
Reasoning about Inconsistency in RE
Separating the Wheat from the Chaff

Anna Zamansky1, Irit Hadar1 and Daniel M. Berry2
1Information Systems Department, University of Haifa, Haifa, Israel

2Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Keywords: Human Aspects of Software Development, Inconsistency Management, Requirements Engineering,
Requirements Validation Formula.

Abstract: Inconsistency is a major challenge in requirements engineering. Traditionally, software requirements specifi-
cations (SRSs) are expected to be consistent, with the underlying assumption that this consistency is always
achievable. However, with the growing complexity of software systems it has become clear that this assump-
tion is not always realistic. This has led to new paradigms for inconsistency management, acknowledging that
it is not only inevitable, but also even desirable at times, to tolerate inconsistency, even temporarily. However,
for these paradigms to be widely accepted in industry, practicing software engineers must thoroughly under-
stand the nature of inconsistency in SRSs and the strategies for its handling. This paper proposes a research
agenda for preparing practicing software engineers to accept and successfully implement inconsistency man-
agement paradigms. As a first step in this direction, the paper describes an ongoing study in which we design
an intervention into the perceptions of inconsistency for practicing software engineers. The intervention builds
on teaching to them the Zave–Jackson requirements validation formula as an aid for analyzing the types of
inconsistency they face, and conducting an empirical study of the effect of this intervention on their incon-
sistency management.

1 INTRODUCTION

Handling inconsistencies is a key challenge in re-
quirements engineering (RE). Inconsistency in RE is
typically described in the literature as a situation in
which requirements or specifications contain con-
flicting or contradictory descriptions of the expected
behavior of the system or of its domain. Such con-
flicting descriptions may come as a result of, for ex-
ample, conflicting goals between different stakehold-
ers, and changes introduced during the evolution of
the requirements. (Nuseibeh et al., 2000; Nuseibeh et
al., 2001). Traditionally, handling inconsistencies
meant eliminating them all, with the underlying as-
sumption that this elimination is always achievable.
However, with the growing complexity of software
systems it has become clear that this assumption is not
always realistic. Indeed, over the last decades, a more
tolerant approach toward inconsistency has evolved
(e.g., Finkelstein et al. 1994; Nuseibeh et al. 2000;
Finkelstein, 2000; Easterbrook and Chechik, 2001;
Nuseibeh et al., 2001; Spanoudakis and Zisman,
2001; Ernst et al., 2012).

For a successful application of such approaches in

industry, however, a thorough understanding of the
notion of inconsistency by practitioners is required.
Recent research (Hadar and Zamansky, 2015) demon-
strates that this understanding is yet to be achieved.
More specifically, practitioners identify incon-
sistency at times in cases of incompleteness or incor-
rectness, e.g., when an implementation does not meet
the given set of requirements. The ability to distin-
guish inconsistency from other phenomena would en-
able effective inconsistency management in particu-
lar, and RE in general.

Research in RE has produced an explosion of on-
tological distinctions in requirements and their speci-
fications. These distinctions matter for inconsistency
management (Borgida et al., 2015), and therefore can
be recruited for tackling the challenge of incon-
sistency management. One prominent example is the
influential Zave–Jackson validation formula (ZJVF),
which distinguishes Requirements R, Specifications
S, and Domain Assumptions D (Zave and Jackson,
1997). Understanding the ZJVF provides:

1. a framework for partitioning a well formed soft-
ware requirements specification (SRS) into its R,
S, and D parts, and for validating that a system

Zamansky, A., Hadar, I. and Berry, D.
Reasoning about Inconsistency in RE - Separating the Wheat from the Chaff.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 377-382
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

377

built according to S will result in R being met if
the system is run in an environment in which D
holds, and

2. a framework for reasoning about inconsistencies
in an SRS that makes it very clear what the options
are in order to resolve the inconsistencies, so that
that the stakeholders can make rational decisions
about the inconsistencies.

This paper explores the question of whether under-
standing the ZJVF and the ontological distinctions it
imposes help an analyst to understand and manage in-
consistency. Namely, it investigates how understand-
ing the ZJVF and its ontological distinctions may af-
fect analysts’ decision making processes, enabling
them to differentiate between inconsistencies and
other failures, which are currently perceived as incon-
sistency but are actually some forms of incomplete-
ness or incorrectness that need to be managed differ-
ently from inconsistencies. In addition, the paper pro-
poses a research agenda for finding means to guide
analysts’ understanding of inconsistency in RE and
for empirically evaluating these means. We start with
examining the ZJVF.

The next section provides details on the ZJVF and
discusses it in the context of inconsistency manage-
ment in RE. Section 3 presents an outline of experi-
ments we plan to conduct for evaluating the contribu-
tion of the ZJVF for distinguishing between incon-
sistency types and between inconsistency and incor-
rectness or incompleteness, and deciding on the ap-
propriate strategies to manage them, based on this dis-
tinction. Section 4 discusses the potential contribu-
tion of the proposed research agenda and future re-
search steps.

2 THE ZAVE-JACKSON
VALIDATION FORMULA AND
INCONSISTENCY
MANAGEMENT

The ZJVF assumes that part of the world has been di-
vided into an environment, Env, and a system, Sys,
that overlap, i.e., intersect, at their interface, Intf, as is
shown in Figure 1. The Env is the part of the world
that is affecting and is affected by the Sys, and the Sys
is the computer-based system (CBS) that is desired by
the customer who provides the requirements. The el-
ements of the ZJVF, D,S⊢R, are the assertions D, S,
and R:

 D, domain assumptions, is what about the Env that
the Sys is allowed to assume in its execution in the
Env; it is written in the vocabulary of the Env.

 S, specification, is a description of the behavior of
the Sys; it is written in the vocabulary of the Intf,
which is the vocabulary shared by the Env and the
Sys.

 R, requirements, is a description of the customer’s
requirements for the Sys; it is written in the vocab-
ulary of the Env.

The formula says that the Sys is validated to meet its
requirements in the Env if given the holding of D, S
is sufficient to entail R.

Figure 1: The ZJVF Worldview.

A key point of the ZJVF framework is that a well
formed SRS has all of D, S, and R, and each sentence
in the SRS is identifiable as being one and only one
of D, S, and R. Typically, D is given in indicative
mood in present tense in sentences about the Env; S is
given in optative mood in sentences about the Sys us-
ing the verb “shall”; and R is given in optative mood
in sentences about the Env using the verb “will”.
There are other ways to make the distinctions clear.

It should be noted that in the formula D,S⊢R, each
of D, S, and R is an assertion written in a formal lan-
guage so that the required proof can be carried out. S,
being about a program, written in a human-made lan-
guage, is formal in that it is possible to carry out a
formal proof that a program P satisfies S. However,
as statements about the real world, each of D and R is
inherently informal, because we are never certain
about our knowledge of the real world, and what we
believe to be true about the real world is constantly
changing.

Moreover, each of D, S, and R, being an assertion,
can be either consistent (satisfiable) or inconsistent in
the classical logical sense. For example, the logical
formula AA is consistent, but AA is incon-
sistent.

Each of D and R, being an assertion about the real
world, if consistent, can be correct, incorrect, or un-
determined. An assertion A is correct if A is known to
accurately describe the real world. A is incorrect if A
is known to not accurately describe the real world1. A
is undetermined if whether A is correct or incorrect is
not known. For example “The earth is a sphere” is

1Note that “incorrectness” can be considered as inconsistency with

the Env. Hence, there is a logic to calling all sorts of problems with

an SRS “inconsistency”.

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

378

correct, “The earth is a disk” is false, and “There are
gravity waves” was undetermined prior to 2016.
However, as of 11 February 2016, the world learned
that scientists had determined that it is correct (Cho,
2016).

Thus, as opposed to consistency, correctness is
not a logical question, but an empirical one, which
can be answered only by observation. The job of sci-
ence is to determine whether a logically consistent as-
sertion, a.k.a. a theory, is correct. Experiments plus
statistical analysis of the data generated during the ex-
periments allow us to determine to whatever degree
of certainty we need, whether a theory is supported
by the data and thus whether the theory as an assertion
about the real world is correct. Even something re-
garded as correct at some level of detail may not be
correct at another level of detail. For example, “The
earth is a sphere” is correct for most purposes, but for
other purposes, it is incorrect, and instead, “The earth
is an oblate spheroid” is correct.

Finally, S can be OK or not OK with respect to D
and R. S is OK w.r.t. D and R if D,S⊢R and is not OK,
otherwise. In other words, an S, specifying a program
is OK if it causes R to be met when D holds, even if
in another D’, S may not be OK.

Using the above terms, the ZJVF is based on two
assumptions, which are crucial for our purpose:
1. Each of D, S, and R is consistent, so that it is pos-

sible for D and S to be correct and S to be OK.
2. D is correct in the Env, and R can be correct in the

Env,; that is, D accurately describes the existing
Env, and there is nothing in the world that would
prevent R from accurately describing a future Env.

Each way that one or both of the above assumptions
does not hold gives rise to different types of what is
called “inconsistency” in the literature cited in Sec-
tion 1.

The following simple examples demonstrate the
different types.

Consider the following requirements:
R1. The GPA of every student will be reported.
R2:

r2a. The GPA of every student will be reported.
r2b. The GPA of any student who has not taken
any courses will not be reported.

R3:
r3a. The GPA of every student who has taken at
least one course will be reported.
r3b. The GPA of any student who has not taken
any courses will not be reported.

R4. A useful, accurate letter of recommendation will
be generated automatically (i.e., with artificial intel-
ligence (AI)) for each student.

R1 is consistent. R2 is inconsistent. R3 is consistent,
and R4 is consistent.
R1 can be correct. R2 cannot be correct, because it is
inconsistent. R3 can be correct. R4 cannot be correct,
because automatically generating useful, accurate let-
ters of recommendation is beyond the capabilities of
software.

Let us now consider the following domain as-
sumptions:
D1. Each student takes at least one course.
D2. Each student takes zero or more courses.

D1 is consistent. D2 is consistent
D1 can be correct. D2 can be correct. If D1 is correct,
then D2 is correct, but not necessarily the reverse. If
D1 is incorrect, then D2 can still be correct.

Finally, consider the following specifications:

S1. The program shall report a student’s GPA as the
sum of the grades in her courses divided by the num-
ber of courses she took.
S2. For a student who took at least one course, the
program shall report the student’s GPA as the sum of
the grades in her courses divided by the number of
courses she took. For a student who took no courses,
the program shall report that the student’s GPA is not
defined.

S1 can be OK if it is never asked to compute the
GPA of any student who took no courses. S2 is OK
regardless of the number of courses taken by the stu-
dent, whose GPA is to be computed.

Let us systematically explore various SRSs with
these Ds, Ss and Rs, in each case starting with an R,
observing a D, and then picking an S. With each, we
describe the conclusion that an analyst should draw
and what his or her resulting course of action should
be.

Taking R as R1
Suppose that D1 is correct. Then, D1, S1⊢R1, and S1
is OK, even though S1 can be not OK, because given
D1, S1’s not OK state cannot occur.

Suppose, on the other hand, that D2 is correct. Then,
it is not the case that D2, S1⊢R1, in particular because
S1’s not OK state can occur. Also, if indeed there are
students who have not taken any courses, their GPA
cannot be reported as required by R1. In this case, the
customer must be asked to choose between two re-
sponses:
1. If students who have not taken any courses are ex-

tremely rare, then tolerate2 that D2 is incorrect
and treat the student who has not taken any
courses manually. This toleration is achieved by
replacing D2 by an admittedly incorrect D1 and

Reasoning about Inconsistency in RE - Separating the Wheat from the Chaff

379

falling back to D1, S1⊢R1.
2. Weaken R1 to an R that does not require that a

GPA be reported for all students and then have
software that checks for a student’s taking zero
courses, such as that specified by S2.

In this example, the customer knows that a student not
taking any courses is not rare at all and that it is better
that the software handles the case. Therefore, the cus-
tomer chooses to weaken R and to use software spec-
ified by S2.

Taking R as R2
An initial attempt to weaken R leads to R2, which is
inconsistent. Fixing the inconsistency leads to R3.

Taking R as R3
Suppose again that D2 is correct. Then, D2, S2⊢R3.
Interestingly, S2 is sufficiently robust that by itself,
S2⊢R3. That is, the distinction between D1 and D2 is
irrelevant.

Taking R as R4
No S can entail R4, because, as mentioned above, it is
simply not possible to algorithmically generate use-
ful, accurate letters of recommendation. Thus, the
customer must be told that his or her requirement can-
not possibly be met and to find another requirement.
A possible achievable requirement is to print human-
composed letters of recommendation that are already
stored in a database.

The above examples demonstrate how the analy-
sis of the RE problem through the lens of the ZJVF
induces different strategies for inconsistency man-
agement. While it may be sensible, and even desirable
in some cases, to tolerate incorrectness, inconsistency
in an SRS is an indication of an inherent, serious
problem. At the very least, the analyst discovering the
inconsistency must make a memo to the project that
the inconsistency exists so that all are aware of it and
can take it into account in their work. In this way, the
inconsistency is tolerated temporarily during an in-
vestigation into ways to resolve the inconsistency. Ul-
timately though, the inconsistency must be resolved
before the SRS can be considered as delivered. That
resolution may involve tolerating incorrectness,
changing the software, or abandoning or changing a
requirement. All these activities can be regarded as
managing an SRS’s inconsistency, in the more gen-
eral sense of the word “inconsistency”.

2Admittedly, for such a small, easily fixed problem, this choice is
clearly preposterous. However, in real life, there are statistically
rare situations that no man-made system can handle correctly in
every case for which a decision to tolerate the failures that will re-
sult in the situations is a reasonable choice. An example is the pos-
sibility that a flying aircraft will hit a bird and crash.

3 THE EXPERIMENT

Previous research has shown that practitioners in-
clude in their personal definitions of inconsistency
cases of incorrectness (Hadar and Zamansky, 2015).
For effective inconsistency management to be viable,
it is important that requirement analysts would fully
understand the difference between inconsistency and
incorrectness. We believe that a requirement analyst
who understands the ZJVF will make better distinc-
tions between inconsistency and incorrectness, lead-
ing to better strategies for handling these cases.
Therefore, we propose an intervention, that is, teach-
ing requirements analysts the ZJVF and how to use it
for identifying and understanding inconsistencies in
SRSs. Balaban et al., (2014) have shown how teach-
ing patterns to UML modelers led to the modelers’
producing better quality UML models. We plan to
employ a similar strategy here.

Thus, we propose empirical research addressing
the research question (RQ):

Does teaching a requirement analyst the ZJVF
improve his or her ability to identify and deal
with inconsistencies in SRSs?

To answer this RQ, we are considering an experiment
outline as described below.

The planned experiment is a pre-test–post-test ex-
periment, with the intervention occurring between the
tests (Shadish et al., 2002).

Pre-test:
a. The test presents examples of SRSs, in which in-

consistencies and incorrectness may exist. While
each SRS is divided into its D, S, and R parts, the
sentences of the SRS are not directly labeled as to
which of D, S, and R it is part of. Rather, linguistic
clues of some kind are provided e.g., “is” vs.
“shall” vs. “will”.

b. For each of these SRSs, the test asks if there is a
problem in the SRS, and if there is, what it is and
what should be done to solve it.

For the pre-test, it is hypothesized that most partici-
pants will not distinguish between inconsistency and
incorrectness, and between different types of incon-
sistency, leading to proposed strategies that may be
ineffective or irrelevant to the problem at hand, in-
cluding those that indicate that they have no clue as
to what is going on.

Intervention: Teaching the ZJVF, with emphases on
the distinction between R, S, and D and on how to use
the formula to find problems in an SRS and to suggest
resolutions to these problems.

Post-test: The test is the same as the pre-test.

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

380

For the post-test, however, it is hypothesized that the
participants will demonstrate an enhanced ability to
distinguish between different cases calling for differ-
ent solutions, that provide answers that are well fo-
cused as the example analyses given at the end of Sec-
tion 2.

At the time of this writing, we are running a series of
pilot studies of this experiment in order to

 refine the SRSs used in the experiment,

 refine the questions asked of each SRS,

 determine suitable hypotheses to test, and

 determine suitable measures of the participants’
responses that will allow testing the hypotheses.

4 INITIAL LESSONS LEARNED

From a pilot study already conducted, we have
learned several important lessons about conducting
the planned experiment and considerations to be
taken in order to achieve valid and insightful findings.

It is hard to create good SRSs for this purpose;
each SRS should be

 small enough to be dealt with in the few minutes
that are realistic for the short duration of a con-
trolled experiment,

 complex enough to have real problems that can be
found, but

 not so complex that there is a good chance that
participants will not find the problems.

It is hard to judge the computer-science background
of the participants, the background that is needed to
know

 the kind of defects that software can have,

 the limits of what software can do,

 the limits of what current hardware can do.

This information is needed to know whether it is rea-
sonable to expect participants to be able to find some
of the inconsistencies and incorrectnesses that can be
included in a proposed SRS.

It is hard to compose questions about an SRS;
each question should

 not reveal so much that someone can guess the an-
swer without at least an intuitive understanding of
the ZJVF, but

 not be so open ended that there is a good chance
for irrelevant answers.

It is hard to teach the ZJVF in the short period that is
realistic for the short duration of a controlled experi-

ment, to teach it well enough that participants are able
to apply it in order to correctly analyze SRSs and re-
solve their inconsistencies and incorrectnesses.

Finally, it is hard to motivate student participants
to answer post-test questions with other than “the
same as in the pre-test”.

5 DISCUSSION AND FUTURE
WORK

It is clear that inconsistency management should be
explicitly addressed in RE and techniques for doing
so should be included in the toolbox available to re-
quirements analysts.

This paper suggests that understanding the ZJVF
allows a requirements analyst to identify the sources
of a problem, i.e., an inconsistency or incorrectness,
in an SRS, and to know what needs to be done to re-
solve the problem. If the problem is an incorrect SRS,
the analyst can fix it directly. If resolving the problem
requires a decision from the customer, the analyst
knows what options can be offered to the customer
for the resolution.

The proposed research agenda can be seen as
complementary to the various theoretical frameworks
proposed for inconsistency management in RE, to-
ward bridging the gap between theory and practice.
More generally, the research is situated in the milieu
of research on how effective are the techniques in the
SE toolbox, e.g., as did Balaban et al. when they em-
pirically tested whether their pattern-based approach
for identifying abstractions helped students make bet-
ter UML class diagrams.

REFERENCES

Balaban, M., Maraee, A., Sturm, A. and Jelnov, P., 2014. A
pattern-based approach for improving model quality.
Software & Systems Modeling, Online: DOI
10.1007/s10270-013-0390.

Borgida, A., Jureta, I. and Zamansky, A., 2015. Towards a
general formal framework of Coherence Management
in RE. In Proceedings of the 23rd IEEE International
Requirements Engineering Conference (pp. 274–277)
IEEE.

Cho, A., 11 Feb. 2016. Gravitational waves, Einstein's rip-
ples in spacetime, spotted for first time. Science Maga-
zine, http://www.sciencemag.org/news/2016/02/gravi-
tational-waves-einstein-s-ripples-spacetime-spotted-
first-time.

Easterbrook, S., and Chechik, M., 2001. A framework for
multi-valued reasoning over inconsistent viewpoints. In

Reasoning about Inconsistency in RE - Separating the Wheat from the Chaff

381

Proceedings of the 23rd International Conference on
Software Engineering (pp. 411–420) IEEE.

Ernst, N. A., Borgida, A., Mylopoulos, J. and Jureta, I. J.,
2012. Agile requirements evolution via paraconsistent
reasoning. In Advanced Information Systems Engineer-
ing (pp. 382–397) Springer.

Finkelstein, A., 2000. A foolish consistency: Technical
challenges in consistency management. In Database
and Expert Systems Applications (pp. 1–5) Springer.

Finkelstein, A. C., Gabbay, D., Hunter, A., Kramer, J., and
Nuseibeh, B., 1994. Inconsistency handling in mul-
tiperspective specifications. IEEE Transactions onSoft-
ware Engineering, 20(8), 569–578.

Hadar, I. and Zamansky, A., 2015. Cognitive factors in in-
consistency management. In Proceedings of the 23rd
IEEE International Requirements Engineering Confer-
ence (pp. 226–229) IEEE.

Nuseibeh, B., Easterbrook, S. and Russo, A., 2000. Lever-
aging inconsistency in software develoment. Computer,
33(4), 24–29.

Nuseibeh, B., Easterbrook, S and Russo, A., 2001. Making
inconsistency respectable in software development.
Journal of Systems and Software, 58(2), 171–180.

Shadish, W. R., Cook, T. D., Campbell, D. T., 2002. Exper-
imental and Quasi-Experimental Designs for General-
ized Causal Inference. Boston: Houghton Mifflin.
ISBN 0-395-61556-9.

Spanoudakis, G. and Zisman, A. (2001). Inconsistency
management in software engineering: Survey and open
research issues. Handbook of software engineering and
knowledge engineering, 1, 329–380.

Zave, P. and Jackson, M., 1997. Four dark corners of re-
quirements engineering. ACM Transactions on Soft-
ware Engineering and Methodology, 6(1), 1–30.

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

382

