
Topological Functioning Model for Software Development within
MDA (Survey)

Arturs Solomencevs

Department of Applied Computer Science, Riga Technical University, Riga, Latvia

Keywords: Topological Functioning Model, Software Development, Formal Problem Domain Model, Model Driven
Architecture.

Abstract: The approach called Topological Functioning Modeling for Model Driven Architecture (TFM4MDA) uses
Topological Functioning Model (TFM) as a formal holistic problem domain model. The approach is
revolutionary, because it brings formalism to the earliest stages of software development – the analysis of
problem domain, and provides formal transformations to UML design models. A copious amount of effort
has been put into the development of TFM4MDA. Furthermore, TFM has not always been used in software
development. This paper represents a literature survey of 69 articles about TFM and its application. The
goal of this work is to trace the research of TFM and TFM4MDA approach, to throw light on the results of
the research, and to reveal some weaker areas of it. The goal is successfully achieved and the conclusions
are made.

1 INTRODUCTION

In (Osis, 2004), it is stated that object orientation has
become the dominate approach to the analysis and
design of computerized systems. The Unified
Modeling Language (UML) defines the industry-
standard modeling notation for object-oriented
software development. There are two fundamental
aspects to modeling: analysis, which defines what
the application has to do with the problem domain to
fit the customer’s requirements, and design, which
defines how the application will be built.

The problem domain is the part of the world in
which the software is required to bring about some
effect desired by the customer, as it is described in
(Osis, 2003b). The application domain is the
software we build and the computer system that
executes it. During the analysis and the design, both
domains are modeled.

In paper (Osis, 2003a), it is asserted that
modeling a problem domain brings essential
advantages into software development. A proper
problem domain model provides a powerful
language for expressing requirements for the system.
A precise problem domain model gives a precise
architectural (application domain) model. Author of
(Osis, 2001 b) claims that the stability of software
architecture depends on the adequacy of problem

domain model. In (Alksnis et al., 2005), it is proven
that it is beneficial to model a problem domain
formally. A formal model can be transformed into
another model if the transformation rules are
defined. For instance, a model which is a product of
system analysis can be transformed into a model of
system design. Also, formal design implies that the
correctness of operation of the entire system is
mathematically proven.

Unfortunately, as it is stated in (Osis, 2001e),
UML and its application have some relevant
drawbacks: 1) Use case driven object-oriented
methods give low priority to problem domain
modelling. Analyzing starts with application
domain. In this case, problem domain is considered
to be a “black box”. 2) Even when use cases are
applied for business modeling, relationship between
a business system and a planned computerized one
remain informal as well as identification of business
and system use cases themselves (Asnina, 2006). 3)
Diagrams (models) are constructed without a formal
basis (Osis, 2001e). 4) UML goes without
mathematics (Asnina and Osis, 2002).

Author of (Osis, 2003a) claims that the
improvement of the results of object-oriented system
analysis and modeling lies in using methods which
are oriented to deal with problem domain, because
the formalism must be involved on the very early

Solomencevs, A.
Topological Functioning Model for Software Development within MDA (Survey).
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 315-326
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

315

stage of software development. Until 2003, a more
or less formal way to map the knowledge about the
problem domain into software development process
did not exist.

Janis Osis from Riga Technical University
invented Topological Functioning Model (TFM). Its
theoretical fundamentals are published in (Osis,
1969). TFM is a formal model which describes the
functioning of a system. TFM has a solid
mathematical base. It is represented in a form of a
topological space (X, Θ), where X is a finite set of
functional features of the system under
consideration, and Θ is topology that satisfies
axioms of topological structures and is represented
in a form of a directed graph. The TFM’s functional
features describe the system’s physical or biological
characteristics that are relevant for the normal
functioning of the system. The TFM’s topology
consists of cause-effect relations between functional
features. Cause-effect relation exists between two
functional features, if appearance of one functional
feature is caused by appearance of the other without
participation of any intermediate functional feature.
Cause-effect relations form causal chains. Causal
chains must form at least one functioning cycle
within TFM. All the cycles and subcycles should be
carefully analyzed in order to completely identify
existing functionality of the system.

The idea of applying TFM in object-oriented
software engineering was published in (Osis,
2001b), and has been developed since then. It is the
first milestone in the development of TFM.
Researchers who made contributions to the TFM
approach are: J. Osis (the leader), E. Asnina, U.
Donins, A. Slihte, G. Alksnis, J. Silins and others.
Vast amount of work has been put into the research
of TFM and its application. The purpose of this
paper is to review the approach and its development
during the passage of time. This will throw light on
the results of the research, and will reveal weaker
areas which may need to be worked with. To
achieve the goal, 69 papers were studied.

2 THE BEGINNING OF
RESEARCH ON TFM

In papers (Osis, 2001a) and (Osis, 2001e), the
development of TFM’s theory is reviewed. In 1964,
associate professor J. Osis at Riga Technical
Universty begins the development of theoretical
basis for diagnostics of complex systems. He also
formed a scientific group. Since 1966, J Osis’s PhD

students have published oriented graph models in
their works. The final theoretical fundamentals of
TFM were published in (Osis, 1969).

In the beginning, TFM was not meant to be used
in software development. By studying papers (Osis,
1972), (Gelfandbain et al., 1990) and (Osis et al.,
1991) it becomes clear that topological modeling can
be used for diagnostics of complex systems. TFM
can also be applied in technical and medical
diagnostics, in image recognition and in expert
systems (Osis, 1991); in modeling of biological
systems (Osis and Beghi, 1997); and in business
process modeling and simulation (Osis et al., 1997).
In paper (Ivasiuta and Osis, 1999), methods for
comparing software design methodologies are
reviewed.

Paper (Osis et al., 1996) is the first article about
object-oriented approach that concerns TFM. In the
paper, object-oriented modeling and simulation are
discussed.

In paper (Osis, 1997), the development of object-
oriented methods for hybrid system analysis and
design is described.

The relation between domain modeling and
architectural design is discussed in paper (Osis, 2001
b). Precise domain model gives precise architectural
model. Stability of information system depends on
the structure of problem domain. Thus, full
knowledge about structure helps to minimize the risk
of losing the stability.

Paper (Osis, 2001c) represents a survey of
object-oriented approach. It was found that
historically the idea that the world could be viewed
either in terms of objects or processes comes from
ancient philosophy and cognitive science and was an
ancient Greek invention. In the seventeenth century
Descartes declared that humans naturally apply an
object-oriented view of the world. Analysis and
software development methods are reviewed in the
paper. Lack of formal basis for object-oriented
modeling is discussed. The tendency of giving low
priority to problem domain analysis in use case
driven methods is disputed. The way to improve
results of object-oriented system analysis and
modelling lies in using formal methods which are
oriented to deal with problem domain. In paper,
topological modeling is mentioned as an approach
for problem domain driven analysis. TFM supports
abstraction and decomposition – two fundamental
ways of dealing with system’s complexity. Thus, it
is possible to model complex systems with TFM.

In paper (Osis, 2001d), the development of
object-oriented analysis is reviewed. It is stated that
TFM’s theoretical fundamentals give the opportunity

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

316

to get a strictly formalized model (TFM) from
knowledge about a system. The obtained software
architecture is adequate to problem domain.

The drawbacks of UML and its application are
discussed in (Osis, 2001e). TFM is considered to
overcome the mentioned disadvantages.

In papers (Alksnis and Osis, 2001) and (Alksnis
and Osis, 2002), the research about how category
theory can be applied in software development is
carried out. The structure of topological space and
TFM is very similar to the definition of category.

Paper (Osis and Silins, 2002) represents the
analysis of modeling languages and methods which
can be applied in development of embedded systems
(real-time systems in particular). The paper can be
considered to be an introduction to applying TFM in
the development of embedded systems. However,
TFM is not mentioned in the article.

In paper (Asnina and Osis, 2002), UML
formalization possibilities using mechanisms of both
universal arrow logic and topological modeling are
described. Both approaches have strict mathematical
basis – category theory. Formalization possibilities
of the universal arrow logic and topological
modeling are compared. TFM has an advantage over
arrow logic, i.e., the operation of isolating the
system from its topological space is formally defined
– closure operation (Osis, 1969).

Paper (Nahimova and Osis, 2002) reviews the
methods of modeling the mechatronic systems. TFM
is mentioned as an approach that has advantage in
modeling complex systems.

In paper (Osis, 2003a), the approach of using
topological modeling for development of
mechatronic and embedded systems is introduced.
Paper (Osis, 2003b) introduces topological modeling
for software engineering (TFM4SE) approach. It is
stated that only a proper problem domain model
provides a powerful language for expressing
requirements to the system (Osis, 2003a), (Osis,
2003b). The construction of conceptual class
diagram from TFM is defined. At this point, this
model transformation is rather primitive, and is
developed in future research. The joining operation
of two TFMs is represented (Osis, 2003b).

3 TFM4MDA

Model Driven Architecture (MDA) is an approach to
system development, which increases the power of
models in this work. The purpose of MDA is to
separate the views and concerns. MDA has three
viewpoints and their corresponding models: a

computation independent model (CIM) contains
knowledge about the problem domain and the
requirements for software system; platform
independent model (PIM) focuses on the operation
of a system while hiding the details necessary for a
particular platform; and platform specific model
(PSM) (Miller and Mukerji, 2003). Model
transformation forms a key part of MDA. To get the
software source code we need to go by the path CIM
→ PIM → PSM → source code.

Paper (Osis, 2004) introduces topological
modeling for MDA. In the framework of MDA,
TFM is used as a formal CIM (computation
independent model). It is the first milestone in the
development of TFM4SE. TFM for MDA is
considered to be a subfield of TFM4SE.

The research about application of formal
methods in development of embedded systems
continues in (Alksnis et al., 2005). Topological
modeling is included in these methods.

The idea of connecting MDA with software
synthesis (code generation by applying artificial
intelligence) is published in (Birgelis and Osis,
2005).

Papers (Osis, 2006a) and (Osis, 2006b) introduce
novelties to TFM and MDA. TFM has systematic
approach for checking its completeness and non-
controversy (use case model, in its turn, does not
have such an approach). TFM topological
characteristics – connectedness, closure,
neighborhood and continuous mapping – form
mathematical background of TFM. TFM functional
characteristics – inputs, outputs, cycle structure and
cause-effect relations – form system theoretical
background of the model. Thanks to these
characteristics, TFM captures two aspects of the
system – structure and dynamics. Modified MDA
software development life cycle with a formal CIM
– TFM – is introduced. In this cycle, feedback from
the code deployment is not directed to the analysis
phase like in the traditional life cycle, but to the
TFM. Finally, the first metamodeling architecture is
published. In this architecture, TFM is on M0 layer
and UML Class diagram is on M1 layer.

In paper (Osis, 2006c), new metamodeling
architecture is defined. Author emphasizes the
importance of formalism in models, since formalized
transformation can be automated.

A formal method of TFM constructing from a
system’s verbal description is given in (Asnina and
Osis, 2006). This is an important milestone in the
development of TFM4SE. A form for expressing
TFM’s functional features is defined:

<action>-ing the < result>

Topological Functioning Model for Software Development within MDA (Survey)

317

[to, into, in, by, of, from] a(n) <object>
e.g., Receiving the book from a reader.

The set of functional features should be written
down in the following form:

<action>-ing a(n) <object>
e.g., Registering a reader.

Paper (Asnina, 2006) introduces the mapping of
functional requirements (to planned information
system) onto TFM’s functional features. Mapping of
requirements makes it possible to validate them in
conformance to the business logic of the real world
system as early as possible. During the mapping,
TFM or (and) the list of requirements may need to
be modified. The modified TFM represents the
problem domain which is supported by the planned
information system. Between requirements and a
TFM the following mappings types exist: One to
One; Many to One; One to Many; One to Zero; Zero
to One; Zero to Many. Mapping types are explained
in the article’s text. For example, the existence of
Zero to Many mapping may indicate that some
requirement(s) is (are) missing. The paper also
describes the algorithm for getting a use case
diagram from TFM. By mapping requirements onto
TFM and by creating use cases from TFM, it is
possible to get an application domain model that
conforms to problem domain knowledge.

In papers (Osis et al., 2007a) and (Osis et al.,
2007b) TFM for MDA approach is called
TFMfMDA. Papers introduce the explicit separation
between problem domain and application domain.
This is an important milestone in the development of
TFM4SE. It is emphasized that functionality
determines the structure of the planned system. TFM
holistically represents complete functionality of the
system. In papers, the mapping of requirements onto
TFM and creation of use cases from TFM are
developed further. The transformation “TFM →
Graph of domain objects → Conceptual class
diagram” is defined. Elements precondition, the
responsible entity and subordination (“in” is inner,
“ex” is external) are added to the expressing form of
functional feature. Example:

Creating of a reader account, {unregistered person},
librarian, in.

Also, papers describe the requirements for a
software tool for TFMfMDA automation. Thus, a
new field of research – the development of tool
support for the approach – is opened.

Papers (Osis et al., 2007c) and (Osis and Asnina,
2008a) introduce more formal way for describing a
functional feature – a 5-tuple:

<A, R, O, PrCond, E>,

where A is an object action, R is a result of this
action, O is an object(s) that receives the result or
that is used in this action, PrCond is a set
preconditions or atomic business rules (optional
parameter), and E is an entity responsible for
performing actions. The fields – mapping of
requirements onto TFM; use case and conceptual
class diagram creation from TFM – find further
development in the papers. Also, a new
transformation is defined “TFM → UML Activity
diagram”. Later, this transformation will be
considered to be imprecise, and will be improved.
The MOF-based metamodel of TFMfMDA is
introduced. Also, the newest metamodeling
architecture for TFMfMDA is published. This is a
very important milestone in the development of
TFM4SE. The architecture is not included because
of space limits.

In papers (Asnina and Osis, 2008) and (Asnina et
al., 2008) analysis and modeling of multifractal
system properties in object-oriented software
development is described. However, the papers do
not specify the relation of this field with topological
modeling.

Articles (Osis et al., 2008 a) and (Osis et al.,
2008 b) give more detailed requirements for tool
support for TFMfMDA approach.

In paper (Osis and Asnina, 2008b), new
attributes are added to the tuple which describes a
functional feature of TFM:

<A, R, O, PrCond, PostCond, E, S>,

where PostCond is a set of post-conditions (an
optional element), and S is functional feature’s
belonging (subordination) to system’s functionality
(inner or external). Mapping of requirements onto
TFM is developed further – the description of
mapping type “One to Zero” is specified more
precisely. Terms “source TFM” and “target TFM”
are defined. Source TFM is a product of analyzing
the problem domain. Target TFM is an output of
mapping of requirements onto the functional
features of TFM. Mapping ensures that target TFM
is in compliance with source TFM.

4 TopUML

The intention to create an extension of UML named
“Topological Unified Modeling Language” is
expressed in paper (Osis, 2003a). The main motive
is to introduce mathematical formalism into UML

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

318

diagrams. On the other hand, further refinement of
TFM is required. It should be noted as the first
milestone in the development of TopUML. The aim
of “TopUML” research is to create a new version of
UML that can be applied in a formal way which
allows clearly tracing cause-and-effect relationships
between the problem and solution domains. Solution
domain is a system (e.g., business system) which is
supported by the planned information system. To
achieve this goal a new language is developed –
Topological Unified Modeling Language (TopUML)
– and its supporting software development method –
TopUML modeling. TopUML is considered to be a
research subfield of TFM4SE. In this subsection,
articles which relate to TopUML are reviewed. The
chief researcher is U. Donins, and his supervisor is J.
Osis.

The main goal of papers (Osis and Donins,
2009a), (Donins and Osis, 2009), (Osis and Donins,
2009b), (Donins, 2010) and (Osis and Donins,
2010a) is to bring formalism into UML Class
diagram, and to introduce a formal approach for
creating a UML Class diagram that conforms to the
“target” TFM. The creation of conceptual class
diagram from TFM, which is described in (Osis and
Asnina, 2008a), is disputed, because the topology
between the classes is not retained. Therefore,
topological relations between classes are defined.
Topological relations are not included in OMG
UML standard. Thus, topological (TopUML) class
diagram, which contains topological relations, is
defined. Transformation “TFM → Graph of domain
objects → Topological class diagram” is introduced
in the papers. New attributes are added to the
functional feature tuple:

<A, R, O, PrCond, PostCond, E, Cl, Op>,

where Cl is a class and Op is an operation. These
new attributes are used in the creation of graph of
domain objects from TFM. Also, S (subordination)
attribute of the tuple is not used in these papers.

Paper (Osis and Donins, 2010b) describes OMG
MOF-compatible metamodel of Topological class
diagram. This metamodel is needed to create the
UML profile for Topological class diagram, which is
proposed in the paper. This is a very important
milestone in the development of TFM4SE.

In paper (Donins et al., 2011), refinement
process of Topological class diagram is presented.
The goal of this process is to lower the abstraction
level of the initial Topological class diagram which
is obtained from the TFM. Formal and informal
guidelines for the refinement are given.

Paper (Donins and Osis, 2011) introduces
transformation “TFM → Graph of domain objects
→ UML Sequence diagram”. Separate sequence
diagram is obtained for each system goal and
requirement. Also, a case study of applying
topological modelling approach to information
system development is shown.

The research in (Donins, 2012a) introduces new
element to TFM – logical relations. The analysis of
logical relations helps to identify topological
relations in TFM. Also, it helps to verify the
consistency of TFM. Logical relations are needed
for transformation of TFM into other models. In
paper, an improved transformation “TFM → UML
Activity diagram” is defined. This transformation,
thanks to logical relations, gives a more precise
output than the one defined in (Osis et al., 2007c).
Formal definitions with tuples are given for the
following TFM elements: preconditions,
postconditions, topological and logical relationships.
The tuples and their descriptions are not included
because of limited space of this survey.

Transformation “TFM → UML Communication
diagram → Topological class diagram” is defined in
(Donins et al., 2012a) and (Donins et al., 2012b). So,
in the transformation from TFM to Topological class
diagram, communication diagram or graph of
domain objects can be used as intermediate model
(see article (Osis and Donins, 2009a)). Another
transformation – “TFM → set of State diagrams” –
is defined. One State diagram is obtained for each
class. State diagrams give opportunity to analyze
event-driven software systems. New attributes are
added to the functional feature tuple:

<A, R, O, PrCond, PostCond, E, S, Cl, Op, St, Es>,

where St – new state of object O after performing
action A (optional, needed for transformation to
State diagrams), Es - indicates if execution of action
A could be automated.

Paper (Osis et al., 2014) summarizes the research
results of TopUML and U. Donins’s PhD thesis
(Donins, 2012b). TopUML allows creating the most
popular UML design models from TFM. Some
models are obtained successively, i.e., using an
intermediate model. For example, at first one needs
to obtain a Communication diagram from TFM, and
only then – a Topological class diagram. All
transitions between TFM and TopUML diagrams
can be found in paper (Osis et al., 2014), in Section
IV.B. Also, the paper’s research explores traceability
of modeling artifacts - from functioning properties
and functional requirements of the problem domain
to the software design and development artifacts.

Topological Functioning Model for Software Development within MDA (Survey)

319

The trace links are set by the mentioned transitions
between diagrams.

TFM approach concentrates on formal analysis
of problem domain. The output of this analysis is a
“target” TFM. TopUML allows getting the most
needed design models that conform to TFM (Osis et
al., 2014). Thus, topological modeling together with
TopUML application covers both analysis and
design of the planned information system. Author of
the survey feels that TopUML could become more
useful if tool support was developed for it, i.e.,
formal transformations between models can and
should be automated for higher efficiency of the
approach. Also, no research has been done on the
application of TopUML for platform independent
viewpoint transformation into platform specific
viewpoint and generating software code.

5 IDM APPROACH

The Integrated Domain Modeling (IDM) is a
research subfield of TFM4SE. The aim of this
research is to find a way of formalizing the
knowledge about business system, and to get TFM
from this knowledge. In addition, tool support is
developed for IDM approach. In this subsection,
articles which relate to IDM approach are reviewed.
The chief researcher is A. Slihte, and his supervisor
is J. Osis.

Paper (Slihte, 2009) concentrates on
development of a software tool for TFM
construction. For this purpose, MOF-compatible
metamodel of TFM is introduced, and it is used by
the tool. Tool prototype is developed. It allows
manually creating a TFM. This is an important
milestone in the development of TFM4SE. In the
paper, for the first time TFM for MDA approach is
called “TFM4MDA”. This name is used nowadays.

In papers (Slihte, 2010) and (Osis and Slihte,
2010), an approach for automatic creation of TFM
from the knowledge about a system is proposed (not
yet developed). The knowledge is represented by
business use cases – a formal data structure that can
be processed automatically. A proposal to use
natural language processing to analyze sentences of
business use cases is made. This way, functional
features are obtained. Although, not all attributes of
functional feature tuple can be obtained
automatically – only action (A), object (O), result
(R) and preconditions (PrCond). By analyzing
business use cases, it is possible to obtain topology
of TFM. However, some cause-effect relations
(elements of TFM’s topology) need to be added

manually. To sum up, the process of getting TFM
from business use cases can be automated, but it
requires minor interaction with system analyst.

In order to make business use cases
“understandable” for computer, the step sentences
are defined using a controlled natural language. In
particular, Attempto Controlled English is used
(Slihte et al., 2011). However, there are some
problems with business use cases: 1) ambiguity, e.g.,
possibility to express the same meaning using
different words; 2) inconsistency of business use
cases, i.e., there might be steps defined that do not
make sense in the given business system. To solve
these problems, it is proposed to use ontology.
Ontologies provide logical statements that describe
what terms are and how they are related to each
other. Ontology allows validation of procedural
knowledge about a system which is represented by
business use cases. Ontology and use cases need to
be modified iteratively until they correspond. Then,
it is possible to construct a TFM. Nevertheless, TFM
also has to be validated. If any changes are
necessary, they will have to be done in the ontology
and business use cases, and then the TFM can be
regenerated.

Paper (Slihte et al., 2011) reviews declarative
and procedural knowledge. To represent declarative
knowledge ontology is used, and to represent
procedural knowledge – business use cases are
applied. Paper also reviews technical opportunities
of mapping the knowledge. Ontology can be
developed using OWL standard. Attempto Controlled
English for business use cases is mentioned in
(Slihte et al., 2011). Attempto Parsing Engine can be
used for natural language processing.

In paper (Osis et al., 2012), MOF-compatible
metamodel of business use cases is introduced. A
tool that uses this metamodel and allows
constructing business use case model is developed.

Paper (Slihte and Osis, 2014) gives a name for an
approach that is reviewed in this subsection: the
Integrated Domain Modeling (IDM). In paper, a case
of successful application of IDM approach in real
business project is studied. A tool for automatic
transformation “Business use cases → TFM” is
developed. IDM approach is published in A. Slihte’s
PhD thesis (Slihte, 2015). This is a very important
milestone in the development of TFM4SE.

To sum up, IDM approach concentrates on pre-
CIM analysis, and also introduces formalism to this
early stage of software development. The approach
provides theory and toolset for obtaining TFM
(which is a formal CIM in MDA framework) from
the formalized knowledge about a business system.

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

320

The toolset allows creating business use case model,
creating ontology, creating TFM (manually), and
automatically obtaining TFM from business use
cases. Nevertheless, author of this survey sees a gap
in functionality of the mentioned toolset –
correspondence between ontology and business use
cases is not validated automatically.

6 FURTHER DEVELOPMENT OF
TOPOLOGICAL MODELING

Paper (Osis and Silins, 2009) introduces an approach
for development of embedded systems. It combines
principles of co-design and MDA. Name of the
approach is “Topological Function – Architecture
Co-Design”.

Research in paper (Asnina and Osis, 2010)
concentrates on bridging problem and solution
domains. As before, TFM is used as a formal
bridging mechanism. Paper introduces new names
for TFM types: “as is” TFM – TFM of problem
domain; 2) “to be” TFM – TFM of solution domain;
3) TFM of information system. Information system
is a subsystem of solution domain. Hence, TFM of
information system can be separated from TFM of
solution domain with closure operation. Compliance
between a problem domain and a solution domain is
proved if continuous mapping between “as-is” TFM
and “to-be” TFM is in place. Likewise, continuous
mapping must be kept between “to-be” TFM and
TFM of information system. (Closure operation and
continuous mapping are fundamentals of TFM (Osis,
1969).)

In paper (Osis and Asnina, 2011a), authors
reason about the state of software development.
They share with some other experts, e.g., C. Jones,
the opinion that the way software is built is
primitive. To become better, software development
must turn into software engineering. The word
“engineering” intends a theory approved, completely
realized and reused many times in practice that gives
a qualitative and relatively inexpensive end product
in accurately predictable timeframes. In order to
satisfy high effectiveness and quality of the software
development we need Theory Driven Architecture
and Scientific Software Engineering. Paper’s title is
“Is Modeling a Treatment for the Weakness of
Software Engineering?” The answer is positive, but
if and only if modeling is based on mathematical
formalism from the very beginning of software
development process.

An engineering model should satisfy five key
characteristics: abstraction, understandability,
accuracy, predictability and inexpensiveness, as it is
stated in (Osis and Asnina, 2011b). TFM satisfies
them. Thus, it is concluded that TFM is an
engineering model. TFM is compared to Petri nets in
the paper. Both models are formal. TFM has an
advantage over Petri nets – TFM is applicable in
modeling complex systems, while Petri nets as self-
sufficient model is not quite convenient.

In paper (Asnina and Osis, 2011), it is concluded
that CIM may include three main parts: 1) CIM –
Knowledge Model (or pre-CIM); 2) CIM – Business
Model; 3) CIM – Business Requirements for the
System. Within TFM4MDA: CIM – Knowledge
Model is informal verbal description of a system, or,
if IDM is used, it is Ontology with Business use
cases; CIM – Business Model is TFM; CIM –
Business Requirements for the System are Use cases
obtained from TFM. Also, informal guidelines of
how to derive business processes from TFM are
introduced in the paper.

Paper (Osis and Asnina, 2011c) describes
benefits and limitations of use case techniques. New
formal guidelines for obtaining use cases from TFM
are introduced.

Paper (Asnina et al., 2011) demonstrates the
establishment of formal trace links to real world
functional units and entities from user requirements
and analysis artifacts. These links show element
interdependence make the impact analysis more
thorough. Thanks to the formalism of TFM and to
formal transformations from TFM to other models, it
is possible to automate the mentioned tracing.

In TFM, the combinations of causes might exist
that are sufficient or both necessary and sufficient to
cause an appearance of the effect. To specify these
combinations, logic is introduced to TFM in (Asnina
et al., 2012). This approach of representing logic in
TFM is different to the one described in (Donins,
2012a), and serves different purpose. A formal
specification of TFM’s cause-effect relation is
introduced – a 4-tuple:

<C, E, N, S>,

where C is a cause functional feature, E is an effect
functional feature, N is the necessity of the
functional feature C for generating the functional
feature E, and S is sufficiency of C for generating E.
There was no formal specification for cause-effect
relation before. In addition, logical operators are
introduced: conjunction (AND), disjunction (OR,
XOR) and negation (¬).

Topological Functioning Model for Software Development within MDA (Survey)

321

In paper (Asnina et al., 2013), an attribute is
added to the tuple that specifies cause-effect
relation:

<C, E, N, S, Refs>,

where Refs (references) is a set of unique tuples
<Ref_Ids, LOp>, where LOp is a logical operation
(e.g., AND, OR), and Ref_Ids is a set of tuples <C*,
E*> of cause-and-effect relations (<C, E> is not
equal to <C*, E*>) that participate in logical
operation LOp together. Also, paper introduces
transformation “TFM → UML Activity diagram”.
This transformation, thanks to integrated logic, is
more precise than the one defined in (Osis et al.,
2007c). This transformation is an alternative to the
one that is proposed in (Donins, 2012a), that uses
logical relations instead of cause-effect relations
specified by tuple <C, E, N, S, Refs>.

In paper (Asnina and Ovcinnikova, 2015), formal
specifications of TFM elements are refined. Refs
attribute is removed from the cause-and-effect
specification. New tuple that describes cause-effect
relation:

< ID, Xc, Xe, N, S>,

where ID is a unique identifier of a relation, Xc is a
cause functional feature, and Xe is an effect
functional feature. So it is quite the same as it was
defined in (Asnina et al., 2012). The exclusion of
Refs attribute leads to moving logical combination to
the definition of functional feature. New tuple that
describes functional feature:

< A, R, O, PrCond, PostCond, Pr, Ex, InRel,
OutRel>,

where InRel determines combinations of possible
logical relations among incoming cause-effect
relations, and OutRel – among outgoing cause-effect
relations. Pr and Ex are also new attributes, but are
not important in the context of logical combinations.
Pr is a set of responsible entities (systems or
subsystems) which provide or suggest the action
with the set of certain objects. Ex is a set of
responsible entities which enact the action. Finally,
the specification of logical relation is given (same as
in (Donins, 2012a)):

< ID, T, RT>,

where ID is a unique identifier of a relation, T is a
set of cause-effect relations that participate in this
logical relation, and RT is a logical operator AND,
OR, or XOR over T. So paper (Asnina and
Ovcinnikova, 2015) contains all newest formal
definitions of TFM elements. In addition, the
research of the paper tries to find a mechanism for

specifying business rules that would be appropriate
for TFM. The conclusion is made that the best
option is Decision Model and Notation – a standard
proposed by the OMG for business process
modelling. Nevertheless, the result of the research
needs to be validated for cases where systems have
the complex behavior.

Paper (Osis and Asnina, 2015) supplements
paper (Osis and Asnina, 2011a). Software
Engineering Method and Theory (SEMAT) group is
described in more detail. This group supports a
principle to base software engineering on a solid
theory and best practices. The idea is to create a
solid theory that is a basis for the Kernel language
that formalizes different software development
methods. The Kernel language is being created as an
OMG standard.

7 CONCLUSION

In this paper, the development of topological
modeling for software development was reviewed.
Since 2004, TFM is used as a computation
independent model in the framework of MDA.
TFM4MDA approach – its theoretical basis, tool
support and cogency of usefulness for software
development – is a result of the reviewed research.

TFM4SE, including TopUML application and
IDM approach, covers both analysis and design of
the planned information system. IDM introduces
formalism to the pre-CIM analysis. TopUML
supports the obtaining of design models on PIM and
PSM levels that conform to the formal CIM – TFM.

Author derives the subfields of topological
modeling that were researched: Theoretical basis of
TFM; Theory to ensure compliance between
problem domain and solution domain; Mapping of
requirements onto TFM; Development of
mechatronic and embedded systems; Metamodeling;
Model Driven Architecture; Construction of problem
domain model from knowledge about the system;
Obtaining UML diagrams from TFM; Modeling of
business processes; Tool support for the approach.

For all mentioned subfields, author of the survey
does not see any significant lacks or contradictions
in the developed theory. The reviewed articles
successfully expose the theory. However, TFM4SE
lacks tool support. There are unimplemented
possibilities of automation: 1) validation of
correspondence between ontology and business use
cases in IDM; 2) formal transformations between
models in TopUML; 3) tracing from analysis
artifacts to real world functional units and entities.

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

322

The supporting tool would make the approach more
efficient. Thus, development of tool may be one of
the directions of future work.

TFM4MDA does not cover the transformation of
design models on PIM level to models on PSM
level. This also might be a direction for future
research.

Overall, author thinks that TFM4SE is ready to
be used in industry as an approach of software
development. Author believes that TFM is cogent.

REFERENCES

Alksnis, G., Asnina, E., Osis, J., Silins, J. 2005,
Formalization of Software Development: Problems
and Solutions. In: Applied computer systems. Volume
22, pp.204-216. ISSN 1407-7493.

Alksnis, G., Osis, J. 2002, Formalization of Software
Engineering by Means of the Theory of Categories. In:
Scientific Proceedings of Riga Technical University.
Series – Computer Science (5), Volume 13, Riga,
RTU, pp. 157-163.

Alksnis, G., Osis, Ya. 2001, Category Theory and
Computer Science. In: Computer Science, Applied
Computer Systems, Series – Computer Science (5),
Vol. 8, Scientific Proceedings of Riga Technical
University, Riga, pp. 59-67.

Asnina, E. 2006, The Formal Approach to Problem
Domain Modelling Within Model Driven
Architecture. In: Proceedings of the 9th International
Conference on Information Systems Implementation
and Modelling (ISIM’06), Czech Republic, Přerov, 25-
26 April, 2006. Ostrava: Jan Štefan MARQ, pp.97-
104. ISBN 80-86840-19-0.

Asnina, E., Gulbis, B., Osis, J., Alksnis, G., Donins, U.,
Slihte, A. 2011, Backward Requirements Traceability
within the Topology-based Model Driven Software
Development. In: Proceedings of the 3rd International
Workshop on Model-Driven Architecture and
Modeling-Driven Software Development (MDA &
MDSD 2011), China, Beijing, 7-11 June, 2011.
Lisbon: SciTePress, pp.36-45. ISBN 9789898425591.

Asnina, E., Osis, J. 2002, Formalization Problems and
Perspectives of the Program Development (in
Latvian). In: Scientific Proceedings of Riga Technical
University. Series – Computer Science (5), Volume
13, Riga, RTU, pp. 145-156.

Asnina, E., Osis, J. 2006, The Computation Independent
Viewpoint: a Formal Method of Topological
Functioning Model Constructing. In: Applied
computer systems. Vol.26, pp.21-32. ISSN 1407-7493.

Asnina, E., Osis, J. 2008, Analysis of Multifractal System
Properties in Object-Oriented Software Development.
In: Applied computer systems. Vol.34, pp.37-45. ISSN
1407-7493.

Asnina, E., Osis, J. 2010, Computation Independent
Models: Bridging Problem and Solution Domains. In:

Proceedings of the 2nd InternationalWorkshop on
Model-Driven Architecture and Modeling Theory-
Driven Development (MDA & MTDD 2010), in
conjunction with ENASE 2010, Greece, Athens, 22-24
July, 2010. Lisbon: SciTePress, pp.23-32. ISBN
9789898425164.

Asnina, E., Osis, J. 2011, Topological Functioning Model
as a CIM-Business Model. In: Model-Driven Domain
Analysis and Software Development: Architectures
and Functions. IGI Global, Hershey - New York, pp.
40 – 64. Available from: doi: 10.4018/978-1-61692-
874-2.ch003

Asnina, E., Osis, J., Jansone, A. 2012, System Thinking
for Formal Analysis of Domain Functioning in the
Computation Independent Model. In: Proceedings of
the 7th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE
2012), Poland, Wrocław, 29-30 June, 2012. Lisbon:
SciTePress, pp.232-240. ISBN 9789898565136.

Asnina, E., Osis, J., Jansone, A. 2013, Formal
Specifications of Topological Relations. In: Databases
and Information Systems VII: Selected Papers from
the Tenth International Baltic Conference (DB&IS
2012), Lithuania, Vilnius, 8-11 July, 2012.
Amsterdam: IOS Press, pp.175-188. ISBN 978-1-
61499-160-1. e-ISBN 978-1-61499-161-8. Available
from: doi:10.3233/978-1-61499-161-8-175

Asnina, E., Osis, J., Kirikova, M. 2008, Design of Fractal-
Based Systems Within MDA: Platform Independent
Modelling. In: Proceedings of the Third AIS SIGSAND
European Symposium on Analysis, Design, Use and
Societal Impact of Information Systems (SIGSAND-
EUROPE 2008), Germany, Marburg, 12-13 June,
2008. Marburg: Koellen-Verlag, pp.39-53. ISBN 978-
3-88579-223-9. ISSN 1617-5468.

Asnina, E., Ovcinnikova, V. 2015, Specification of
Decision-making and Control Flow Branching in
Topological Functioning Models of Systems. In:
Proceedings of 10th International Conference on
Evaluaton of Novel Approaches to Software
Engineering, Spain, Barcelona, 29-30 April, 2015.
Portugal: SciTePress, pp.364-373. ISBN 978-989-758-
100-7.

Birgelis, J., Osis, J. 2005, Generalization of MDA and
Software Synthesis. In: Scientific Proceedings of Riga
Technical University. Series – Computer Science (5),
Volume 22, Riga, RTU, pp. 217-228.

Donins, U. 2010, Software Development with the
Emphasis on Topology. In: Advances in Databases
and Information Systems: Lecture Notes in Computer
Science. Volume 5968, Berlin: Springer Berlin
Heidelberg, pp. 220-228. ISBN 9783642120817.

Donins, U. 2012 a, Semantics of Logical Relations in
Topological Functioning Model. In: Proceedings of
the 7th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE
2012), Poland, Wrocław, 29-30 June, 2012. Lisbon:
SciTePress, pp.217-223. ISBN 9789898565136.

Donins, U., Osis, J. 2009, Reconciling Software
Requirements and Architectures within MDA. In:

Topological Functioning Model for Software Development within MDA (Survey)

323

Applied computer systems. Volume 38, pp. 84-95.
ISSN 1407-7493.

Donins, U., Osis, J. 2011, Topological Modeling for
Enterprise Data Synchronization System: A Case
Study of Topological Model-Driven Software
Development. In: Proceedings of the 13th
International Conference on Enterprise Information
Systems. Vol.3, China, Beijing, 8-11 June, 2011.
Beijing: SciTePress, pp.87-96. ISBN 9789898425553.

Donins, U., Osis, J., Asnina, E., Jansone, A. 2012 a,
Formal Analysis of Objects State Changes and
Transitions. In: Proceedings of the 7th International
Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2012), Poland,
Wrocław, 29-30 June, 2012. Lisbon: SciTePress,
pp.249-256. ISBN 9789898565136.

Donins, U., Osis, J., Asnina, E., Jansone, A. 2012 b, Using
Functional Characteristics to Analyze State Changes
of Objects. In: Databases and Information Systems.
Tenth International Baltic Conference on Databases
and Information Systems: Local Proceedings,
Materials of Doctoral Consortium, Lithuania, Vilnius,
8-11 July, 2012. Vilnius: Žara, pp.94-106. ISBN
9789986342748.

Donins, U., Osis, J., Slihte, A., Asnina, E., Gulbis, B.
2011, Towards the Refinement of Topological Class
Diagram as a Platform Independent Model. In:
Proceedings of the 3rd International Workshop on
Model-Driven Architecture and Modeling-Driven
Software Development (MDA & MDSD 2011), China,
Beijing, 8-11 June, 2011. Lisbon: SciTePress, pp.79-
88. ISBN 9789898425591.

Donins, Uldis. 2012 b, Topological Unified Modeling
Language: Development and Application. PhD Thesis.
Riga: [RTU]. 224 p.

Gelfandbain, J., Osis, J., Markovich, Z., Novozilova, N.
1990, Diagnostics on Graph Models (in Russian). In:
Proceedings of conference on gas turbine engines,
Moscow-Harkow, pp. 34 – 35.

Ivasiuta, O., Osis, J. 1999, Methodics to Comparing
Software Design Methodologies. In: Proc.of the 33rd
International Conference "Modelling and Simulation
of Systems" (MOSIS'99). Roznov pod Radhostem,
Czech Republi, V. ISM'99, pp. 67-74.

Miller, J., Mukerji, J. 2003, MDA Guide Version 1.0.1,
OMG, viewed 10 September 2015,
<http://www.omg.org/cgi-bin/doc?omg/03-06-01>

Nahimova, M., Osis, J. 2002, Specific Features of the
Modeling of Mechatronic Systems (in Latvian). In:
Scientific Proceedings of Riga Technical University.
Series – Computer Science (5), Volume 13, Riga,
RTU, pp. 181-189.

Osis, J. 1969, Topological Model of System Functioning
(in Russian). In: Automatics and Computer Science, J.
of Academia of Siences, Riga, Latvia, Nr. 6, pp. 44-50.

Osis, J. 1972, Diagnostics of Complex Systems (in
Russian). Summary of Habilitation Thesis, Latvian
Academy of Sciences, Riga, 56 p.

Osis, J. 1991, Topological Models in Technical and
Medical Diagnostics, in Image Recognition and in

Expert Systems in Latvia (in Latvian). In: World
Congress of Latvian Scientists, Vol. 5. Riga.

Osis, J. 1997, Development of Object-Oriented Methods
for Hybrid System Analysis and Design. In: Proceed.
of the 23rd Conference of the ASU. Stara Lesna,
Slovakia, pp. 162-170

Osis, J. 2001 a, RTU Scientific School of System
Modeling (in Latvian). In: Computer Science, Applied
Computer Systems, Series – Computer Science (5),
Vol. 8, Scientific Proceedings of Riga Technical
University, Riga, pp. 6-17.

Osis, J. 2001 b, What is the Precise Relationship between
Domain Modelling and Architectural Design and
Modelling? In: Proceedings of the 4th ECOOP
Workshop on Object-Oriented Architectural
Evolution, 15th ECOOP, Budapest, Hungary, 18–22
June, pp. 9-12.

Osis, J. 2001 c, Brief Survey of Object-Oriented
Approach. In: Computer Science, Applied Computer
Systems, Series – Computer Science (5), Vol. 8,
Scientific Proceedings of Riga Technical University,
Riga, pp. 23-32.

Osis, J. 2001 d, Object-Oriented System Analysis – Case
Processing or Construction of Formalism? (in
Latvian). In: Proceedings of Plenary session of the
2nd World Congress of Latvian Scientists, Riga, pp.
596.

Osis, J. 2001 e, RTU Scientific School of Modeling and
Studying of Complex Systems (in Latvian). In:
Proceedings of the 42nd International Conference of
Riga Technical University, Riga, RTU, pp. 38 – 40.

Osis, J. 2003 a, Extension of Software Development
Process for Mechatronic and Embedded Systems. In:
Proceedings of the 32nd International Conference on
Computers and Industrial Engineering, University of
Limerick, Ireland, 11 –13 August, pp. 305 – 310.

Osis, J. 2003 b, Topological Functioning Model Support
for Software Engineering. In: Scientific Proceedings of
Riga Technical University. Series – Computer Science
(5), Volume 17, Riga, RTU, pp. 31 – 42.

Osis, J. 2004, Software Development with Topological
Model in the Framework of MDA. In: Proceedings of
the 9th CAiSE/IFIP8.1/EUNO International Workshop
on Evaluation of Modeling Methods in Systems
Analysis and Design (EMMSAD’2004) in connection
with the CAiSE’2004. Volume 1, RTU, Riga, pp. 211-
220.

Osis, J. 2006 a, Problem Domain Modeling at the
Beginning of MDA Life Cycle By Means of
Topological Functioning Model. In: Proceedings of
the 7th International Baltic Conference on Databases
and Information Systems (DB&IS’06). Vilnius,
Lithuania, pp. 105-116.

Osis, J. 2006 b, Formal Computation Independent Model
within the MDA Life Cycle. In: International
Transactions on Systems Science and Applications.
ISSN 1751-1461 (Print), ISSN 1751-147X (CD-
ROM), V. 1, Nr. 2, Xiaglow Institute Ltd, Glasgow,
UK, pp. 159-166.

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

324

Osis, J. 2006 c, Topological Functioning Model within the
MDA Life Cycle. In: Scientific Proceedings of Riga
Technical University. Series – Computer Science (5),
Volume 26, Riga, RTU, pp. 9-20.

Osis, J., Asnina, E. 2008 a, Enterprise Modeling for
Information System Development within MDA. In:
Proceedings of the 41st Hawaii International
Conference on Systems Science (HICSS-41 2008),
United States of America, Waikoloa, 7-10 January,
2008. Waikoloa: IEEE Computer Society, pp.490-490.
ISSN 1530-1605. Available from:
doi:10.1109/HICSS.2008.150

Osis, J., Asnina, E. 2008 b, A Business Model to Make
Software Development Less Intuitive. In:
International Conference on Innovation in Sofware
Engineering (ISE 2008), Austria, Vienna, 10-12
December, 2008. Vienna: IEEE Computer Society,
pp.1240-1245. ISBN 9780769535142. Available from:
doi:10.1109/CIMCA.2008.52

Osis, J., Asnina, E. 2011 a, Is Modeling a Treatment for
the Weakness of Software Engineering? In: Model-
Driven Domain Analysis and Software Development:
Architectures and Functions. IGI Global, Hershey -
New York, pp. 1-14. Available from: doi:
10.4018/978-1-61692-874-2.ch001

Osis, J., Asnina, E. 2011 b, Topological Modeling for
Model-Driven Domain Analysis and Software
Development: Functions and Architectures. In: Model-
Driven Domain Analysis and Software Development:
Architectures and Functions. IGI Global, Hershey -
New York, pp. 15 – 39. Available from: doi:
10.4018/978-1-61692-874-2

Osis, J., Asnina, E. 2011 c, Derivation of Use Cases from
the Topological Computation Independent Business
Model. In: Model-Driven Domain Analysis and
Software Development: Architectures and Functions.
IGI Global, Hershey - New York, pp. 65 – 89.
Available from: doi: 10.4018/978-1-61692-874-
2.ch004

Osis, J., Asnina, E. 2015, Is Modeling a Treatment for the
Weakness of Software Engineering? In: V.Díaz,
J.Cueva Lovelle, B.García-Bustelo ed. Handbook of
Research on Innovations in Systems and Software
Engineering. Hershey, PA: IGI Global, pp.411-427.
ISBN 9781466663596. e-ISBN 9781466663602.
Available from: doi:10.4018/978-1-4666-6359-6

Osis, J., Asnina, E., Donins, U., Garcia-Diaz, V. 2014,
Dependencies among Architectural Views Got from
Software Requirements Based on a Formal Model. In:
Applied Computer Systems. Vol.16, pp.5-12. ISSN
2255-8683. e-ISSN 2255-8691. Available from:
doi:10.1515/acss-2014-0007

Osis, J., Asnina, E., Grave, A. 2007 a, Formal
Computation Independent Model of the Problem
Domain within the MDA. In: Proceedings of the 10th
International Conference on Information System
Implementation and Modeling (ISIM 2007), Czech
Republic, Hradec nad Moravici, 23-25 April, 2007.
Hradec and Moravici: Jan Štefan MARQ, pp.47-54.

Osis, J., Asnina, E., Grave, A. 2007 b, MDA Oriented
Computation Independent Modeling of the Problem
Domain. In: Proceedings of the 2nd International
Working Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2007),
Spain, Barcelona, 23-25 July, 2007. Barcelona:
INSTICC Press, pp.66-71. ISBN 978-989-8111-10-4.

Osis, J., Asnina, E., Grave, A. 2007 c, Computation
Independent Modeling within the MDA. In:
Proceedings of IEEE International Conference on
Software, Science, Technology & Engineering
(SwSTE07), Israel, Herzlia, 30-31 October, 2007.
Herzlia: IEEE Computer Society, Conference
Publishing Services (CPS), pp.22-34. ISBN 978-0-
7695-3021-5. Available from:
doi:10.1109/SwSTE.2007.20

Osis, J., Asnina, E., Grave, A. 2008 a, Computation
Independent Representation of the Problem Domain in
MDA. In: e-Informatica Software Engineering
Journal, Vol.2, Iss.1, pp. 29.-46, ISSN 1897-7979.

Osis, J., Asnina, E., Grave, A. 2008 b, Formal Problem
Domain Modeling within MDA. In: Communications
in Computer and Information Science (CCIS).
Software and Data Technologies: Second
International Conference ICSOFT/ENASE 2007:
Revised Selected Papers, Germany, Berlin, 22-25 July,
2007. Berlin: Springer-Verlag Berlin Heidelberg,
pp.387-398. ISBN 9783540886549. e-ISBN
9783540886556. ISSN 1865-0929. Available from:
doi:10.1007/978-3-540-88655-6_29

Osis, J., Beghi, L. 1997, Topological Modelling of
Biological Systems. In: Proccedings of the third IFAC
Symposium on Modelling and Control in Biomedical
Systems (Including Biological Systems), D. A.
Linkens, E. R. Carson (editors), Pergamon-Elsevier
Science Publishing, Oxford, UK, pp. 337-342.

Osis, J., Donins, U. 2009 a, An Innovative Model Driven
Formalization of the Class Diagrams. In: Proceedings
of 4th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE
2009), Italy, Milan, 9-10 May, 2009. Milan: INSTICC
Press, pp. 134-145.

Osis, J., Donins, U. 2009 b, Modeling Formalization of
MDA Software Development at the Very Beginning of
Life Cycle. In: Advances in Databases and
Information Systems: 13th East-European Conference
(ADBIS 2009) : Associated Workshops and Doctoral
Consortium : Local Proceedings, Latvia, Rīga, 7-10
September, 2009. Riga: RTU, pp.48-61. ISBN
9789984301631.

Osis, J., Donins, U. 2010 a, Formalization of the UML
Class Diagrams. In: Evaluation of Novel Approaches
to Software Engineering: 3rd and 4th International
Conferences ENASE 2008/2009: Revised Selected
Papers, Italy, Milan, 9-10 May, 2009. Berlin:
Springer-Verlag, pp.180-192. ISBN 9783642148187.
e-ISBN 9783642148194. ISSN 1865-0929. Available
from: doi:10.1007/978-3-642-14819-4_13

Osis, J., Donins, U. 2010 b, Platform Independent Model
Development by Means of Topological Class

Topological Functioning Model for Software Development within MDA (Survey)

325

Diagrams. In: Model-Driven Architecture and
Modeling Theory-Driven Development: Proceedings
of the 2nd International Workshop on Model-Driven
Architecture and Modeling Theory-Driven
Development (MDA & MTDD 2010), Greece, Athens,
22-24 July, 2010. Lisbon: SciTePress, pp.13-22. ISBN
9789898425164.

Osis, J., Gelfandbain, J., Markovich, Z., Novozilova, N.
1991, Diagnostics on Graph Models (on the Examples
of Aviation and Automobile Technology) (in Russian).
Moscow, Transport, 244 p.

Osis, J., Merkuryev, Y., Ginters, E., Teilans, A. 1996,
Object Oriented Modelling and Simulation Using
LATISS. In: Proceedings of the 22nd Conference of
the ASU, Clermont-Ferrand, France, July, pp.136-
145.

Osis, J., Silins, J. 2002, Specifics of Modelling of
Embedded Systems. In: Scientific Proceedings of Riga
Technical University. Series – Computer Science (5),
Volume 13, Riga, RTU, pp. 173-180.

Osis, J., Silins, J. 2009, Topological Function-Architecture
Co-Design of Embedded Systems. In: Advances in
Databases and Information Systems: 13th East-
European Conference (ADBIS 2009): Associated
Workshops and Doctoral Consortium : Local
Proceedings, Latvia, Rīga, 7-10 September, 2009.
Riga: RTU, pp.424-431. ISBN 9789984301631.

Osis, J., Slihte, A. 2010, Transforming Textual Use Cases
to a Computation Independent Model. In: Model-
Driven Architecture and Modeling Theory-Driven
Development: Proceedings of the 2nd International
Workshop (MDA & MTDD 2010), Greece, Athens, 22-
24 July, 2010. Lisbon: SciTePress, pp.33-42. ISBN
9789898425164.

Osis, J., Slihte, A., Jansone, A. 2012, Using Use Cases for
Domain Modeling. In: Proceedings of the 7th
International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2012),
Poland, Wrocław, 29-30 June, 2012. Lisbon:
SciTePress, pp.224-231. ISBN 9789898565136.

Osis, J., Sukovskis, U., Teilans, A. 1997, Business Process
Modeling and Simulation Based on Topological
Approach. In: Proceedings of the 9th European
Simulation Symposium and Exhibition, Passau,
Germany, pp. 496-501.

Slihte, A. 2009, The Concept of a Topological
Functioning Model Construction Tool. In: Advances in
Databases and Information Systems: 13th East-
European Conference (ADBIS 2009) : Associated
Workshops and Doctoral Consortium : Local
Proceedings, Latvia, Rīga, 7-10 September, 2009.
Rīga: RTU, pp.476-484. ISBN 9789984301631.

Slihte, A. 2010, The Specific Text Analysis Tasks at the
Beginning of MDA Life Cycle. In: Databases and
Information Systems Doctoral Consortium, Latvia,
Riga, 5-7 July, 2010. Riga: SIA "Latgales druka",
pp.11-22. ISBN 9789984451893.

Slihte, A., Osis, J. 2014, The Integrated Domain
Modeling: A Case Study. In: Databases and
Information Systems: Proceedings of the 11th

International Baltic Conference (DB&IS 2014),
Estonia, Tallinn, 8-11 June, 2014. Tallinn: Tallinn
University of Technology Press, pp.465-470. ISBN
978-9949-23-632-9. e-ISBN 978-9949-23-633-6.

Slihte, A., Osis, J., Donins, U. 2011, Knowledge
Integration for Domain Modeling. In: Proceedings of
the 3rd International Workshop on Model-Driven
Architecture and Modeling-Driven Software
Development (MDA & MDSD 2011), China, Beijing,
8-11 June, 2011. Lisbon: SciTePress, pp.46-56. ISBN
9789898425591.

Slihte, A., Osis, J., Donins, U., Asnina, E., Gulbis, B.
2011, Advancements of the Topological Functioning
Model for Model Driven Architecture Approach. In:
Proceedings of the 3rd International Workshop on
Model-Driven Architecture and Modeling-Driven
Software Development (MDA & MDSD 2011), China,
Beijing, 7-11 June, 2011. Lisbon: SciTePress, pp.91-
100. ISBN 9789898425591.

Slihte, Armands. 2015, The Integrated Domain Modeling:
an Approach & Toolset for Acquiring a Topological
Functioning Model. PhD Thesis. Riga: [RTU]. 224 p.

MDI4SE 2016 - Special Session on Model-Driven Innovations for Software Engineering

326

