
Context-aware Security Models for PaaS-enabled Access Control

Simeon Veloudis1, Yiannis Verginadis2, Ioannis Patiniotakis2, Iraklis Paraskakis1
and Gregoris Mentzas2

1South East European Research Centre (SEERC), International Faculty of the University of Sheffield, City College,
24Prox. Koromila St., 54622, Thessaloniki, Greece

2Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece

Keywords: Context-aware Security, Ontologies, Access Control, Data Privacy, Security by Design.

Abstract: Enterprises are embracing cloud computing in order to reduce costs and increase agility in their everyday
business operations. Nevertheless, due mainly to confidentiality, privacy and integrity concerns, many are
still reluctant to migrate their sensitive data to the cloud. In this paper, firstly, we outline the construction of
a suitable Context-aware Security Model, for enhancing security in cloud applications. Secondly, we outline
the construction of an extensible and declarative formalism for representing policy-related knowledge, one
which disentangles the definition of a policy from the code employed for enforcing it. Both of them will be
employed for supporting innovative PaaS-enabled access control mechanisms.

1 INTRODUCTION

Adopting the cloud computing paradigm means that
an enterprise’s IT environment is eventually
transformed into a matrix of interwoven
infrastructure, platform and application services
which are delivered from diverse service providers
(NIST, 2011). The cloud services that an enterprise
will come to depend on will span not only different
technologies and geographies, but most importantly,
entirely different domains of ownership and control,
making the strategic and operational management of
the enterprise cloud environment a particularly
challenging assignment. Nevertheless, enterprises
increasingly recognize the compelling economic and
operational benefits of cloud computing (Micro,
2010). Virtualizing and pooling IT resources in the
cloud enables organisations to realize significant cost
savings and accelerates deployment of new
applications, simultaneously transforming business
and government at an unprecedented pace (Group,
2013). Regardless of the differences in the figures
reported with respect to the size of the cloud
computing market or its future prospects, analysts
agree on the view that the adoption of cloud
computing is advancing at an ever-increasing pace
(Cisco, 2011) and that it introduces a new economy-
based paradigm (Vaquero et al., 2008). At the same
time, however, it creates new security vulnerabilities

stemming mainly from the fact that corporate data
reside in externally controlled servers or untrusted
cloud providers. Exploiting these vulnerabilities may
result in data confidentiality and integrity breaches
(CSA, 2013).

Evidently, these valuable business benefits cannot
be realised without addressing the data security
challenges introduced by cloud computing
(Verginadis et al., 2015a). A promising approach to
alleviating the security concerns associated with
cloud computing is to assist application developers in
defining effective security controls for the sensitive
data of their cloud applications. To this end, in
(Verginadis et al., 2015a) we proposed a generic
security-by-design framework, essentially a PaaS
solution that includes capabilities for guiding
developers through the process of defining
appropriate access control policies for safeguarding
their sensitive data. In order to provide such
capabilities, such a generic framework bears two
seminal characteristics. Firstly, it hinges upon an
adequate access control scheme, one that takes into
account the inherently dynamic and heterogeneous
nature of cloud environments. Secondly, it captures
the knowledge that lurks behind such a scheme (e.g.
actions, subjects, locations, environmental attributes,
etc.) using a generic and extensible formalism, one
which can be tailored to the particular needs of
different cloud applications. The first characteristic

202
Veloudis, S., Verginadis, Y., Patiniotakis, I., Paraskakis, I. and Mentzas, G.
Context-aware Security Models for PaaS-enabled Access Control.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 202-212
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

calls for the incorporation of the notion of context in
access control policies, i.e. the consideration of
dynamically-changing contextual attributes that may
characterise data accesses. It therefore involves the
development of a re-usable and generic Context-
aware Security Model which goes beyond the
traditional context-insensitive security (e.g. DAC,
MAC, RBAC (Ferrari, 2010)). The second
characteristic calls for the adoption of a declarative
approach to modelling policy-related knowledge, one
which is orthogonal to the code of any particular
cloud application and which can be easily adapted to
suit the needs of any such application.

The aim of this paper is twofold. On the one hand,
it outlines the construction of a suitable Context-
aware Security Model, one which essentially supports
an Attribute-based Access control (ABAC) model
(Hu et al., 2014). On the other hand, it outlines the
construction of an extensible and declarative
formalism for representing policy-related knowledge,
one which disentangles the definition of a policy from
the code employed for enforcing it, bringing about the
following advantages: (i) it allows the policy-related
knowledge to be extended and instantiated to suit the
needs of a particular application, independently of the
code employed by the application; (ii) it forms an
adequate basis for reasoning generically about the
correctness and consistency of the security policies,
hence about the effectiveness of the security controls
that these policies give rise to.

The rest of this paper is organised as follows. In
Section 2, we elaborate on a context-aware security
model that will be used as an underlying vocabulary
for describing access control policies. In Section 3,
we introduce a policy model that allows for the
semantic description of PaaS-enabled access controls.
In Section 4, we briefly discuss relevant work and in
Section 5 we conclude the paper by presenting the
next steps for the implementation and evaluation of
the proposed approach.

2 CONTEXT-AWARE SECURITY
MODEL

In this section, we present a context-aware access
model, which can be used by the developers in order
to annotate database Entities, Data Access Objects
(DAO) or any other web endpoints that give access to
sensitive data managed by cloud applications. This
context model conceptualises the aspects, which must
be considered during the selection of a data-access
policy. These aspects may be any kind of information

which is machine-parsable (Dey, 2001); indicatively
they may include the user’s IP address and location,
the type of device that s/he is using in order to interact
with the application as well as his/her position in the
company. These aspects can be interpreted in
different ways during the security policy
enforcement. In particular, the context aware access
model can set the basis for determining which data is
accessible under which circumstances.

2.1 Context-Aware Security
Meta-model

In Figure 1, we present a meta-model that captures the
main facets of the Context-aware Security Model
along with their associations. Specifically, this model
comprises of two different kinds of facets that may
give rise to:
• Dynamic security controls – These controls grant

or deny access to sensitive data on the basis of
dynamically-evolving contextual attributes
which are associated with the entity requesting
the access. The relevant model facets are:
o Security Context Element
o Permission
o Context Pattern

• Static security controls - These controls are
independent of any dynamically evolving
contextual attributes. They mainly correspond to
the distribution and cryptographic protection
features that certain data artefacts must have. The
relevant model facet is the:
o Data Distribution and Encryption Element

(DDE)

Figure 1: Context-aware security meta-model.

According to this meta-model, instances of these
aforementioned facets formulate the Context-
aware Security Model. Furthermore, Context
Pattern elements are directly associated to
Security Context Elements (through the
hasSecurityContextElement property) in order

Context-aware Security Models for PaaS-enabled Access Control

203

Figure 2: UML Class diagram for the Connectivity context element.

to be defined, while the latter can be associated with
certain Permission elements. Due to space
limitations we discuss only the context model facets
that are relevant to access control.

2.2 Context Model Facets

This section provides an elaboration of the initial set
of facets that have been included in the part of the
model that gives rise to dynamic security controls.
We note that all these model facets are focused on the
aspects relevant to access control for cloud services.

2.2.1 Security Context Element

The Security Context Element refers to the
following five top-level concepts:
 Location - This class describes a physical

and/or a network location where data are stored
or from which a particular entity is requesting to
access data.

 DateTime - This class describes the specific
chronological point expressed as either instant or
interval that characterises an access request
(extends owl-time:TemporalEntity).

 Connectivity - This class captures the
information related to the connection used by the
Subject for accessing sensitive data (see Figure
2).

 Object - This class refers to any kind of
artefacts that should be protected based on their
sensitivity levels. These artefacts may refer to
(non-) relational data, files, software artefacts
that manage sensitive data or even infrastructure
artefacts used.

 Subject - An instance of this class represents
the agent seeking access to a particular data
artefact. This can be an organization, a person, a
group or a service (extends foaf:Agent,
goodrelations:BusinessEntity,
goodrelations:ProductOrService).

In Figure 2, we provide further details regarding
the Connectivity top level concept that include
subclasses, imported or extended external classes,
data and object properties. The identifier pcm (stands
for PaaS Control Model) recognises the namespace
underlying the classes and properties of the proposed
vocabulary. Due to space limitations the details of all

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

204

the top level concepts are not explained in this paper
but they are available in the following URL:
http://imu.ntua.gr/software/context-aware-security-
model.

2.2.2 Context Pattern

The next facet of this model is the Context
Pattern model that includes the following top-level
concepts:
 Location pattern - It refers to recurring

motives of data accesses that are recognized
with respect to the Location context element.

 DateTime pattern - It refers to recurring
motives of data accesses that are recognized
with respect to the DateTime context element.

 Connectivity pattern - It refers to
recurring motives of data accesses that are
recognized with respect to the Connectivity
context element.

 Object pattern - It refers to recurring
motives of data accesses that are recognized
with respect to the Object context element.

 Permission pattern - It refers to recurring
motives of data accesses that are recognized
with respect to the Permission element.

 Access Sequence Pattern - It refers to data
accesses that are recognized by any preceding
access actions made by a particular Subject
(extends Kaos:AccessAction).

For the above vocabulary we use the identifier
pcpm (stands for PaaS Context Pattern Model) for
recognising the respective namespace of underlying
classes and properties.

2.2.3 Permission

Another important facet is the Permission model
that involves the following top-level concepts:
 Data Permission - This class refers to any

action allowed by a Subject upon a data
entity (extends schema.org:Action)

 DDL Permission - This class reveals the data
definition language (DDL) related actions on a
specific Object.

The Data Permission involves four subclasses:
 Datastore Permission – It describes any

action allowed by a Subject upon a data entity
in a datastore (e.g. Search, List, Select, Insert,
etc.)

 File Permission - It describes any action
allowed by a Subject upon a file (e.g. Read,
ChDir, Move, Delete, etc.)

 WebEndpoint Permission – It describes
any web endpoint related action that is allowed

upon a data artefact (e.g. Get, Put, Post,
Delete).

 Volume Permission - It refers to any access
permission to a dedicated infrastructure
artefact.

The DDL Permission involves two subclasses:
 Datastore DDL Permission – It describes

any DDL related permission on a datastore
(e.g. Create, Alter, Drop).

 File System Structure Permission - It
describes any DDL related permission on a file
(e.g. CreateDir, RenameDir, CopyDir,
DeepCopyDir, ChOwner, etc.).

For the above vocabulary we use the identifier
ppm (stands for PaaS PaaS Permission Model) for
recognising the respective namespace of underlying
classes and properties.

In Section 3, we demonstrate the way that these
contextual elements that give rise to dynamic security
controls, can set the basis for developing a policy
model for paas-enabled access control.

3 POLICY MODEL FOR
PaaS-ENABLED ACCESS
CONTROL

Three are the main types of security policy that the
proposed PaaS solution aims at supporting:
 Data encryption policies. These determine the

strength of the cryptographic protection that
each sensitive object enjoys for confidentiality
reasons. They give rise to security controls
enforceable during bootstrapping of a cloud
application.

 Data fragmentation and distribution policies.
These determine the manner in which sensitive
data objects must be fragmented and
distributed to different physical servers for
privacy reasons. They too give rise to security
controls enforceable during application
bootstrapping.

 Access control policies. These are essentially
ABAC policies that determine when to grant,
or deny, access to sensitive data on the basis of
dynamically-evolving contextual attributes
associated with the entity requesting the
access. Context awareness is deemed of utmost
importance for leveraging the security of
cloud-based applications which by definition
operate in dynamic and heterogeneous
environments. Access control policies give rise
to security controls d ynamically enforceable

Context-aware Security Models for PaaS-enabled Access Control

205

Figure 3: ABAC ontological model.

during application execution time.
Due to space limitations, in this paper we only
consider access control policies.

3.1 Access Control Policy Model

We argue that, in order to aid application developers
in defining effective ABAC policies for any kind of
sensitive data, our PaaS solution must be underpinned
by an underlying ontological model, one which bears
the following characteristics:
 It is founded on a framework of relevant

interrelated concepts which capture all those
knowledge artefacts that are required for
describing an ABAC policy. Such a framework is
provided by the vocabulary outlined in Section 2

 It uses an extensible formalism for
accommodating the framework of interrelated
concepts, hence expressing ABAC policies.
Such a representation disentangles the definition
of a policy from the code employed for enforcing
it, offering the following seminal advantages: (i)
It allows the framework of relevant interrelated
concepts to be extended and instantiated,
independently of the code employed by the
application. Such an extension/instantiation aims
at customising the framework to the particular
needs of a given application. (ii) It forms an
adequate basis for reasoning generically about
the correctness and consistency of the ABAC
policies, hence about the effectiveness of the
security controls that these policies give rise to.

3.1.1 ABAC Policy Rules

Following an approach inspired by the XACML
standard (OASIS, 2013), an ABAC policy comprises
one or more rules. A rule is the most elementary
structural element and the basic building block of
policies. A generic template for ABAC rules is
provided in Table 1:

Table 1: ABAC rule template.

[actor] with [context expression] has [authorisation] for
[action] on [controlled object]

The template defines a generic structure, in terms of
relevant attributes, to which all ABAC rules in our
PaaS framework adhere. It comprises several
attributes which are further elaborated below.

 actor identifies the subject who may request
access to perform an operation on a sensitive
object; it draws its values from the
pcm:Subject class of the Security Context
Element model defined in Section 2.

 context expression is a Boolean expression which
identifies the environmental conditions that must
hold in order to permit, or deny, the performance
of an operation on a sensitive object. Context
expressions are further elaborated in Section
3.1.2.

 authorisation determines the type of
authorisation (positive i.e. ‘permit’, or negative
i.e. ‘deny’) that is granted.

 action identifies the operation that may, or may
not, be performed on the protected sensitive

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

206

object; it draws its values from the
ppm:Permission class of the Security
Context Element model defined in Section 2.

 controlled object identifies the sensitive object on
which access is requested; it draws its values
from the pcm:Object class of the Security
Context Element model defined in Section 2.

In our ontological model, an ABAC rule takes the
form of an instance of the class pac:ABACRule (see
Figure 3). A number of object properties are attached
to this class which are intended to capture the
aforementioned attributes. As depicted in Figure 3,
these associate the pac:ABACRule class with an
appropriate framework of relevant classes from the
vocabulary of Section 2 which adequately capture the
attributes of the ABAC rule template. The identifier
pac (stands for PaaS Access Control) recognises the
namespace underlying the classes and properties of
the proposed ontological model.

3.1.2 Context Expressions

A context expression takes the form of an instance of
the class pac:ContextExpression (see Figure 3).
It specifies a number of constraints on the values of
one or more instances drawn from the vocabularies
pcpm:ContextPattern and
pcm:SecurityContextElement defined in
Section 2. The class pac:ContextExpression is
associated with these vocabularies through the object
properties pac:hasPatternParameter and
pac:hasParameter respectively depicted in Figure
4. As we would expect, a context expression may
combine two or more constraints using logical
connectives (conjunction, disjunction, exclusive
disjunction, negation). In order to capture such
combinations of constraints, the
pac:ContextExpression class encompasses a
subclass for each logical connective (see Figure 4). A
context expression may be defined recursively, in
terms of one or more other context expressions. This
is captured by associating the
pac:ContextExpression class with itself through
the properties pac:hasParameter and
pac:hasPatternParameter (see Figure 4).

Figure 4: Context expression ontological model.

3.1.3 ABAC Policies and Policy Sets

In our ontological model, an ABAC policy takes the
form of an instance of the class pac:ABACPolicy. It
is associated with the rules that it comprises through
the property pac:hasABACRule. An ABAC policy
may comprise a multitude of ABAC rules which
potentially evaluate to different (and conflicting)
access control decisions. This calls for a combining
algorithm which reconciles the different decisions
and determines an overall decision for the entire
policy (OASIS, 2013). An example of a combining
algorithm is the ‘deny-overrides’ algorithm, whereby
a policy evaluation resolves to ‘deny’ if at least one
of its constituent rules evaluates to ‘deny’, or if none
of them evaluates to ‘permit’. A combining algorithm
takes the form of an instance of the class
pac:CombiningAlgorithms depicted in Figure 3.
A combining algorithm is attached to an ABAC
policy through the property
pac:hasPolicyCombiningAlgorithm.
Following an approach inspired by the XACML
standard (OASIS, 2013), access control policies are
grouped into policy sets. In our ontological model, a
policy set takes the form of an instance of the class
pac:ABACPolicySet (see Figure 3). A policy is
associated with its enclosing policy set through the
property pac:belongsToABACPolicySet. A
policy set may exhibit a hierarchical structure and
comprise one or more other ABAC policy sets. This
recursive inclusion is captured by rendering the
pac:belongsToABACPolicySet property
applicable to ABAC policy sets too (see Figure 3).
ABAC policy sets are also associated with combining
algorithms. As in the case of policies, these reconcile
the potentially different access control decisions to
which the policies comprising a policy set may
evaluate.

It is to be noted here that analogous policy models
have been devised for the rest of the policy types
outlined at the beginning of Section 3.

Context-aware Security Models for PaaS-enabled Access Control

207

Figure 5: USDL-SEC customisation (only classes and properties used in this paper are depicted).

3.2 Access Control Policies in Linked
USDL

Section 3.1 outlined a model for the generic
representation of ABAC policies. This section
demonstrates how this model can be incorporated into
the ontological framework provided by Linked USDL
(2014), and in particular, into USDL-SEC – Linked
USDL’s security profile (USDL stands from Unified
Service Description Language). By capitalising on
USDL-SEC, our approach avoids the use of bespoke,
non-standards-based, ontologies for the
representation of ABAC policies (see Section 4 for a
relevant outline of such ontologies). Instead, it is
based on a diffused ontological framework which has
recently attracted considerable research interest. In
addition, the adoption of Linked USDL brings about
the following advantages (Pedrinaci et al., 2014): (i)
Linked USDL relies on existing widely-used RDF(S)
vocabularies (such as GoodRelations, FOAF and
SKOS), whilst it can be easily extended through
linking to further existing, or new, RDF(S)
ontologies. In this respect, it promotes knowledge
sharing whilst it increases the interoperability,
reusability and generality of our framework. (ii) By
offering a number of different profiles, Linked USDL
provides a holistic and generic solution able to
adequately capture a wide range of business details.
This is important for our work as it allows us to
adequately capture the business aspects of the
security policies encountered within our framework.
(iii) Linked USDL is designed to be easily extensible
through linking to further existing, or new, RDF(S)
ontologies. This is particularly important for our
model as it facilitates seamless integration with the
Context-aware security model devised in Section 2.
(iv) It provides ample support for modelling,

comparing, and trading services and service bundles.
It also provides support for specifying, tracking, and
reasoning about the involvement of entities in service
delivery chains. This is important for our work for it
allows comparisons to be drawn between different
policy models that may potentially be offered through
our framework.

Due to space limitations, an introduction to the
classes and properties offered by Linked USDL is
omitted here. The interested reader is referred to
(Linked USDL, 2014).

3.2.1 Incorporating ABAC Policies into
USDL-SEC

USDL-SEC provides a simple vocabulary for
describing the security properties of an application. It
introduces the classes SecurityProfile,
SecurityGoal, SecurityMechanism, and
SecurityTechnology, along with a number of
relevant object properties, as depicted in Figure 5 (to
reduce notational clutter, we avoid prefixing the
usdl-sec namespace to USDL-SEC classes and
properties). For a more complete discussion of the
classes and properties offered by USDL-SEC the
reader is referred to (Linked USDL, 2014).

At the highest level of abstraction, the ABAC
policy model forms, essentially, a particular security
profile to which a cloud application may adhere. In
this respect it is modelled as an instance of USDL-
SEC’s SecurityProfile class, namely
pac:PaaSAccessControlProfile. A security
profile is associated, through the object property
hasSecurityGoal, with one or more security goals
from the USDL-SEC class SecurityGoal. In the
case of ABAC policies, the security goal is
authorisation. This is modelled in Figure 5 by
associating the instance

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

208

pac:PaaSAccessControlProfile with an
instance, say pac:AccessControlGoal, of the
Authorization class through the property
hasSecurityGoal. The Authorization class
forms a sub-concept of SecurityGoal.

The authorisation goal is achieved by means of a
suitable access control mechanism. USDL-SEC
provides a layer of abstraction, namely the concept
SecurityMechanism, for the specification of such
a mechanism. In particular, it provides the class
AccessControl, a sub-concept of
SecurityMechanism, an instance of which, say
pac:AccessControlMechanism, represents the
access control mechanism offered by our PaaS
framework. This instance is associated with the
pac:AccessControlGoal instance through the
property isImplementedBy.

The access control mechanism represented by the
instance pac:AccessControlMechanism is
realised by means of some underlying concrete
security technology. USDL-SEC provides a layer of
abstraction, namely the concept
SecurityTechnology, for the specification of such
a technology. In our model, the access control
mechanism is realised by the access control
technology provided by our PaaS framework. This is
modelled by introducing the pac:PaaSABAC
subclass (see Figure 5), along with the instance
pac:AccessControlTechnology which
represents this access control technology. This
instance is associated with the access control
mechanism through the property
isRealizedByTechnology (see Figure 5). The
pac:PaaSABAC subclass is associated, through the
property pac:hasABACPoliceSet, with the class
pac:ABACPolicySet (the top concept of the ABAC
policy model of Section 3). This essentially captures
the fact that the access control mechanism is realised
through the policies encompassed in one or more
ABAC policy sets.

It is to be noted here that the policy models
devised for the rest of the policy types outlined at the
beginning of Section 3 are incorporated into USDL-
SEC in an analogous manner.

4 RELATED WORK

In the literature, there is a plethora of context models.
For example (Strang & Linnhoff-Popien, 2004) and
(Bettini et al., 2010) review models of context that
range from key-value models, to mark-up schemes,
graphical models, object-oriented models, logic-
based models and ontology-based models. An

interesting context model is the one proposed in
(Miele et al., 2009), which was initially developed for
mobile devices and later extended for the use in
service-based applications in (Bucchiarone et al.,
2010). Another example is the one in (Truong et al.,
2009) who developed an ontological model of the
W4H classification for context. The W4H ontology
provides a set of general classes, properties, and
relations exploiting the five semantic dimensions:
identity (who), location (where), time (when), activity
(what) and device profiles (how). Furthermore,
authors exploited the concepts of the W4H ontology
by including domain-independent common context
concepts from existing work; e.g. FOAF, vCard, the
OWL-Time Ontology, etc. The five dimensions of
context have been also pointed out earlier by Abowd
and Mynatt (Abowd and Mynatt, 2000) who stated
that context should include the ‘five W’: Who, What,
Where, When, and Why. For example, by ‘Who’,
they mean that it is not enough to identify a person as
a customer; the person’s past actions and service
related background should also be identified for better
service provision. ‘What’ refers to the activities
conducted by the people involved in the context and
interactions between them. ‘Where’ represents
location data. ‘When’ is related to time. ‘Why’
specifies the reason for ‘Who’ did ‘What’. ‘Why’
represents a complicated notion and acts as the
driving force for context sensitive information
systems. In addition to that, from the literature review
we found interesting efforts that concerned modelling
languages, which take context explicitly into account.
The first such effort was ContextUML a UML-based
modelling language that was specifically designed for
Web service development and applies model-driven
development principles; see (Sheng, 2005). In a Web-
service-based environment, ContextUML considers
that context contains any information that can be used
by a Web service to adjust its execution and output.

The need for the exploitation of context in the
access control mechanisms is quite evident from the
state-of-the-art. Nevertheless, we found that even
dedicated context-aware extensions to traditional
access control models (e.g. Role-based Access
Control - RBAC) either do not cover all the
contextual elements with a reusable security related
context model or are proven hard to maintain in
dynamic environments where users often change
roles or are not known a priori (Heupel, 2012). On the
other hand, pure ontological models (e.g. (Truong et
al., 2009), or even Attribute-based Access Control
(ABAC) approaches (e.g. (Jung et al., 2014)) they do
not seem to cover all the security requirements
associated with the lifecycle of a cloud application

Context-aware Security Models for PaaS-enabled Access Control

209

(i.e. bootstrapping and run-time). Specifically, either
they do not cover the full range of contextual
elements that are associated with all the security
aspects of sensitive data managed by cloud
applications or they are based on heavy inferencing
that is considered as inefficient for such dynamic
environments (Verginadis et al., 2015b).

With respect to policies and policy-based
applications, syntactic descriptions promote a
declarative approach to policy expression, one which
aims at replacing a trend whereby policies are
encoded imperatively, as part of the same software
that checks for their compliance. Several markup
languages have been proposed for the declarative
description of policies, some prominent examples
being RuleML (2015), XACML (OASIS, 2013),
SAML (2008) and WS-Trust (2007). These generally
provide XML-based syntaxes for expressing policy
rules and sets. Nevertheless, such syntactic
descriptions fail to capture the knowledge lurking
behind policies. In this respect, they are merely data
models that lack any form of semantic agreement
beyond the boundaries of the organisation that
developed them. Any interoperability relies on the
use of vocabularies that are shared among all parties
involved in an interaction.

In order to overcome the aforementioned
limitations, semantically-rich approaches to the
specification of policies have been brought to the
attention of the research community. These generally
embrace Semantic Web representations for capturing
what we term action-oriented policies, i.e. policies
which control when a particular actor or subject can
perform a specified action on, or through the use of, a
particular resource. These approaches typically
employ ontologies in order to assign meaning to
actors, actions and resources. Several works in the
area of semantic policy representation have been
reported in the literature (Uszok, 2005; Kagal et al.,
2003; Hu et al., 2014). In (Uszok, 2005), the authors
presented KAoS – a general-purpose policy
management framework which exhibits a three-
layered architecture comprising:
 A human interface layer, which provides a

graphical interface for policy specification in
natural language.

 A policy management layer, which uses OWL
(2004) to encode and manage policy-related
knowledge.

 A policy monitoring and enforcement layer,
which automatically grounds OWL policies to a
programmatic format suitable for policy-based
monitoring and policy enforcement.

In (Kagal et al., 2003) the authors proposed Rei –

a policy specification language expressed in OWL-
Lite (2004). It allows the declarative representation of
a wide range of policies which control which actions
can be performed, and which actions should be
performed, by a specific entity. Furthermore, it
defines a set of concepts (rights, prohibitions,
obligations, and dispenations) for specifying and
reasoning about access control rules. In this respect,
it provides an abstraction which allows the
specification of a desirable set of behaviours which
are potentially understandable – hence enforceable –
by a wide range of autonomous entities in open and
dynamic environments.

In (Hu et al., 2014), the authors recognise that
cloud computing, and in particular the concept of
multi-tenancy, calls for policy-driven access control
mechanisms. They propose an ontology-based
framework to capture the common semantics and
structure of different types of access control policies
(e.g. XACML policies, firewall policies, etc.), and
facilitate the process of detecting anomalies in these
policies. Their ontology captures the underlying
domain concepts involved, the policy structure and
the policy attributes. Particular types of access control
policies are obtained by appropriately instantiating
the ontology.

5 CONCLUSIONS

We have presented suitable vocabularies of concepts
and properties, namely the Security Context Element,
the Context Pattern and the Permission which
adequately captures the knowledge lurking behind
ABAC policies. We have also proposed a generic
ontological model for the abstract representation of
ABAC policies which disentangles the definition of a
policy from the actual code employed for enforcing
it, bringing about the advantages outlined in Section
3.1. The model is underpinned by the Security
Context Element vocabulary, and is incorporated into
the ontological framework offered by USDL-SEC
(Linked USDL’s security profile). Such a model
forms the basis of our proposed PaaS solution –
essentially a security-by-design framework which
aims at aiding cloud application developers in
defining effective access control policies for any kind
of sensitive data.

Any effective use of the ABAC policy model
requires a mechanism through which it can be
suitably customised in order to allow for the
specification of concrete ABAC policies. Such a
customisation amounts to an extension and/or
instantiation of the abstract classes and properties

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

210

presented in Sections 3 and 4. It is the responsibility
of such a mechanism to ensure that this
extension/instantiation takes place according to a set
of predefined governance policies. In the future, we
intend to investigate the construction of a higher-level
ontological framework that will generically
accommodate these governance policies and thus
pave the way for the construction of a generic
customisation mechanism that can be easily adapted
to the particular needs of the potential adopter of our
framework.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Union’s Horizon 2020
research and innovation programme under grant
agreement No 644814. The authors would like to
thank the partners of the PaaSword project
(www.paasword.eu) for their valuable advices and
comments.

REFERENCES

Abowd, G., & Mynatt, E., 2000. Charting past, present, and
future research in ubiquitous computing. ACM
Transactions on Computer-Human Interaction
(TOCHI) - Special issue on human-computer
interaction in the new millennium, 29-58.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Nicklas, D., Ranganathan, A., & Riboni, D., 2010. A
survey of context modelling and reasoning techniques.
Pervasive and Mobile Computing, 161-180.

Bucchiarone, A., Kazhamiakin, R., Cappiello, C., Nitto, E.,
& Mazza, V., 2010. A context-driven adaptation
process for service-based applications. In ACM
Proceedings of the 2nd International Workshop on
Principles of Engineering Service-Oriented Systems
(PESOS'10), pp. 50-56, Cape Town, South Africa.

Cisco, 2011. Cloud: What an Enterprise Must Know, Cisco
White Paper.

CSA, 2013. The Notorious Nine. Cloud Computing Top
Threats in 2013. Cloud Security Alliance.

Dey, A. K., 2001. Understanding and Using Context. In
Personal and Ubiquitous Computing Journal, vol. 5, no.
1, p. 4-7.

Ferrari, E., 2010. Access Control in Data Management
Systems. Synthesis Lectures on Data Management,
Morgan & Claypool, Vol. 2, No. 1, p. 1-117.

Group, T. T., 2013. The Notorious Nine. Cloud Computing
Top Threats in 2013. Cloud Security Aliance (CSA).

Heupel, M., Fischer, L., Bourimi, M., Kesdogan, D., Scerri,
S., Hermann, F., Gimenez, R., 2012. Context-Aware,
Trust-Based Access Control for the di.me Userware. In

Proceedings of the 5th International Conference on
New Technologies, Mobility and Security (NTMS'12),
pp. 1-6, Istanbul, Turkey, IEEE Computer Society.

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin,
K., Miller R., and Scarfone K., 2014. Guide to Attribute
Based Access Control (ABAC) Definition and
Considerations. NIST.

Hu, H., Ahn, G.-J. and Kulkarni, K., 2011. Ontology-based
policy anomaly management for autonomic computing.
In 7th International Conference on Collaborative
Computing: Networking, Applications and
Worksharing (CollaborateCom).

Jung, C., Eitel, A., Schwarz, R., 2014. Cloud Security with
Context-aware Usage Control Policies. In Proceedings
of the INFORMATIK'14 Conference, pp. 211-222.

Kagal, L., Finin, T. and Joshi, A., 2003. A Policy Language
for a Pervasive Computing Environment. In 4th IEEE
Int. Workshop on Policies for Distributed Systems and
Networks (POLICY '03).

Linked USDL, 2014. Available online: http://linked-
usdl.org/.

Micro, T., 2010. The Need for Cloud Computing Security.
Trend Micro.

Miele, A., Quintarelli, E., Tanca, L., 2009. A methodology
for preference-based personalization of contextual data.
In ACM Proceedings of the 12th International
Conference on Extending Database Technology:
Advances in Database Technology (EDBT'09), pp. 287-
298, Saint-Petersburg, Russia.

NIST, 2011. Cloud Computing Reference Architecture,
National Institute of Standards and Technology.

OASIS, 2013. OASIS eXtensible Access Control Markup
Language (XACML). Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

OWL Web Ontology Language Reference. W3C
Recommendation, 2004. Available online:
http://www.w3.org/TR/owl-ref/.

Pedrinaci, C., Cardoso, J. and Leidig, T., 2014. Linked
USDL: a Vocabulary for Web-scale Service Trading. In
11th Extended Semantic Web Conference (ESWC).

Specification of Deliberation RuleML 1.01, 2015.
Available online: http://wiki.ruleml.org/index.php/
Specification_of_Deliberation_RuleML_1.01.

Security Assertions Markup Language (SAML) Version
2.0. Technical Overview, 2008. Available online:
https://www.oasis-open.org/committees/download.
php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf

Sheng, Q., & Benatallah, B., 2005. ContextUML: A UML-
Based Modeling Language for Model-Driven
Development of Context-Aware Web Services
Development. In Proceedings of the International
Conference on Mobile Business (ICMB'05), pp. 206-
212, IEEE Computer Society.

Strang, T., Linnhoff-Popien, C., 2004. A Context Modeling
Survey. In Workshop on Advanced Context Modelling,
Reasoning and Management, (UbiComp'04) - The
Sixth International Conference on Ubiquitous
Computing. Nottingham, England.

Truong, H.-L., Manzoor, A., Dustdar, S., 2009. On
modeling, collecting and utilizing context information

Context-aware Security Models for PaaS-enabled Access Control

211

for disaster responses in pervasive environments. In
ACM Proceedings of the first international workshop
on Context-aware software technology and
applications (CASTA'09), pp. 25-28, Amsterdam, The
Netherlands.

Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,
Dalton, J. and Aitken, S., 2005. KAoS Policy
Management for Semantic Web Services. IEEE Intel.
Sys., vol. 19, no. 4, pp. 32 - 41.

Vaquero, L.M., Rodero-Merino, L., Caceres, J. and
Lindner, M., 2008. A break in the clouds: Towards a
cloud definition. SIGCOMM Comput. Commun. Rev.,
vol 39, no 1, pp. 50 — 55.

Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G.,
Hübsch, G., Paraskakis, I., 2015a. PaaSword: A
Holistic Data Privacy and Security by Design
Framework for Cloud Services. Proceedings of the 5th
International Conference on Cloud Computing and
Services Science (CLOSER 2015), May 20-22, Lisbon,
Portugal.

Verginadis, Y., Mentzas, G., Veloudis, S., Paraskakis, I.,
2015b. A Survey on Context Security Policies. In
Proceedings of the 1st International Workshop on
Cloud Security and Data Privacy by Design
(CloudSPD'15), co-located with the 8th IEEE/ACM
International Conference on Utility and Cloud
Computing, Limassol, Cyprus, December 7-10.

WS-Trust 1.3, 2007. Available online: http://docs.oasis-
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

212

