
SLAaaS: an OCCI Compliant Framework for Cloud SLA
Provisioning and Violation Detection

Gregory Katsaros, Thijs Metsch and John Kennedy
Intel Corporation, Cloud and Service Lab, Intel Labs Europe, Leixlip, Ireland

Keywords: Service Level Agreements, OCCI, Cloud, Violations, Open Source.

Abstract: SLAs are an integral part of all modern service provisioning operations. They have been a topic of discussion,
research and development for many years but still the norm is the use of rigid, complex and not easy to
automate Service Level Agreements. In this paper we are presenting a service framework that is leveraging
the OCCI specification in order to facilitate standardized SLA provisioning and violation detection. This SLA
as a Service (SLAaaS) offering is provided as an open source framework to any Service Provider that wants
to efficiently enhance his infrastructure with SLA support.

1 INTRODUCTION

A Service Level Agreement (SLA) is a set of
guaranteed terms and conditions that a customer
agrees upon related to a service that a Service
Provider (SP) is offering. This contractual
relationship between the user and the provider of a
service is something that both parties appreciate for
different reasons. On the one end, the customer
demands the existence of a SLA in order to ensure the
minimum quality of the service that he receives. On
the other side, the provider uses the SLA in order to
define and classify the provided offerings, use it as an
accounting and billing toolkit or even exploit it for
demonstrating the reliability of their provided
services.

To this end, cloud SLAs between service
consumers and providers about their offerings must
be negotiated, stored, modified and monitored in
order to ensure the agreed terms and facilitate the
service provisioning operations. To this point, a
reason that many customers and enterprises are
holding off migrations to cloud computing services
are the rigid and static SLAs and supported operations
that the providers are exposing. These agreements are
usually presented as a static text, non-machine
readable and non-negotiable (e.g. Amazon EC2’s
SLA (Amazon, 2015a), S3’s SLA (Amazon, 2015b)
etc.). Often those contracts are long legal documents
or abstract definitions of guarantees that cannot be
related with the real needs of the customer.

Such cloud services usually provision a single

type of SLAs to all customers, but enterprise users are
willing to pay more for individual SLAs with custom
terms and more control. On the other hand, some
cloud service providers do not have the infrastructure
to guarantee their offerings or building such
infrastructure is expensive and customized to the
technologies they are using. In that context, the OCCI
SLA as a Service (SLAaaS) is an open source
framework that aims at facilitating the SLA provision
process as well as the monitoring and violation
detection. It leverages the OCCI (OCCI OGF, 2015)
specification and implements an extension which will
allow the software defined SLA provisioning.

2 RELATED WORK

There have been in the past several initiatives and
effort spend into developing structures and languages
that capture the SLA relationship between customers
and providers. WSLA (IBM, 2003), WS-Agreement
(GRAAP-OGF, 2007) and WS-Policy (W3C, 2007b)
are some examples of them that became relatively
known in that sector. These languages are focused on
the specification of functional and quality properties
of web services. WS-Agreement is an OGF
recommendation, which is independent from the
content of the agreement and does not provide any
negotiation features. It is the related OGF
specification WS-Negotiation that provides
mechanisms for standardized negotiations. These
OGF specifications do not cover the establishment of

Katsaros, G., Metsch, T. and Kennedy, J.
SLAaaS: an OCCI Compliant Framework for Cloud SLA Provisioning and Violation Detection.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 355-362
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

355

an overarching SLA in multiple service domains
though. Other specifications that seek to address
explicitly specified semantics include SAWSDL
(W3C, 2007a) and OWL-S (DAML-Services, 2008)
for service descriptions. Notably an extension for
WS-Agreement named Semantic WS-Agreement
Partner Selection (SWAPS) has been suggested in
(Oldham et al., 2006). On top of all these definitions
there have been numerous research projects that built
SLA functionalities within service oriented and cloud
platforms (e.g. (Georgina Gallizo, 2010)
(Mavrogeorgi et al., 2012)), as well as other that tried
to contribute towards modelling or machine readable
syntaxes (Happe et al., 2011). The report in
(Dimosthenis Kyriazis, 2013) captures a big number
of European initiatives that dealt with SLAs in
manifold ways during the last 10 years.

In the specific case of IaaS, the OGF OCCI
working group has suggested a specification on how
SLAs can be negotiated and related to IaaS
provisioning. This extension to the OCCI has been
already proposed and is available for public comment
(Gregory Katsaros, 2015) before it becomes a part of
the OCCI v1.2 release later this year.

The framework presented in this paper is an
implementation of the OCCI SLA specification. It is
provided as an open source toolkit through Github1
under Apache 2.0 license that aims at automating,
simplifying and standardizing the SLA provisioning
and enforcing process.

3 OCCI SLAaaS FRAMEWORK

SLA as a Service (SLAaaS) is a framework of service
components which is offering capabilities of SLA
provisioning, SLA template and Service Level
Objectives (SLOs) definition, SLA monitoring and
agreement violation detection. A Service Provider
(SP) can use the framework to setup his own SLA
management service or he can collaborate with an
independent SLAaaS provider. A service customer
can therefore interact with the SLAaaS using proper
credentials (related with the SP) using the exposed
API in order to discover the available SLA templates,
instantiate a SLA and observe whether a term is
fulfilled or violated during the service runtime.

The innovations introduced by the SLAaaS are
related with the following topics:
• Machine readable and software defined SLAs:

through the interfaces exposed by the SLAaaS one
could define agreement templates and provision

SLAs expressing all the high-level terms as well
as the low-level metrics associated with the
evaluation of those terms. A structured data
format has been introduced to capture those
definitions and allow the internal components of
the framework to evaluate the terms of each
service automatically.

• Standards compliance (OCCI): the interface
protocol and data structure of the SLA definitions
are compliant with the OCCI and OCCI SLAs
extension specification. The standardization of
the protocol and interface of the SLAaaS will
facilitate the adoption and strengthen the impact
of the framework on the cloud community.

• Automated SLA lifecycle process: an important
feature of the SLAaaS framework is that it does
not only offer provisioning capabilities but a full
lifecycle SLA management and violation
detection. Upon creation of a SLA resource the
monitoring process begins through which the
agreement terms are being transformed into
policies and actions which are automatically
being enforced and triggered.

• Open source and highly configurable software:
The overall framework is available as an open
source project which with appropriate
configuration could serve any kind of service
offering and underlying infrastructure.
The SLAaaS framework is a set of components

with distinctive responsibilities and operation. The
architecture (Figure 1) can be conceptually split into
the Provisioning, the SLA Monitoring and Violation
Detection and the Data Collection parts. In the
following subsections we elaborate on the design and
operation of each part of the architecture.

Figure 1: Internal architecture of SLAaaS framework.

1 https://github.com/IntelLabsEurope/OCCI-SLAs

OCCI 2016 - Special Session on Experiences with OCCI

356

3.1 OCCI SLA Provisioning

The core capability of the SLAaaS is to provision
OCCI compliant service level agreements. To this
end, this process follows the rules and principles
defined by the OCCI specification (OCCI OGF,
2015). Therefore the framework has an OCCI enabled
boundary interface that supports HTTP POST, PUT,
GET and DELETE operations for creating, updating,
acquiring and removing a SLA resource. The backend
structure of the OCCI SLAs has been realized using
the Kinds and Mixins mechanism offered by the
OCCI specification and has been described in detail
in the OCCI SLAs extension specification document.
The implementation of the OCCI SLAs extension is
based on the open source Python framework Pyssf2
Our implementation defines all the core entities and
mixins of the OCCI SLA mechanism and exposes the
necessary RESTful, OCCI enabled interfaces for the
management of the resources. In addition, all
instances are being stored persistently in a key-value
database upon creation.

Table 1: JSON format for definition of a SLA template.

{
 "name": "Name of the service provider",
 "scheme": "URI scheme of the service",
 "templates": {
 "name-of-template": {
 "terms": {
 "term-name": {
 "desc": "This is a brief description of the term.",
 "type": "SERVICE-TERM or SLO-TERM",
 "metrics": {
 "metric-1": {
 "value": X
 }
 }
 "remedy": Y
 }
 }

}

An important feature of this SLA framework is the
definition of OCCI SLA templates based on the
features of a service and the SLOs that a provider
wants to introduce. The mechanism that realizes that
functionality is based on a custom JSON
representation of the SLA template which is being
parsed by the SLAaaS and becomes available for the
instantiation of OCCI-enabled agreements. In the
following table the JSON format for the definition of
a template for a service provider is presented (Table
1). The exact structure and words in bold must be
used in order for the SLAaaS to effectively parse and
introduce the defined SLA template. The rest of the
information cover:

• the name of the service provider and URI scheme
of the service

• the name of the template
• the terms included in a template the metrics that

each term is consisted of
• the remedy represents the cost that the service

provider has to pay in case a SLA violation of the
specific service and template is being triggered.
Based on that structure, each service can have

multiple templates, each template can have multiple
terms, and each term can have multiple metrics. As
far as the terms definition concerns, the type of one
can be either SERVICE-TERM or SLO-TERM. This
naming convention follows the suggested structure of
the OCCI SLAs specification introduced in the OCCI
1.2. A service term defines the configuration metrics
that characterize a service, while a SLO term captures
the metrics that define the guaranteed quality of
service through a set of metric values. Only the SLO
term and its metrics are being monitored during
runtime. In order for a SLO term to become violated,
all defined metrics of it needs to be violated too. A
metric under a SLO term, apart from the value
attribute, contains also the attribute limiter type. The
limiter type defines whether the declared value is the
maximum allowed (limiter type: max), minimum
allowed (limiter type: admin) or an average value
with a certain margin (limiter type: margin). In the
last case an addition attributed is needed to declare
the marginal percentage (limiter value: X).

The OCCI SLAs templates interface parses the
pre-mentioned structure and creates the appropriate
agreement template and agreement terms mixins,
which are stored in the persistent database. Those are
being later used during the Agreement instantiation
process (OCCI SLAs backend).

This OCCI SLA service framework provides a
layer of authentication for each request which is
achieved through the use of tokens. Initially a user
must request a token from the SLA service by
providing a username and password which are then
validated against a keystone database. If the username
and password are valid then a token is returned. This
token is then used in subsequent requests to OCCI
SLA (Table 2).

Table 2: Example of a request for an authentication token.

Curl –i –X GET \
 -H “Authorization:Basic aW9saWU6aW9saWUh” \
 -H “Content-Type:text/occi” \
‘https://sla.mobile-cloud-networking.eu/auth/token’

The username and password are encoded in base64
and added to the Authorization header. The token
typically expires in 50 minutes and a new token will

2 https://pypi.python.org/pypi/pyssf

SLAaaS: an OCCI Compliant Framework for Cloud SLA Provisioning and Violation Detection

357

need to be generated. In the next sections the
authentication token is being passed in a request to
create an SLA agreement.

3.2 SLA Monitoring and Violation
Detection

The instantiation of a SLA is based on the OCCI
protocol and is achieved by an HTTP invocation like
the curl command in Table 3.

In the previous example, the SLAaaS is being
hosted in the localhost and an agreement of the
template medium bronze will be created. The validity
period of the agreement is also being specified
through the appropriate attributes (effectiveFrom,
effectiveUntil). At this point, the SLA instance has
been created and there are two additional steps before
the monitoring and detection process begins: (a) the
agreement instance needs to be associated with the
appropriate service resources, and (b) the customer
needs to accept the agreement. For the relation of the
agreement resource to the service resource an
agreement link is being created (Table 4). The
contents of the agreement headers are shown in Table
5.

Table 3: OCCI SLA instantiation curl command.

curl -i -X POST \
 -H "Category:agreement;

scheme=\"http://schemas.ogf.org/occi/sla#\"" \
 -H "Category: medium_bronze; scheme=

\"http://sla.ran.org/agreements#\"" \
 -H "Content-Type:text/occi" \
 -H "X-OCCI-Attribute: occi.agreement.effectiveFrom =

\"2014-11-02T02:20:26Z\"" \
 -H "X-OCCI-Attribute: occi.agreement.effectiveUntil =

\"2015-11-02T02:20:27Z\"" \
 -H “X-AUTH-TOKEN:

851bff66a097451e84fb39a828ecbccd” \
 -d 'http://localhost:8888/agreement/'

Where AGREMENT ID and SERVICE

RESOURCE ID are the respective URI identifier of
the agreement and service instances. For the
acceptance of the SLA and initiation of the
monitoring phase the command in Table 6 is being
executed.

Table 4: OCCI Agreement Link instantiation curl
command.

curl -v -X POST localhost.:8888/agreement_link/ -H "$(cat
agreement_headers)"

Table 5: Agreement headers for the Agreement Link
instantiation.

Category: agreement_link;
scheme="http://schemas.ogf.org/occi/sla#"; class="kind"
X-OCCI-ATTRIBUTE: occi.core.source='AGREEMENT_ID'
X-OCCI-ATTRIBUTE:
occi.core.target='SERVICE_RESOURCE_ID'
X-AUTH-TOKEN: 851bff66a097451e84fb39a828ecbccd
Content-Type: text/occi

As soon as the SLA instance enters the validity

period and is linked (via an OCCI Link) with a
resource, the Rules Engine component will identify it,
parse all the information related with the defined
terms and create a policy file that capture those terms
and the appropriate actions to be taken. The time
interval which the component searches for valid
SLAs is defined within the Rules Engine and
represents the time granularity of the SLAaaS
operation.

Table 6: Acceptance of OCCI SLA instance.

curl -i -X POST \
 -H "Category: accept; scheme =

\"http://schemas.ogf.org/occi/sla#\"" \
 -H "Content-Type:text/occi" \
 -H “X-AUTH-TOKEN:

851bff66a097451e84fb39a828ecbccd” \
 -d

'http://localhost:8888/AGREEMENT_ID?action=accept'

The policy mechanism of the SLAaaS system has
been developed based on the open source, Python
framework Intellect3. Using Intellect’s syntax, the
Rules Engine creates one policy file for each active
Agreement instance, which includes one rule for each
SLO term in the Agreement template. In order for the
Intellect rule to be triggered, at least one of the term’s
metrics needs to be breached. The Aggregator
components takes care of the data acquisition for all
the metrics of a SLO term that needs to be assessed.

In case a metric included in a SLO breaches the
defined threshold, a violation is triggered by the
internal policy mechanism of the SLAaaS Rules
Engine. To this end, an OCCI Violation resource is
being instantiated to the OCCI SLAs backend and is
being linked to the respective Agreement resource.
The Rules Engine will continue checking the violated
term and as soon as it becomes valid again will restore
the state of the term (from violated to fulfilled),
remove the Violation instance and continue the
normal operation of SLA monitoring and detection.
In addition to the creation of the OCCI Violation
resource, the Rules Engine registers an event to a
message queue in order for any

3 https://pypi.python.org/pypi/Intellect

OCCI 2016 - Special Session on Experiences with OCCI

358

actuation component (e.g. infrastructure orchestrator
etc.) to be able to detect the violation event. The
current implementation supports the RabbitMQ
system and the message has the format shown in
Table 7.

Table 7: JSON representation of OCCI Violation message.

{
'agreement_id':agreement_id ,
'timestamp': epoch_timestamp,
'resource': related_resourece_id,
'term': term_name,
'penalty' :remedy_value_from_template

}

3.3 Data Collection

SLAaaS is designed to consume different collector
for each metric that needs to be monitored. The
rationale is that every metrics in an SLO term can be
provided by different monitoring systems, thus the
API providing the value could vary. In that context,
every time that the Aggregator component subscribes
a SLO term it invokes the Resources DB in order to
acquire the Collector name that each metric is related
with. Following that it subscribes each metric against
the appropriate collector class. The Collectors
components provide the interface definitions for the
monitoring collectors. Every metric of a SLO term is
being subscribed to the related monitoring API using
the limiters threshold defined in the agreement. In
case a monitoring system does not provide a
subscription/notification mechanism, the collector
class will have to raise a thread which will poll the
monitoring API for the metrics value and check
whether the metrics threshold has been breached.
This monitoring interval is defined within the code of
each collector and represents the granularity of the
violation detection frequency.

4 VALIDATION

4.1 Performance Evaluation

The SLAaaS is a Python-based, WSGI application
based on the Pyssf framework for OCCI applications.
The internal operation of the mechanism is using
threads with a configurable time interval for the
detection of the valid SLAs and the monitoring of the
terms included in each one of them. In the following

charts the performance of the SLAaaS process is
being presented in terms of CPU and memory
utilization in various frequencies of operation time
interval.

Figure 2: Baseline SLAaaS performance with variable time
interval.

Specifically, Figure 2 presents the baseline
performance of the SLAaaS when configuring the
operational time interval for the valid SLA detection
and the violation monitoring to different values. As
expected, as the time interval shortens the baseline
CPU utilization increases. Overall, the baseline
performance, which is defined when hosting less than
10 SLA instances, is relatively stable with a slight
peak in the intensive configuration (5 sec - 5 sec).

Being a RESTful, OCCI-based application, the
SLAaaS is a highly scalable web application that can
provision multiple SLA instances and enable the
monitoring capabilities over them. Moreover, the use
of python for the implementation results in an
efficient execution with small memory and CPU
consumption in general. In the following chart
(Figure 3) the performance of the framework is being
demonstrated while is horizontally scaled by multiple
SLA instances.

Figure 3: Performance during horizontal scaling using live
monitoring data.

4 At this experiment we used Intels Service Assurance
Administrator plugin (http://www.intel.com/content/www/
us/en/software/intelservice-assurance-administrator.html).

SLAaaS: an OCCI Compliant Framework for Cloud SLA Provisioning and Violation Detection

359

In that experiment the CPU and memory
utilization of the SLAaaS python process is captured
while multiple SLA instances are monitored by the
framework. It is worth mentioning that the instances
are linked with real VM hosted in the Openstack
testbed. To this end, the infrastructures monitoring
plugin4 introduces performance constraints that affect
the performance of the SLAaaS framework. The
variations of response time of the SAA under multiple
and simultaneous invocations by the SLAaaS
monitoring collector leads to thread execution delay,
therefore increased CPU utilization of the python
process.

Figure 4: Performance during horizontal scaling using
mock-up monitoring API.

In order to evaluate the performance of the SLAaaS
without the bottleneck and impact of the monitoring
API, we repeated the scalability experiment by
replacing the monitoring collector with an efficient
mock-up monitoring interface (Figure 4).

The results collected by this experiment
demonstrate again the increase of the CPU utilization
during the scalability of the framework in a much
more gradual rate and with very small captured
values. The observed results indicate that the SLAaaS
as a standalone application is highly efficient in terms
of resources consumed.

This shows normal scalable behaviour which can
be effectively managed by allocating more resources
(e.g. CPU cores) to the VM instance that hosts the
framework. Finally, the SLAaaS python application
is affected by the external interfaces that it consumed,
specifically the monitoring APIs that it consumes.
This is a reasonable finding while the external APIs
and interactions cannot be whatsoever controlled or
optimized.

The final evaluation experiment of the SLAaaS
framework aims at capturing the response time of the
RESTfull API and specifically when we request a
single resources and when we request all the available
resources. This action has been repeated in different

SLA workload situations, from a few monitored
SLAs (<10) to a high workload of 120 monitored
SLAs. In Figure 5 the average response time of 100
GET invocations are being presented, for the single
and all of the resources in the running system. A slight
increase on the values can be recognised as the
number of the monitored load increases. Overall, the
values of the response time are very small between
one and three milliseconds. The increased response
time at the case of the single resources acquisition is
because all of the SLA information need to be
extracted from the persistent storage, parsed and
returned to the client. The GET all invocation returns
only the location identifiers of the available resources
and not the complete contents of the resources, thus it
is being executed quicker.

Figure 5: Average response of SLAaaS during horizontal
scaling.

4.2 SLA Federation in Multi-Provider
Scenario

The ability of effectively capturing the SLA
conditions of federated services was a major
requirement of the design and implementation of the
SLAaaS framework. To this end, the federation of
services and consequently of the SLAs that each
service provider offers is realized through the
Agreement Links feature of the OCCI SLAaaS. Each
SLA that is being instantiated has to be linked (with
an Agreement Link) with an appropriate resource that
represents the offered service. In case of an
infrastructure provider such resource could be the
compute node identifier or in case of an
application/service provider that could be the
identifier of a representation of the service instance.
In order to realize the federation scenario between
two services (e.g. RAN and EPC), an Agreement Link
has to be created from the one SLA instance to the
other. In Figure 6 the SLA of a RAN service instance

OCCI 2016 - Special Session on Experiences with OCCI

360

is being presented which is linked through an
Agreement Link to an EPC SLA instance.

Figure 6: Attributes list of a federated SLA resource.

The target agreement (in this example the EPC
service agreement with ID 85611236-a342-4041-
b8be-f73f1cf54a8b) is independent from the source,
RAN agreement. It can be instantiated and monitored
by the SLAaaS as presented previously. On the other
hand, the federated SLA instance (of the RAN
service) that incorporates the link to the EPC
agreement will begin to be monitored when all the
associated SLAs will be accepted and valid (in terms
of validity dates). Even if the RAN SLA instance is
valid, the RAN-EPC federated service will not start to
be monitored unless both of the related SLAs are
accepted and valid (shows the log of the SLAaaS
when it detects a federation SLA with an invalid
related SLA).

As soon as both SLAs are being accepted the
SLAaaS will subscribe the included terms to the
monitoring system and begin the detection and
evaluation process. During the latter, when a violation
is detected in a term of one of the two related SLAs
then the complete federation SLA is considered to be
violated.

In Figure 7 and Figure 8 the OCCI Viz5 application

Figure 7: Representation of the federated SLA with two
outgoing links towards another SLA and a resource (e.g.
compute).

Figure 8: Representation of an SLA with an outgoing link
towards a resource (e.g. compute) and an incoming link
from an SLA resource.

is used to demonstrate the relation of the federation
SLA. In circular graph the SLA entities are
represented as points in the coloured arc. Those points
are linked through a coloured line to other resources
such as infrastructure nodes, services or other SLA
instances. The direction of the links and therefore the
service federation is demonstrated through the
different colours of the depicted links. With red
colour an outgoing link is presented while with green
colour an incoming link.

5 https://github.com/IntelLabsEurope/OCCIViz

SLAaaS: an OCCI Compliant Framework for Cloud SLA Provisioning and Violation Detection

361

5 CONCLUSIONS

In any kind of service provisioning operation Service
Level Agreements are and will the means for
guaranteeing the quality of the offered service. The
Software as a Service (SaaS) revolution will only
highlight the immediate need for effective and easy to
use SLA assurance systems. In addition, the
developments in Software Defined Infrastructures
(SDI) demand the automation of all features within
the service provisioning and deployment.

In that context, the SLAaaS framework presented
in this paper is an effective, open source solution that
offer SLA and SLA templates provisioning as well as
violation detection features. It is based on the OCCI
specification, thus, exposes a simple but standardized
boundary interface over common HTTP RESTful
operations. It is configurable in order to be plugged
into any monitoring API by adding custom collectors’
implementations. The successful instantiation of an
Agreement resource leads to the enabling of the SLA
monitoring process which automatically detects any
violation, instantiates a respective OCCI resource and
notifies a message queue for that specific event.

Overall, the SLAaaS is a powerful toolkit that can
be easily integrated with any type of infrastructure
and enhance the operations and offerings of a Service
Provider.

ACKNOWLEDGEMENTS

This work has been supported by the Mobile Cloud
Networking project (MCN, 2015) has been partly
funded by the European Commission’s ICT activity
of the 7th Framework Programme (FP7/2007- 2013)
under contract number 318109 as well as by the
CloudWave FP7 project (contract number 610802)
(CloudWave, 2015).

REFERENCES

Amazon (2015a). Amazon EC2 Service Level Agreement.
http://aws.amazon.com/ec2-sla/.

Amazon (2015b). Amazon S3 Service Level Agreement.
http://aws.amazon.com/s3-sla/.

CloudWave (2015). CloudWave FP7.
http://cloudwavefp7.eu/.

DAML-Services (2008). DAML Services.
http://www.daml.org/services/owl-s/.

Dimosthenis Kyriazis (2013). Cloud computing. SLAs
Expoitation of research results.

http://ec.europa.eu/newsroom/dae/document.cfm?doc
id=2496.

Georgina Gallizo, Roland Kbert, G. K. K. O. K. S. S. G.
E. O. (2010). A service level agreement management

framework for real-time applications in cloud
computing environments. In Proceedings of the 2nd
International ICST Conference on Cloud Computing,
Cloud Com 2nd, pages 26–28, Barcelona, Spain. ACM.

GRAAP-OGF (2007). Web Services Agreement
Specification. http://www.ogf.org/documents/GFD.10
7.pdf.

Gregory Katsaros (2015). OCCI SLAs extension
specification. https://redmine.ogf.org/issues/276.

Happe, J., Theilmann,W., Edmonds, A., and Kearney, K. T.
(2011). Service Level Agreements for Cloud
Computing, chapter A Reference Architecture for
Multi-Level SLA Management, pages 13–26. Springer
New York, New York, NY.

IBM (2003). IBM Web Service Level Agreements.
http://www.research.ibm.com/people/a/akeller/Data/W
SLASpecV1-20030128.pdf.

Mavrogeorgi, N., Gogouvitis, S., Voulodimos, A.,
Katsaros, G., Koutsoutos, S., Kiriazis, D., Varvarigou,
T., and Kolodner, E. K. (2012). Content based slas in
cloud computing environments. In Proceedings of the
2012 IEEE Fifth International Conference on Cloud
Computing, CLOUD ’12, pages 977–978, Washington,
DC, USA. IEEE Computer Society.

MCN (2015). Mobile Cloud Networking FP7.
https://www.mobile-cloud-networking.eu/.

OCCI OGF (2015). Open Cloud Computing Interface Core.
https://www.ogf.org/documents/GFD.183.pdf.

Oldham, N., Verma, K., Sheth, A., and Hakimpour, F.
(2006). Semantic ws-agreement partner selection. In
Proceedings of the 15th International Conference on
World Wide Web, WWW ’06, pages 697–706, New
York, NY, USA. ACM.

W3C (2007a). Semantic Annotations for WSDL and XML
Schema. http://www.w3.org/TR/sawsdl/.

W3C (2007b). Web Services Policy 1.5 Framework.
http://www.w3.org/TR/ws-policy/.

OCCI 2016 - Special Session on Experiences with OCCI

362

