
The Validation Possibility of Topological Functioning Model using
the Cameo Simulation Toolkit

Viktoria Ovchinnikova and Erika Nazaruka
Department of Applied Computer Science, Riga Technical University, Setas Street 1, Riga, Latvia

Keywords: Topological Functioning Model, Execution Model, Foundational UML, UML Activity Diagram.

Abstract: According to requirements provided by customers, the description of to-be functionality of software systems
needs to be provided at the beginning of the software development process. Documentation and
functionality of this system can be displayed as the Topological Functioning Model (TFM) in the form of a
graph. The TFM must be correctly and traceably validated, according to customer’s requirements and
verified, according to TFM construction rules. It is necessary for avoidance of mistakes in the early stage of
development. Mistakes are a risk that can bring losses of resources or financial problems. The hypothesis of
this research is that the TFM can be validated during this simulation of execution of the UML activity
diagram. Cameo Simulation Toolkit from NoMagic is used to supplement UML activity diagram with
execution and allows to simulate this execution, providing validation and verification of the diagram. In this
research an example of TFM is created from the software system description. The obtained TFM is
manually transformed to the UML activity diagram. The execution of actions of UML activity diagrams was
manually implemented which allows the automatic simulation of the model. It helps to follow the
traceability of objects and check the correctness of relationships between actions.

1 INTRODUCTION

Development of the software system is a complex
and stepwise process. At the beginning an analyst
needs to ensure the description of functionality of
the software system. Generally, this description is
represented as a large amount of documents, which
consist of text with figures, tables and multiple links
to other documents. The description and
requirements of functionality can be represented as a
formal Topological Functioning Model (TFM) in the
form of oriented graph with vertices (functional
characteristics of the system) and causal
relationships between them. The TFM can be
constructed, using the TFM Editor in the Integrated
Domain Modeling (IDM) toolset, implemented by
Armands Slihte and provided in (Slihte, 2015).

During manual validation of the TFM mistakes
can be made - important functional features,
relationships between them or logic of TFM can be
unnoticed or used incorrectly. It can happen, because
the TFM is represented as a figure of an oriented
graph, without any traceable execution and
simulation. Generally, this graph consists of a large
amount of vertices and relationships between them.

It represents the full scenario of system functionality
and its relationships.

The simulation of models can help to see some
incorrect places in the model and to fix these places
in the early stage of development of a software
system. The simulation of execution models is more
traceable and understandable than manual
validation. The foundational subset for the execution
UML models (fUML) standard is provided for
modeling each behavior as an activity in the
execution model. Currently, this standard ensures
only UML activity diagrams for modeling of an
activity, and each activity can be represented as the
UML activity diagram in the execution model
(OMG, 2015b). Cameo Simulation Toolkit from
NoMagic uses the fUML standard for representing
the execution model.

The TFM can be manually transformed to the
Unified Modeling Language (UML) activity
diagram following to mappings between elements of
the TFM and the UML activity diagram, provided in
(Donins, 2012). After that the execution of actions
need to be ensured in the UML activity diagrams.
The simulation of executions of UML activity
diagrams can be provided using the Cameo
Simulation Toolkit (NoMagic, 2015). The UML

Ovchinnikova, V. and Nazaruka, E.
The Validation Possibility of Topological Functioning Model using the Cameo Simulation Toolkit.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 327-336
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

327

activity diagram can be validated during simulation
of execution of actions. The hypothesis is that the
TFM also can be validated, according to simulation
of execution of UML activity diagrams.

The UML activity diagram is chosen, because its
visual structure and vertices names are similar to the
TFM. But TFM has more information of software
system, simple structure of the oriented graph and it
is the formal model as compared with the UML
activity diagram. The UML activity diagram
includes decision-making nodes (such as decision,
merge, fork and join nodes), data flows and
concurrences (OMG, 2015a) and its execution rules
are based on principles of Petri nets. Dynamic of the
activity diagram is similar to a state chart diagram:

- Edges with its guards in the activity diagram
are similar to signals in the state chart diagram;

- Initial and final nodes are equal;
- State chart diagram is represented without Petri

nets similar decision-making nodes.
The main goal of this research is to assess the

possibility of TFM validation in the Cameo
Simulation Toolkit for not losing important
information of functionality. To accomplish this goal
it is necessary to perform the following tasks:

- Obtain the TFM from the system descriptions;
- Manually obtain the activity diagram from the

TFM, using mappings rules;
- Add necessary functionality to the activity

diagram for its execution;
- Provide execution and simulation of the

activity diagram;
- Validate the activity diagram and bind results

with the TFM.
The main sources of information are scientific

papers, UML and Cameo Simulation Toolkit
specification and notifications.

The paper is structured as follows. Section 2
describes Topological Functioning Model, fUML,
and Cameo Simulation Toolkit in brief, as well as
related work. Section 3 illustrates the example and
results of execution of the UML activity diagram.
Section 4 provides discussions, conclusion and
future work.

2 BACKGROUND

2.1 TFM in Brief

The TFM has been invented at Riga Technical
University (RTU) by Janis Osis in 1969. At that time
a topological model was used for mathematical

definition of functionality of complex mechanical
systems in a holistic way (Osis and Asnina, 2011).

The formal TFM can be represented as a
Computation Independent Model (CIM) in Model-
Driven Architecture (MDA) (Asnina and Osis,
2011c). It can describe the functionality and
structure of the software system in the form of the
oriented graph. The figure of the graph with vertices
that depict functional characteristics of the system
named in human understandable language, and
causal relationships between them provided as
oriented arrows is more perceived, precise and clear
then the large text of description of the software
system.

A TFM is provided as a topological space (X,
Q), where X is a set of functional features and Q is a
set of relationships between elements in X (Osis and
Asnina, 2011b). The obtainment of TFM is
performed by the followings steps (Osis and Asnina,
2011):

- Provide descriptions of functional features;
- Provide the cause-and-effect relations between

them;
- Separate the TFM from the created topological

space.
The functional feature represents business

process, task execution or activity in the software
system (Osis and Asnina, 2011a). It is a unique
cortege <A, R, O, PrCond, PostCond, Pr, Ex>,
where A denotes the object’s action, R is the set of
results of the object’s action, O denotes the object
set, PrCond and PostCond represent the pre- and
post-conditions respectively, Pr is the provider, Ex is
the set of executors (Osis and Asnina, 2011b).

The relationships between functional features
define the cause from which the execution of the
effect is depended. Therefore, the relationships
between functional features are named the cause-
and-effect relations. Cause-and-effect relations may
be in logical relationships using logical operators
AND, OR and eXclusive OR.

The TFM is characterized by the topological and
functioning properties (Osis and Asnina, 2011a).
The topological properties are connectedness,
neighborhood, closure and continuous mapping. The
functioning properties are cause-and-effect relations,
cycle structure, inputs and outputs.

Rules of derivation and the obtainment process
of the TFM from the software system description is
provided by examples and described in detailed in
(Asnina, 2006), (Osis et al., 2007), (Osis et al.,
2008) and (Osis et al., 2008). Construction of the
TFM with attention put on continuous mappings
between problem and solution domain is provided in

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

328

(Asnina and Osis, 2010). The TFM can be obtained
automatically from the business use case
descriptions, which can be created in the IDM
toolset (Osis and Slihte, 2010), (Slihte et al., 2011),
(Slihte and Osis, 2014). It also can be manually
created in the TFM Editor from the IDM toolset.

The UML use case diagram can be obtained from
the TFM, according to (Osis and Asnina, 2011d),
(Donins, 2012). According to (Osis and Donins,
2010), (Donins et al., 2011) topological class
diagram, manually derived from the TFM, can be
represented as a Platform Independent Model (PIM)
in MDA.

2.2 Executable UML in Brief

Executable UML (xUML) is an earlier name of
Executable and translatable UML (xtUML) (Mellor
and Balcer, 2002), (J.Mellor, 2003), (xtUML, 2015).
It is a methodology that is fully automated with rules
for execution and it uses the UML notation. xtUML
is a programming language, but UML is a set of
object-oriented notations (xtUML, 2015). xtUML
helps to create detailed specifications of software
system requirements and execute these
specifications. The model figure can only be created
with UML notation, but xtUML provides creation of
models that are the templates of executed systems
(xtUML, 2012). The testing, independent of system
implementation and design, and validation,
according to system requirements, processes of
software system can be done and be traceable before
implementation of the software system. In such a
way defects or some unused objects can be noticed
and resolved. The 100% target source code can be
obtained and translated from this executable model
with its provided behavior (xtUML, 2012), but this
target source code will not be complete
implementation of the software system. xtUML
modeling can be used as agile modeling.

xtUML is designed for modeling control, data
and processing. Control and data can be modeled
using graphical diagrams – class, component and
state machine. The Object Action Language (OAL)
is used for modeling the processing (xtUML, 2016).
This language is similar to Java, Python, C++ and
Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL) languages.
The difference is that OAL tries to be an abstract,
simple, translatable and model-aware language as it
is suggested in (xtUML, 2016). The OAL is
independent of the target language and can be
translated to it using a model compiler (xtUML,
2016). The main tool for modeling, execution and

translation xtUML models is BridgePoint.

2.3 The Foundational Subset for
Execution UML Models in Brief

The fUML standard encompasses most activity and
object-oriented modeling. The fUML specification
(OMG, 2015b) does not change OMG specification.
The semantics for a subset of UML is refined by this
standard (OMG, 2015a). It simplifies the model
structure of the execution UML, some elements
from the UML superstructure specification are
excluded in the fUML (OMG, 2015b). The fUML
standard is aimed at xtUML modeling standard and
strongly influenced by it.

The execution model must fully designate its
own behavior, it means that all classifier behavior
and operation method need to be fully specified in it.
The fUML supports only activity as a user-defined
behavior. Each behavior of the model needs to be
modeled as an activity, using fUML specification
(OMG, 2015b). Currently, the fUML specification
provides graphical UML activity diagrams for
modeling each activity in the execution model
(OMG, 2015b). It means that for each behavior (e.g.
method of an operation of a class or an effect
behavior of a transition on a state machine) needs to
be provided an additional graphical activity diagram
(Cabot, 2011). Drawing these additional diagrams is
time-consuming and errors can be made in the
process (Cabot, 2011).

It provides the library fuml-1.1.0.jar file that is
freely available (java2s, 2015) and can be used
during modeling of the execution model. The
specification of this library and all included elements
are discussed and provided in (OMG, 2015b).

The action language for fUML (Alf) is used for
fUML with the similar goal as the OAL language is
used for xtUML (OMG, 2013). The UML modeling
elements are represented in a textual type using Alf
language. The mappings between Alf and fUML
syntax exist that provides the execution semantics
for Alf (OMG, 2013). It is similar to C or Java
programming languages. The main tool for this
language is called Alf.

2.4 Cameo Simulaton Toolkit in Brief

The tool MagicDraw is a commercial tool produced
by NoMagic. The Cameo Simulation Toolkit is a
MagicDraw plug-in for modeling the complete
execution model based on fUML standard
(NoMagic, 2015). The tool MagicDraw version

The Validation Possibility of Topological Functioning Model using the Cameo Simulation Toolkit

329

18.1, Professional Java edition and Academic Seat
license is used in the research.

It provides the simulation of the execution UML
model. The Cameo Simulation Toolkit for
executions of models uses different kind of engines,
such as (NoMagic, 2014):

- Behaviors – interaction (sequence diagram),
state machine (state machine diagram) and
activity (activity diagram). The sequence
diagram can be simulated based on UML
semantics, the state machine can be simulated
based on the (World Wide Web Consortium)
W3C (State Chart XML) SCXML standard and
the activity based on fUML standard. W3C
SCXML is an event-based state machine
language (W3C, 2015);

- Classes – the tool creates a simulation where
the class can be executed and the runtime value
of the type of this class is created. If a classifier
behavior is defined, then it also executes. If the
selected class is the SysML Block and contains
Constraint Properties, then parametric will be
executed;

- Instance Specifications – values and the
runtime object need to be created and used for
the execution of the model. These objects and
values can be automatically changed during
execution and simulation.

It is necessary to write a script in the provided
scripting languages (Ruby, Groovy, Python,
JavaScript and BeanShell) for representing the
behavior of one action. The execution of these
models can be traceable and the entire process of
simulation is documented in the console and log file
during simulation. There are four kinds of colors
(green - visited, red - active, yellow - breakpoint and
orange – last visited), which are used during
simulation (if necessary, the colors can be changed).
The simple user interface of the software system can
be developed using provided components (buttons,
text fields and so on) and supplying each component
with the activity that is provided by a feature in tool
MagicDraw. It will be executed with simulation of
the execution model in parallel. The verification and
validation of the model, as well as user guides with
stepwise examples and its descriptions are provided
in this tool.

The MagicDraw supports imports of UML v. 1.4,
XML Metadata Interchange (XMI) (v. 1.0, 1.2 and
1.4), Eclipse Modeling Framework (EMF) UML
2.2.x, custom diagrams, provides dynamical import
of Rich Text Format (RTF) (or parts of them)
documents into reports, data from excel and
Comma-separated values (.csv) file.

It exports EMF UML 2.2.x, custom diagrams,
data into excel and .csv files. It also provides export
of the current diagram, selected elements of the
diagram or all diagrams as bitmap (Portable
Network Graphics (.png), Joint Photographic
Experts Group (.jpeg)) or vector (Scalable Vector
Graphics (.svg) and others) and the export of the
UML state machine diagram to the standard
SCXML file.

2.5 Related Work

Authors in (Abdelhalim et al., 2012) provide
simulation of their system “CubeSats”, using the
execution of the behavior diagram in Cameo
Simulation Toolkit. This diagram is related to
parametric diagrams in ModelCenter, which is
related to the analytical diagram in Matlab. It is
necessary to find a way to increase the storing of
energy and collect the necessary data. Authors in
(Panthithosanyu et al., 2014) provide external device
execution, by using opaque behavior with JavaScript
for supporting communication between the
simulated model and the device. The model is
obtained with System Modeling Language (SysML)
and executed in Cameo Simulation Toolkit. Authors
in (Berardinelli et al., 2015) provide the execution of
communication between nodes in Wireless Sensor
Networks (WSN) for testing the consumption of
energy and improve the power of nodes.

The mentioned authors use the SysML, UML
class diagram, state machine diagram and activity
diagram for providing the execution. They describe
the functionality of the system or device (as a
description) and then create diagrams in Cameo
Simulation Toolkit. It is the same as transformation
from text to the UML diagram. In our case the
description is provided as TFM and transformation
is from TFM to UML diagram for its further
execution in tool.

3 RESULTS OF EXECUTION OF
UML ACTIVITY DIAGRAM

3.1 TFM of the Problem Domain

A part of a sport event organization process is taken
as an example. A short version of the system
“Registration at the sport event” description is as
follows: “The visitor can visit and leave the sport
event website after doing some tasks in the sport
event website.

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

330

Table 1: Functional features of the problem domain.

Id Name Result Executer Precondition
1 Visiting sport event website Visitor
2 Requesting sport event data Visitor
3 Providing a sport event data Sport event data Sport event website
4 Leaving sport event website Visitor
5 Requesting participants list Visitor
6 Providing participants list Participants list Sport event website
7 Requesting registration form Visitor
8 Providing registration form Registration form Sport event website
9 Filling participants data Participant data Visitor (If registration is

available)
10 Checking participants data Sport event website
11 Determining of a price Price Sport event website (All mandatory fields are

filled)
(Entered data are correct)

12 Providing a price Sport event website
13 Sending a payment for participation Payment Visitor
14 Receiving payment Sport event website
15 Adding participants to participants list Sport event website (If payment is received)
16 Assigning identifiers to participants Participant id Sport event website
17 Assigning groups to participants Participant group Sport event website
18 Sending registration confirmation Registration

confirmation
Sport event website

19 Receiving registration confirmation Participant

Figure 1: TFM of the problem domain.

He can request sport event data and after that the
website returns the requested data (price, date,
description and place) to the visitor. The visitor can
request the list of participants and see all participants
in the list or can request a registration form, register

to the sport event and fill participant data (name,
surname, gender, birthday, e-mail, mobile phone
number, country, name of the team, distance). When
participant’s data is added it needs to be checked. If
participant’s data is correct and all mandatory fields

The Validation Possibility of Topological Functioning Model using the Cameo Simulation Toolkit

331

are filled, then the price of participation needs to be
automatically determined and provided, according to
the distance, count of participants and the date of
registration. After that the visitor needs to pay for
participation. When the sport event website receives
the payment, the visitor becomes a participant. The
participants are added to the participants list, unique
identifiers and existing groups are assigned for each
participant. Registration confirmation is send by the
e-mail. After that the visitor receives the registration
confirmation”. Table 1 represents functional features
information. Others unique cortege elements are
empty or similar (Postcond is empty, Action is
similar to functional feature name, Object is similar
to result, Provider for 1 and 4 functional feature is
Visitor and for others Sport event website).

Figure 1 provides the TFM with functional
features and cause-and-effect relationships between
them. The TFM is separated from the created
topological space, where external functional features
(some inputs and outputs), without direct relations
(cause-and-effect) with internal functional features is
considered, but not considered in the TFM.

The cycles in the TFM are the following:
- checking data (9 – 10 - 9);
- requesting sport event website information (2 –

3 – 5 – 6 – 2 and 2 – 3 – 7 – 8 - 2);
- and the main one is registration process (3 – 7

– 8 – 9 – 10 – 11 – 12 – 14 – 15 – 16 – 17 - 3).

3.2 TFM to UML Activity Diagram

Uldis Donins in his Doctoral Thesis (Donins, 2012)
provided mappings between elements of TFM and
elements of the UML activity diagram. The
following mappings exist:

- Action in functional feature (TFM) is provided
as an action (UML activity diagram);

- Cause-and-effect relationship (TFM) is
provided as an edge (UML);

- Preconditions of the functional feature (TFM)
is provided as guards on edges outgoing from
the decision node (UML);

- Logical relationship (TFM) is provided as
decision (Figure 2 a), merge (Figure 2 b), fork
(Figure 2 c) or join nodes (Figure 2 d) and their
combination (UML);

- Input and output functional features (TFM) are
provided as initial and final nodes (UML)
correspondingly.

Uldis Donins suggests that TFM can be split up
in several parts in more advanced scenarios. Each

part provides UML activity diagrams. In our case the
TFM is represented as one UML activity diagram. It

Figure 2: UML activity diagrams nodes.

is not divided into different activity diagrams. But it
is necessary to define the main entry (initial node),
main exit (final node) and end of flows (if exist) in
the UML activity diagram.

Additionally to mappings provided by Uldis
Donins, new mapping – end of flow - is added
between elements of the TFM and elements of the
UML activity diagram. It is necessary when a flow
is divided to two or more different flows and one of
them goes outside and must not to interrupt the work
of other(s) flow(s). The result of functional features
(instead of preconditions) is provided as guards on
edges outgoing from the decision node in our case.

Figure 3 represents the activity diagram
manually obtained UML from the TFM with added
opaque behavior and behavior, represented by
another inside activity diagram (it will be more
discussed in the next subsection). The UML activity
diagram is obtained following the mappings and
after that the execution is added. Almost all logical
relationships are provided as decision and merge
nodes in the UML activity diagram in our case. Two
logical relationships are provided as join and fork
nodes when a new flow is appeared and one flow is
divided into two flows accordingly.

3.3 Execution of UML Activity
Diagram

In the first section is described why is chosen UML
activity diagram. The more information of state
chart diagram execution is provided in the Cameo
Simulation user guide (NoMagic, 2014). States of
the state chart diagram are executed within the
inside activity diagram, which describes behavior of
this state.

In our case the same method is taken for the
UML activity diagram – some activities behavior is
provided with another inside activity diagram and
others with opaque behavior as it is represented in
Figure 3.

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

332

Figure 3: The obtained UML activity diagram with provided behavior.

In Figure 3 activities with inside activity
diagrams are represented with the activity diagram
name after “:” (partList) and special symbol (Figure
4 on the left). Activities with opaque behavior are
represented with opaque behavior name after “:”
(visit) (Figure 4 on the right).

Figure 4: Activity with the inside activity diagram (on the
left side) and opaque behavior (on the right side).

Figure 5: Class RegistrationForm attributes.

It is necessary to write scripts for execution of all
activities. For this task BeanShell language was
chosen. For all opaque behaviors is written “print

(“Information”)” in this language. All output
information is provided in the console, while UML
activity diagram executes. It is also necessary to
create an inside activity for getting information from
objects, its instance and for doing manipulations
(e.g. create, edit, delete) with them.

Figure 5 represents class RegistrationForm and
its attributes. It is necessary for managing objects
during execution of the UML activity diagram. Next
Figure 6 illustrates instances “maya” and “jack” of
class RegistrationForm. Figure 7 on the left
represents class ParticipantsData that has an attribute
that is the list of RegistrationForm instances. Figure
7 on the right illustrates instance “participantsData”
of class ParticipantsData.

Figure 8 represents the inside activity diagram in
“Provides participants list” (Figure 4). Activity
“readParticipants” provides getting of necessary and
existing instances. It is needed to define the type (it
is ParticipantsData in our case, see Figure 7) of this
instance.

Figure 9 represents activity “participantsData”
(in Figure 8) input and output objects. In this activity
it is possible to read the instance’s attribute data.

The Validation Possibility of Topological Functioning Model using the Cameo Simulation Toolkit

333

Input (object) is object ParticipantsData and output
(result) is the list of RegistrationForm.

Figure 6: Class RegistrationForm instances.

Figure 7: Class ParticipantsData’s attribute (on the left)
and instance (on the right).

Figure 8: Inside activity diagram.

Figure 9: Activity “participantsData” input and output.

Activity “Provides participants list” in Figure 8
has opaque behavior. The object name with type
RegistrationForm[0..*] is the input object to this
activity (as a parameter sent to the method). The
following script is written for printing results in the
console, using BeanShell language:

for (i : name)//parameter in method
print(i);//one record from list

Figure 10 represents the choice option during
execution of UML activity diagram, which provides
traceability. It is possible to choose the necessary
guard. The window with a question appears and if
the guard name shown is chosen by clicking the
“yes” button then the execution will continue (going
to edge with chosen guard). If button “no” is clicked
then the next available guard is offered.

Figure 10: Decision example during activity diagram
execution.

Figure 11: Console output during activity diagram
execution.

Figure 11 illustrates part of console outputs. It is
the result of execution of activity “Provides
participants list” that is provided in Figure 4 and
instances data from Figure 6.

In summary, the execution model is obtained
with objects described as classes and its instances,
and with activities, where management occurs with
these objects. The model is executed manually by
choosing the next possible step (the guard in the

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

334

activity diagram) if it exists. Derivation of results is
traceable during simulation of the model. All results
are represented in the console as a text in our case.

4 DISCUSSIONS AND
CONCLUSION

The obtained results in this research represent the
manual validation and traceability during execution
of the UML activity diagram by choosing the
necessary guards. At first, the full TFM is
transformed to the UML activity diagram. The main
input, main output and flow end are additionally
detected and are marked in the UML activity
diagram. It is necessary to create the class diagram
and its instances for providing the object
management feature. Simulation of this diagram
helps to test and validate the software system in its
initial state of development. It allows going through
all possible paths (or scenarios) from inputs to
outputs, checking needed functional characteristics
and input/output sets. It helps to prevent mistakes
and ensures that no vital information is lost. Authors
have come to the conclusion that it is possible to
validate TFM using UML activity diagram
execution, but only partially. This is due to the fact,
that information can be lost during manual
transformation from TFM to the UML activity
diagram.

The Cameo Simulation Toolkit is a tool that
provides execution of UML activity or state chart
diagrams by defining each activity as the inside
activity diagram with extended opportunity (special
activities with their already defined tasks). This tool
provides the management with objects during
execution. The execution of diagrams can be
simulated and outputs results can be shown in
console. It also extends possibility from MagicDraw
to visualize the execution process by creating forms
and binding it with the activity.

One of disadvantages is that the transformation
from TFM to UML activity diagram is manual.
Some necessary information and relationships can
be lost during transformation. It is planned to
automate this transformation in the future.
Synchronization between TFM and the generated
UML activity diagram is also planned.

Another disadvantage is that it is necessary to
create inside activity diagrams for execution of
activities and write scripts for each activity. It is a
time-consuming process. Authors were not able to
write complex scripts for managed objects, because

the functionality of implementation of the chosen
script language was limited. Future validation of this
tool requires assessment of other language
implementations. The TFM currently does not store
information of objects such as object characteristics
(attributes). It is necessary to analyze the necessity
of providing such information in the TFM in the
future. Compared to TFM, the UML activity
diagram increases the count of diagram elements due
to using decision, join, merge and fork nodes. It also
complicates the reading of the diagram.

Future work is related to analyzing the
possibility of automating the simulation of all
possible paths and of documenting the results (e.g.
listing all errors) of these paths and object
management (and the input and output object
counters) in it. The direct simulation of TFM
execution (omitting the transformation to UML) is
planned in the future for its validation according to
software system functionality requirements.

REFERENCES

Abdelhalim, I., Schneider, S. and Treharne, H., 2012. An
Optimization Approach for Effective Formalized
fUML Model Checking. In 10th International
Conference on Software Engineering and Formal
Methods (SEFM 2012). Thessaloniki, 2012. pp. 248-
262.

Asnina, E., 2006. The Computation Independent
Viewpoint: a Formal Method of Topological
Functioning Model Constructing. Applied computer
systems, 26, pp.21-32.

Asnina, E. and Osis, J., 2010. Computation Independent
Models: Bridging Problem and Solution Domains. In
Proceedings of the 2nd InternationalWorkshop on
Model-Driven Architecture and Modeling Theory-
Driven Development (MDA & MTDD 2010), in
conjunction with ENASE 2010. Lisbon: SciTePress.
pp.23-32.

Asnina, E. and Osis, J., 2011c. Topological Functioning
Model as a CIM-Business Model. In Model-Driven
Domain Analysis and Software Development:
Architectures and Functions. Hershey - New York: IGI
Global. pp.40 - 64.

Berardinelli, L. et al., 2015. Energy Consumption Analysis
and Design of Energy-Aware WSN Agents in fUML.
In 11th European Conference on Modelling
Foundations and Applications 2015. L’Aquila, 2015.
pp. 1-17.

Cabot, J., 2011. The New Executable UML Standards:
fUML and Alf. [Online] Available at: http://modeling-
languages.com/new-executable-uml-standards-fuml-
and-alf/ [Accessed 17 January 2016].

Donins, U., 2012. Topological Unified Modeling Language:
Development and Application. PhD Thesis. Riga: RTU.

The Validation Possibility of Topological Functioning Model using the Cameo Simulation Toolkit

335

Donins, U. et al., 2011. Towards the Refinement of
Topological Class Diagram as a Platform Independent
Model. In Proceedings of the 3rd International
Workshop on Model-Driven Architecture and
Modeling-Driven Software Development (MDA &
MDSD 2011). Lisbon: SciTePress. pp.79-88.

J.Mellor, S., 2003. Executable and Translatable UML.
[Online] Available at: http://www.embedded.com/desi
gn/prototyping-and-development/4024510/Executable-
and-Translatable-UML [Accessed 17 January 2016].

java2s, 2015. Download fuml-1.1.0.jar. [Online] Available
at: http://www.java2s.com/Code/Jar/f/Downloadfuml1
10jar.htm [Accessed 30 November 2015].

Mellor, S. and Balcer, M., 2002. Executable UML: A
Foundation for Model-Driven Architectures. Boston:
Addison-Wesley Longman Publishing Co.

NoMagic, 2014. Cameo Simulation Toolkit 18.1 user
guide. [Online] Available at: http://www.nomagic.com
/files/manuals/Cameo%20Simulation%20Toolkit%20
UserGuide.pdf [Accessed 30 November 2015].

NoMagic, 2015. Cameo Simulation Toolkit. [Online]
Available at: http://www.nomagic.com/products/magi
cdraw-addons/cameo-simulation-toolkit.html
[Accessed 30 November 2015].

OMG, 2013. Action Language for Foundational UML
(Alf). [Online] Available at: http://www.omg.org/spec/
ALF/1.0.1/ [Accessed 17 January 2016].

OMG, 2015a. OMG Unified Modeling Language. Version
2.4.1. [Online] Available at: http://www.omg.org/spec/
UML/2.4.1/ [Accessed 30 November 2015].

OMG, 2015b. Documents Associated With Semantics Of
A Foundational Subset For Executable UML Models.
[Online] Available at: http://www.omg.org/spec/FUM
L/1.1/ [Accessed 30 November 2015].

Osis, J. and Asnina, E., 2011a. Is Modeling a Treatment
for the Weakness of Software Engineering? In Model-
Driven Domain Analysis and Software Development:
Architectures and Functions. Hershey - New York: IGI
Global. pp.1-14.

Osis, J. and Asnina, E., 2011b. Topological Modeling for
Model-Driven Domain Analysis and Software
Development: Functions and Architectures. In Model-
Driven Domain Analysis and Software Development:
Architectures and Functions. Hershey - New York: IGI
Global. pp.15-39.

Osis, J. and Asnina, E., 2011d. Derivation of Use Cases
from the Topological Computation Independent
Business Model. In Model-Driven Domain Analysis
and Software Development: Architectures and
Functions. Hershey - New York: IGI Global. pp.65 -89.

Osis, J. and Asnina, E., 2011. Model-Driven Domain
Analysis and Software Development: Architectures
and Functions. Hershey - New York: IGI Global.

Osis, J., Asnina, E. and Grave, A., 2007. MDA Oriented
Computation Independent Modeling of the Problem
Domain. In Proceedings of the 2nd International
Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2007). Barselona:
INSTICC Press. pp.66-71.

Osis, J., Asnina, E. and Grave, A., 2008. Computation
Independent Representation of the Problem Domain in
MDA. e-Informatica Software Engineering Journal,
2(1), pp.29-46.

Osis, J., Asnina, E. and Grave, A., 2008. Formal Problem
Domain Modeling within MDA. In Software and Data
Technologies, Communications in Computer and
Information Science. Berlin: Springer-Verlag Berlin
Heidelberg. pp.387-98.

Osis, J. and Donins, U., 2010. Formalization of the UML
Class Diagrams. In Evaluation of Novel Approaches
to Software Engineering. Berlin, 2010. Springer-
Verlag. pp. 180-192.

Osis, J. and Slihte, A., 2010. Transforming Textual Use
Cases to a Computation Independent Model. In Osis,
J. and Nikiforova, O., eds. Model-Driven Architecture
and Modeling Theory-Driven Development :
Proceedings of the 2nd International Workshop (MDA
& MTDD 2010). Lisbon, 2010. SciTePress. pp. 33-42.

Panthithosanyu, K. et al., 2014. Technology. [Online]
Available at: http://www.technology.org/2014/05/05/c
ollaboration-simulated-model-external-system-
controlling-lego-mindstorms-cameo-simulation-
toolkit/ [Accessed 23 January 2016].

Slihte, A., 2015. The integrated domain modeling: an
approach & toolset for acquiring a topological
functioning model. PhD Thesis. Riga: RTU.

Slihte, A. and Osis, J., 2014. The Integrated Domain
Modeling: A Case Study. In Databases and
Information Systems: Proceedings of the 11th
International Baltic Conference (DB&IS 2014),
Estonia, Tallinn, 8-11 June, 2014. Tallinn: Tallinn
University of Technology Press. pp. 465-470.

Slihte, A., Osis, J. and Donins, U., 2011. Knowledge
Integration for Domain Modeling. In Osis, J. and
Nikiforova, O., eds. Proceedings of the 3rd
International Workshop on Model-Driven Architecture
and Modeling-Driven Software Development (MDA
& MDSD 2011). Lisbon, 2011. SciTePress. pp. 46-56.

Spangelo, S., Kim, H. and Soremekun, G., 2013.
Simulation of CubeSat Mission. [Online] Available at:
http://www.omgsysml.org/Modeling-and-
Simulation_of_CubeSat_Mission_v15-May_2013-
Spangelo-Kim_Soremekun.pdf [Accessed January 23
2016].

W3C, 2015. State Chart XML: State Machine Notation for
Control Abstraction. [Online] Available at:
http://www.w3.org/TR/scxml/ [Accessed 30
November 2015].

xtUML, 2012. Executable and Translatable UML
Summary. [Online] Available at: https://xtuml.org/wp-
content/uploads/2012/09/xtUML_Summary.pdf
[Accessed 17 January 2016].

xtUML, 2015. What is xUML? [Online] Available at:
http://xtuml.nrt.se/index.php?section=17 [Accessed 17
January 2016].

xtUML, 2016. Action Language (OAL) Tutorial. [Online]
Available at: https://xtuml.org/learn/action-language-
tutorial/ [Accessed 17 January 2016].

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

336

