
Reducing Data Transfer in Parallel Processing of SQL Window Functions

Fábio Coelho, José Pereira, Ricardo Vilaça and Rui Oliveira
INESC TEC & Universidade do Minho, Braga, Portugal

Keywords: Window Functions, Reactive Programming, Parallel Systems, OLAP, SQL.

Abstract: Window functions are a sub-class of analytical operators that allow data to be handled in a derived view of a
given relation, while taking into account their neighboring tuples. We propose a technique that can be used
in the parallel execution of this operator when data is naturally partitioned. The proposed method benefits the
cases where the required partitioning is not the natural partitioning employed. Preliminary evaluation shows
that we are able to limit data transfer among parallel workers to 14% of the registered transfer when using a
naive approach.

1 MOTIVATION

Window functions (WF) are a sub-group of analyti-
cal functions that allow to easily formulate analyti-
cal queries over a derived view of a given relation R.
They allow operations like ranking, cumulative aver-
ages or time series to be computed over a given data
partition. Each window function is expressed in SQL
by the operator OVER, which is complemented with
a partition by (PC), an order by (OC) and a grouping
clause (GC). A given analytical query may hold sev-
eral analytical operators, each one bounded by a given
window function. Each partition or ordering clause
represents one, or a combination of columns from a
given relation R.

Despite its relavance, optimizations considering
this operator are almost nonexisting in the literature.
The work by (Cao et al., 2012) or (Zuzarte et al.,
2003) are some of the execeptions. Respectively, the
first overcomes optimization challenges related with
having multiple window functions in the same query,
while the second presents a more broad use of win-
dow functions, showing that it is possible to use them
as a way to avoid sub-queries and reducing execution
time down from quadratic time.

Listing 1 depicts a SQL query where the analyt-
ical operator rank is bounded by a window function,
which holds a partition and ordering clause respec-
tively for columns A and B. The induced partitioning
is built from each group of distinct values in the parti-
tion clause and ordered through the order by clause. A
single value corresponding to the analytical operator
is added to each row in the derived relation.

s e l e c t r an k () OVER(P a r t i t i o n By A
Order By B) from t a b l e

L i s t i n g 1 : Window F u n c t i o n example .

With the Big Data trend and growing volume of data,
the need for real-time analytics is increasing, thus re-
quiring systems to produce results directly from pro-
duction data, without having to transform, conform
and duplicate data as systems currently do. Therefore,
parallel execution becomes the crux of several hybrid
databases that fit in the category of Hybrid Transac-
tional and Analytical Processing (HTAP). These sys-
tems typically need to leverage all parallelization and
optimization opportunities, being usually deployed in
a distributed mesh of computing nodes, where data
and processing are naturally partitioned. In one of
the methods to query such systems, each node com-
putes the results for the data partitions they hold, con-
tributing to the overall final result. Nonetheless, the
data partitioning is usually achieved by means of a
single primary column in a relation. This impacts
mainly cases where the partitioning clause does not
match the natural partitioning, thus compromising the
final result for a sub group of non-cumulative analyt-
ical operators, as all members of a distinct partition
need to be handled by a single entity. A naive solu-
tion would be to forward the partition data among all
nodes, but the provision of such a global view in every
node would compromise bandwidth and scalability.
Data distribution is among one of the cornerstones of
a new class of data substrates that allows data to be
sliced into a group of physical partitions. In order
to split a relation, there are usually two main trends,
namely: Vertical (Navathe et al., 1984) and Hori-

Coelho, F., Pereira, J., Vilaça, R. and Oliveira, R.
Reducing Data Transfer in Parallel Processing of SQL Window Functions.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 1, pages 343-347
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

343

zontal (Sadalage and Fowler, 2012) partitioning. To
do so, the relation needs to be split either by using
(e.g.) range or hash partitioning. Hashing algorithms
are used to split a given domain – which is usually
achieved through a primary key in database notation
– into a group of buckets with the same cardinality of
the number of computing nodes. An hash algorithm is
defined by an hash function (H) that makes each com-
puting node accountable for a set of keys, allowing to
map which node is responsible for a given key.

The distributed execution of queries leverages on
data partitioning as a way to attain gains associated
with parallel execution. Nevertheless, the partition-
ing strategies typically rely on a primary table key to
govern the partitioning, which only benefits the cases
where the partitioning of a query matches that same
key. When the query has to partition data according
to a different attribute in a relation, it becomes likely
that the members of each partition will not all reside
in the same node.

PK

1
1
1
1

1
1
2
3

1
2
1
1

 A B PK

2
2
2
2

1
2
2
3

1
3
3
1

 A B PK

3
3
3
3

 2
2
2
2

1
1
3
3

 A B

node #2 node #3node #1

select rank() OVER (partition by A) from table

Figure 1: Data partitioning among 3 workers.

Figure 1 presents the result from hash partitioning
a Relation into 3 workers according to the primary
key (PK). The query presented holds a window oper-
ator that should produce a derived view induced by
partitioning attribute A.

Non-cumulative aggregations such as rank require
all members of a given partition to be collocated, in
order not to incur in the cost of reordering and recom-
puting the aggregate after the reconciliation of results
among nodes. However, different partitions do not
share this requirement, thus enabling different parti-
tions to be processed in different locations. To ful-
fill the data locality requirement, rows need to be for-
warded in order to reunite partitions.

The shuffle operator arises as way to reunite parti-
tions and to reconcile partial computations originated
by different computing nodes. The shuffler in each
computing node has to be aware of the destination
where to send each single row, or if it should not send
it at all. Typically, this is achieved by using the mod-
ular arithmetic operation of the result of hashing the
partition key over the number of computing nodes.
However, this strategy is oblivious to the volume of
data each node holds of each partition. In the worst
case, it might need relocate all partitions to different

nodes, producing unnecessary use of bandwidth and
processing power.

In this position paper we show that if data distri-
bution of each column in a relation is approximately
known beforehand, the system is able to adapt and
save network and processing resources by forward-
ing data to the right nodes. The knowledge needed is
the cardinality and size (in bytes) in each tuple par-
tition rather than considering the actual tuple value
as seen in common use of database indexes. This
knowledge would then be used by an Holistic shuf-
fler which according to the partitioning considered by
the ongoing window function would instruct workers
to handle specific partitions, minimizing data transfer
among workers.

2 STATISTICS

Histograms are commonly used by query optimizers
as they provide a fairly accurate estimate on the data
distribution, which is crucial for the query planner.
An histogram is a structure which allows to map keys
to their observed frequencies. Database systems use
these structures to measure the cardinality of keys or
key ranges. Relying on statistics such as histograms
takes special relevance in workloads where data is
skewed (Poosala et al., 1996), a common character-
istic of non synthetic data, as their absence would
induce the query optimizer to consider uniformity
across partitions.

While most database engines use derived ap-
proaches of the previous technique, they only allow to
establish an insight regarding the cardinality of given
attributes in a relation. When considering a query
engine that has to generate parallel query execution
plans to be dispatched to distinct workers, each one
holding a partition of data; such histograms do not
completely present a technique that could be used to
enhance how parallel workers would share prelimi-
nary and final results. This is so as they only introduce
and insight about the cardinality of each partition key.
In order to minimize bandwidth usage, thus reducing
the amount of traded information, the histogram also
needs to reflect the volume of data existing in each
node. To understand the relevance of having an intu-
ition regarding the row size, please consider that we
have 2 partitions with exactly the same cardinality of
rows that need to be shuffled among workers. From
this point of view the cost of shuffling each row is the
same. However, if the first row has an average size
of 10 bytes, and the second 1000 bytes, then shuf-
fling the second implies transferring 100 times more
data over the network. This will be exacerbated as

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

344

key PK A B
1 4 2 3
2 0 1 1
3 0 1 0

(a) physical partition #1
(p1)

key PK A B
1 0 1 2
2 4 2 0
3 0 1 2

(b) physical partition #2
(p2)

key PK A B
1 0 0 2
2 0 4 0
3 4 0 2

(c) physical partition #3
(p3)

key PK A B
1 p1 p1 p1
2 p2 p3 p1
3 p3 p1 / p2 p2 / p3

(d) Global

Figure 2: Partition and Global Histogram construction.

the difference in row size and the number of workers
grows. Figure 1 presented the result of hash partition-
ing a relation in 3 workers according to key PK. The
histogram to be built would consider the cardinality
and size of each value in each attribute of the rela-
tion for each single partition. The construction of the
histogram should not be done during query planning
time as it cannot know beforehand the partitioning
clauses induced by queries. Therefore, prior to execu-
tion, we consider all distinct groups of values in each
attribute. Each partition will contribute to the his-
togram with the same number of attributes as the orig-
inal relation, plus a key, reflecting the data in that par-
tition. Afterwards, each worker would share its partial
histogram with the remainder workers in order to pro-
duce the global histogram. The global histogram will
map a given key to the partition that should handle it,
by having the largest volume (in bytes) for that given
key. Figure 2 depict the partial an global histograms
produced over the paritions in Figure 1.

3 HOLISTIC SHUFFLER

Non-cumulative aggregations such as rank require the
processing of partition members to be done under the
same worker, in order not to incur in further unneces-
sary ordering stages (which present to be one of the
most costly operations (Cao et al., 2012)). The Holis-
tic Shuffler leverages the data distribution collected
by the Global Histogram, in order to expedite shuf-
fling operations. The Shuffle operator can be trans-
lated into a SEND primitive that forwards a bounded
piece of data to a given destination. We consider the
underlying network to be reliable.

LOCAL
SHUFFLE SORT RANK GLOBAL

SHUFFLES
C
A
N

M
ER

G
E

WORKER #1

PA
R
TI

TI
O

N
 #

1

Figure 3: Parallel worker design.

During the work flow for processing a window op-
erator, as depicted in Figure 3, there are two different
moments where data needs to be shuffled. The first
moment occurs immediately after the operator start,
and its goal is to reunite partitions, thus fulfilling the

locality requirement. The second moment occurs in
the end of the operator and is intended to reconcile
partial results in order to produce the final result. Both
operators define distinct goals regarding the destina-
tions that need to be chosen for each forwarding oper-
ation. Therefore, we establish two shuffle operators,
the local shuffle and the global shuffle each contem-
plating each set of requirements.

The Local Shuffle operator will be used whenever
the window operator needs to reunite partition mem-
bers between parallel workers. It will dispatch rows
of a given partition to the worker that holds the largest
volume of data for that partition. Considering the con-
figuration in Figure 3, when for example, worker 1 re-
trieves one row from scanning its physical partition, it
must assess whether or not it should hold that row for
later computing the analytical function, or by other
means forward it to the responsible worker.

The information collected in the Global His-
togram will enable each worker to know if it should
hold or forward the row to the the node holding the
largest volume for that given partition.

The Global Shuffler operator will be used when-
ever the window operator needs to reconcile partial
results from workers. It will forward all aggregated
rows to the worker that will hold the overall largest
data volume, the master worker. By instructing the
workers that hold the least volume of data to forward
rows, we are promoting the minimal usage of band-
width possible.

The input data considered by the Global Shuffler
is composed by the ordered and aggregated rows, both
produced by earlier stages of the worker work flow.
Such rows will have to be reconciled by a common
node, which for this case will be dictated by the mas-
ter node. Upon start, the Global Shuffle will interro-
gate the histogram regarding the identity of the master
node. Afterwards, as each aggregated row is handled
by the operator, it is forwarded to the master worker,
if it is not the current one.

4 PRELIMINARY ASSESSMENT

Reactive Programming (RXJ, 2015) was used in the
undertaken micro-benchmark; allowing to establish a

Reducing Data Transfer in Parallel Processing of SQL Window Functions

345

series of data streams from which entities can be con-
structed. We used this idea to map to the individual
components that build a window operator.

We employed a single query holding a win-
dow function over the synthetically-generated relation
from the TPC-C (Council, 2010) bechmark, Order
Line. This relation holds 10 attributes, all uniformely
distributed. The generated data composes 100 distinct
partitions, each one with 500 rows. Globally, the Or-
der Line relation held 500 K tuples, totaling 3906 Mb.
To highlight the properties of our proposal, we con-
sidered the following ranking query:

s e l e c t r an k () OVER (p a r t i t i o n by
OL D ID order by OL NUMBER) from
Order Line

The experiments were performed on a system with an
Intel i3-2100-3.1GHz 64 bit processor with 2 physical
cores (4 virtual), 8GB of RAM memory and SATA II
(3.0Gbit/s) hard drives, running Ubuntu 12.04 LTS as
the operating system.

For comparison purposes, we report the results by
using a naive approach and our Holistic Shuffler. The
naive approach, disseminates data among all partici-
pating workers. The results in both pictures are de-
picted according to a logarithmic scale, in the average
of 5 independent tests for each configuration.

The projected gain achieved by our contribution
stems from the reduction of rows that need to be
forwarded among nodes to reunite and reconcile re-
sults among workers, thus promoting shorter band-
width consumption. Therefore, the evaluation re-
sults we present highlight the registered differences
between the naive and the holistic approach for both
shuffling stages. According to Figure 4, the Holistic

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0 2 4 6 8 10 12

K
 t
u
p
le

 r
o
w

s

workers

Naive Holistic

Figure 4: Average number of shuffled rows in both shuffle
operations.

technique we propose induced a significantly smaller
number of rows required to reunite and reconcile all
the partitions in each computing node. Specifically,
the Holistic technique required in average only 14.7%
of the rows required by the Naive approach. The
large difference is directly justified by the fact that
the naive approach reunites partitions by forwarding

data among all participating nodes, which intrinsi-
cally creates duplicates in each node. Moreover, it
is also possible to verify that the row cardinality re-
quired by the Naive approach is proportional to the
number of nodes. On the contrary, the Holistic tech-
nique discriminates each row, so that it is forwarded
to the node responsible for it, as dictated by the pro-
posed technique.

5 CONCLUSION

In this paper, we proposed a technique to reduce the
amount of data transfered among computing nodes of
a distributed query engine. It is based on the obser-
vation that the information regarding the existing data
distribution on a set of computing nodes (each one
with a disjoint partition of data) can be used to enable
improovements on bandwidth consumption. We show
how to implement it, which we tailored to be used for
the efficient parallel processing of queries with non-
cumulative window functions. We show that by con-
ceptually applying this methodology, we were able to
project an improvement, requiring only 14% (in aver-
age) of rows in bandwidth consumption, when com-
pared with the naive technique. The research path to
be followed will translate this methodology to a real
distributed query engine.

ACKNOWLEDGEMENTS

This work was part-funded by project LeanBigData :
Ultra-Scalable and Ultra-Efficient Integrated and Vi-
sual Big Data Analytics (FP7-619606).

REFERENCES

(2015). Reactive programming for java. https://git
hub.com/ReactiveX/RxJava.

Cao, Y., Chan, C.-Y., Li, J., and Tan, K.-L. (2012).
Optimization of analytic window functions. Pro-
ceedings of the VLDB Endowment,5(11):1244–
1255

Council, T. P. P. (2010). TPC Benchmark C.
Navathe, S., Ceri, S., Wiederhold, G., and Dou,

J. (1984). Vertical partitioning algorithms
for database design. ACM Transactions on
Database Systems (TODS), 9(4):680–710.

Poosala, V., Haas, P. J., Ioannidis, Y. E., and Shekita,
E. J. (1996). Improved histograms for selectiv-

DataDiversityConvergence 2016 - Workshop on Towards Convergence of Big Data, SQL, NoSQL, NewSQL, Data streaming/CEP, OLTP
and OLAP

346

ity estimation of range predicates. In ACM SIG-
MOD Record, volume 25, pages 294–305. ACM.

Sadalage, P. J. and Fowler, M. (2012). NoSQL dis-
tilled: a brief guide to the emerging world of
polyglot persistence. Pearson Education.

Zuzarte, C., Pirahesh, H., Ma, W., Cheng, Q., Liu,
L., and Wong, K. (2003). Winmagic: Subquery
elimination using window aggregation. In Pro-
ceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pages
652–656. ACM.

Reducing Data Transfer in Parallel Processing of SQL Window Functions

347

