sublanguage of
English. , 166(00), pp.1731–1756.

Ellsberg, M. and Heise, L., 2005. Researching Violence
Against Women. A PRACTICAL GUIDE FOR
RESEARCHERS AND ACTIVISTS, Washington:
World Health.

Farias, M. et al., 2015. A Contextualized Vocabulary
Model for Identifying Technical Debt on Code
Comments. In Seventh International Workshop on
Managing Technical Debt. pp. 25–32.

Farias, M.A. de F., Novais, R., et al., 2016. A Systematic
Mapping Study on Mining Software Repositories. In
ACM SAC.

Farias, M.A. de F., Silva, A.B., et al., 2016. Investigating
the Use of a Contextualized Vocabulary in the
Identification of Technical Debt : A Controlled
Experiment. In 18Th International Conference on
Enterprise Information System - ICEIS (Accepted).

Freitas, J.L., Da Cruz, D. and Henriques, P.R., 2012. A
comment analysis approach for program

Identifying Technical Debt through Code Comment Analysis

13

comprehension. Proceedings of the 2012 IEEE 35th
Software Engineering Workshop, SEW 2012, pp.11–
20.

Guo, Y., Spínola, R.O. and Seaman, C., 2014. Exploring
the costs of technical debt management – a case study.
Empirical Software Engineering, 1, pp.1–24.

Gupta, S. et al., 2013. Part-of-speech tagging of program
identifiers for improved text-based software
engineering tools. IEEE International Conference on
Program Comprehension, pp.3–12.

Howard, M.J. et al., 2013. Automatically mining software-
based, semantically-similar words from comment-code
mappings. IEEE International Working Conference on
Mining Software Repositories, pp.377–386.

Izurieta, C. et al., 2012. Organizing the technical debt
landscape. 2012 3rd International Workshop on
Managing Technical Debt, MTD 2012 - Proceedings,
pp.23–26.

Jick, T.D., 1979. Mixing Qualitative and Quantitative
Methods : Triangulation in Action Mixing Qualitative
and Quantitative Methods : Triangulation in Action *.
Qualitative Methodology, 24(4), pp.602–611.

Li, Z. et al., 2014. A systematic mapping study on
technical debt. The Journal of Systems and Software,
101, pp.193–220.

Maalej, W. and Happel, H.-J., 2010. Can development
work describe itself? 7th IEEE Working Conference
on Mining Software Repositories (MSR), pp.191–200.

Maldonado, E.S. and Shihab, E., 2015. Detecting and
Quantifying Different Types of Self-Admitted
Technical Debt. In 7th International Workshop on
Managing Technical Debt. pp. 9–15.

Maletic, J.I., Collard, M.L. and Marcus, A., 2002. Source
Code Files as Structured Documents. In Proceedings.
10th International Workshop on. pp. 289–292.

Mendes, T.S. et al., 2015. VisMinerTD - An Open Source
Tool to Support the Monitoring of the Technical Debt
Evolution using Software Visualization. In 17th
International Conference on Enterprise Information
Systems.

Nugroho, A., Visser, J. and Kuipers, T., 2011. An
Empirical Model of Technical Debt and Interest
Software Improvement Group. Proceeding of the 2nd
working on Managing technical debt MTD 11, p.1.

Potdar, A. and Shihab, E., 2014. An Exploratory Study on
Self-Admitted Technical Debt. In IEEE International
Conference on Software Maintenance and Evolution.
pp. 91–100.

Salviulo, F. et al., 2014. Dealing with Identifiers and
Comments in Source Code Comprehension and
Maintenance : Results from an Ethnographically-
informed Study with Students and Professionals. In
Proceedings of the 18th international conference on
evaluation and assessment in software engineering.
ACM. p. 48.

Segal, J., Grinyer, A. and Sharp, H., 2005. The type of
evidence produced by empirical software engineers.
ACM SIGSOFT Software Engineering Notes, 30(4),
pp.1–4.

Shokripour, R. et al., 2013. Why So Complicated ? Simple

Term Filtering and Weighting for Location-Based Bug
Report Assignment Recommendation. , pp.2–11.

Shull, F., Singer, J. and Sjoberg, D., 2008. Guide to
Advanced Empirical Software Engineering, Springer.

Souza, S.C.B. et al., 2006. Which documentation for
software maintenance? Journal of the Brazilian
Computer Society, 12(3), pp.31–44.

Storey, M. et al., 2008. TODO or To Bug : Exploring How
Task Annotations Play a Role in the Work Practices of
Software Developers. In ICSE: International
Conference on Software Engineering. pp. 251–260.

Wohlin, C. et al., 2012. Experimentation in Software
Engineering,

Yang, J. and Tan, L., 2012. Inferring semantically related
words from software context. In 2012 9th IEEE
Working Conference on Mining Software Repositories
(MSR). Ieee, pp. 161–170.

Zazworka, N. et al., 2013. A case study on effectively
identifying technical debt. In Proceedings of the 17th
International Conference on Evaluation and
Assessment in Software Engineering - EASE ’13. New
York, New York, USA: ACM Press, pp. 42–47.

Zazworka, N. and Ackermann, C., 2010. CodeVizard: A
Tool to Aid the Analysis of Software Evolution.
Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement, 2(4), pp.63:1–63:1.

DCEIS 2016 - Doctoral Consortium on Enterprise Information Systems

14

