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Abstract: For establishing the basic cloud service model, a datacenter (DC) needs to deploy an infrastructure as a service
(IaaS) solution. The planning, setup, implementation, and operation of DCs – involving hard- and software –
comprises multiple activities. At least, software-related aspects such as IaaS deployment can be automated. Yet,
in the forefront of an automated installation extensive configurations need to take place. These configurations
often relate to the design and characteristics of the respective DC. Using existing deployment technologies,
however, information from various aspects are scattered and tangled. For avoiding respective drawbacks and
resulting adverse effects, MING (明) – a model-based approach – is presented. It decouples configuration
from automated deployment technologies. This way, various further benefits of model-based engineering are
leveraged such as separation of concerns through view-based models, platform independent representation of
information, and the utilization of existing deployment technologies through code generation.

1 INTRODUCTION

The cloud computing paradigm continues to change
the way end-users consume services. At the same time
service providers adapt (cloudify) software services
(cf. (Andrikopoulos et al., 2013)) for profiting from
the benefits of cloud computing. Thus, cloud comput-
ing penetrates all levels from DCs to end-users. On
an infrastructure level cloud computing offers (virtual-
ized) hardware resources and network capabilities as
IaaS (cf. (Mell and Grance, 2011)). This impacts the
design and deployment of DCs.

For this reason the planning, implementation, and
operation of DCs has changed. Above all, cloud DCs
distinguish themselves from traditional DCs by having
an IaaS solution deployed. The IaaS solution estab-
lishes the correspondent service model while man-
aging the DC resources. These resources comprise
computational power from central processing units
(CPUs), random-access memory (RAM), storage in
the form of objects stores or block devices from hard
drive disks (HDDs) and solid-state drives (SSDs), and
network interfaces. All of these need to be registered
and managed by the IaaS solution.

OpenStack 1 is a popular IaaS solution with a big
community and support across industries. For easing

1http://openstack.org

the installation and deployment of OpenStack various
automated deployment technologies and tools exist.
Often they are provided from an operating system
(OS) vendor as a kind of value proposition.

For realizing installation of bare machines and the
deployment of the IaaS solution, currently, various
information needs to be aggregated in configurations
by experts who are familiar with the technologies. Of-
ten the information relates to different aspects and is
scattered and tangled and needs to be kept consistent.
Changes in the design or characteristics of a DC may
impact the configuration fundamentally: e.g., network-
ing, number of availability zones in a DC, or dedication
of a certain node to some aggregate.

Ideally, it would be possible to describe the various
aspects of a cloud DC (i.e., the hardware, the network-
ing) and its deployment (i.e., the services) conceptually
in a domain-specific language (DSL) so that from such
information as contained in the respective views the
automated DC deployment can take place. While sev-
eral deployment tools exist (that in fact can all be made
use of following the model-based approach) there is
no technology agnostic datamodel for specifying a DC
deployment that is understood by tools.

Therefore, MING (明), a model-based approach, is
proposed: It permits the model- and view-based de-
scription of DCs and respective IaaS deployments by
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means of a platform-independent model (PIM). This
way, separation of concerns (SoC) is realized support-
ing different stakeholders. Also, integration with exist-
ing tools is realized using code generation.

The remainder of this paper is structured as fol-
lows: The following section presents some further
background by explaining tasks when deploying a
cloud DC. Prior to presenting the MING approach
in Section 4, Section 3 relates to the state of the art.
Next, Section 5 presents some details of the current
prototype. Section 6 discusses on the benefits, risks,
and limitations and Section 7 concludes the paper.

2 DATACENTER DEPLOYMENT

The planning, setup, implementation, and operation
of a DC comprises multiple activities involving hard-
and software. Prior to focusing on the latter, i.e., the
automated software installation and deployment, this
section first looks at the structure of DCs.

2.1 Structure of Datacenters

Figure 1 depicts a simple metamodel for DCs (that is
also part of the MING metamodel, cf. Figure 2). A
DATACENTER comprises one or several AVAILABIL-
ITYZONES. These may be fire compartments that
are separated from each others. Each AVAILABILITY-
ZONE contains RACKS for mounting equipment such
as routers and servers (NODE). A server comprises
network interface controllers (NICs), CPU, RAM, and
storage in form of HDDs and/or SSDs. Each NIC has
a unique media access control (MAC) address. For
networking (cf. Layer 3 of the Open Systems Intercon-
nection (OSI) reference model (Zimmermann, 1980))
a NIC will be configured at some stage with an Inter-
net Protocol (Cerf and Khan, 1974) (IP) address, e.g.,
using Dynamic Host Configuration Protocol (Droms,
1997) (DHCP). Within a NETWORK (i.e., IP4 and NET-
MASK) a NIC has a particular NETWORKID (e.g, the
last byte of the address).

INSTALLATION nodes are used for bootstrapping
the DC deployment. Generally it is possible to group
servers into different categories: STORAGE nodes con-
tain a large amount of storage capacity while COM-
PUTE nodes have high computational power. NET-
WORK nodes may comprise fiber optical NICs for high
bit rates. Finally, MANAGEMENT nodes are dedicated
for hosting IaaS services (see also Section 2.2).

Intelligent Platform Management Interface (IPMI)
may provide an administrative access to the servers
through a dedicated network. Besides, all servers may
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Figure 1: A Datacenter Metamodel.

be part of multiple physical or virtual (VLANID) net-
works. For example, storage nodes may have a back-
end network for replication in addition to a frontend
network for the data.

2.2 Software Installation

Given a DC with a completed physical setup including
networking and cabling, installation of the bare ma-
chines can take place (see also Section 3.1). That is,
on each node a base OS is installed over the net, e.g.,
using IPMI and Preboot Execution Environment (In-
tel Corporation, 1999) (PXE) together with a DHCP
server. Yet, some information needs to be collected
beforehand and placed at the DHCP server such as the
MAC addresses of the NICs. This information may be
discovered automatically.
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Next, IaaS services can be installed (see also Sec-
tion 3.2). STORAGE servers may deploy Ceph (Weil
et al., 2006), a distributed object store. COMPUTE
nodes run OpenStack Compute (Nova). OpenStack
Networking (Neutron) is used for NETWORK nodes.
Finally, MANAGEMENT nodes host services such as
OpenStack Identity Service (Keystone), Nova cloud
controller, OpenStack Orchestration (Heat), and Open-
Stack Dashboard (Horizon).

Having briefly introduced the deployment of cloud
DCs, the following section discusses different existing
deployment tools for realizing the installation.

3 STATE OF THE ART

Prior to presenting the MING approach let us first have
a look at the state of the art. At the end of this sec-
tion, a current shortcoming of the existing deployment
technologies is summarized for positioning the con-
tribution of this paper. As outlined in the previous
section there are two distinct phases in the deployment
of DCs: bare machine and IaaS installation with some
of the tools focusing on the former and others on the
latter.

3.1 Bare Machine Installation

The following selection of tools and projects focus
on installing a base OS on bare machines (cf. (Chan-
drasekar and Gibson, 2014) for the evaluation of some
frameworks).

Cobbler 2 is a lightweight build and provisioning
system for the deployment of physical and virtual ma-
chines. Objects and variables are used for configur-
ing the provisioning. These are then applied in tem-
plates, e.g., for generating preseed files. This way, i.e.,
through templates, Cobbler also integrates with Kick-
start. Generally, integration with existing tools and
configuration management (CM) systems is encour-
aged. In addition to a command-line interface (CLI)
there is a also a web user interface (UI). Cobbler is
currently used by Compass and Fuel (see Section 3.2).

FAI 3, with a particular focus on unattended au-
tomated installations, builds – as Cobbler – on top
of technologies such as DHCP, Trivial File Transfer
Protocol (Sollins, 1992) (TFTP), and PXE. Originally
focusing on Debian-based distributions, FAI has been
adopted for CentOS. It realizes profiles in addition to a
class concept that can help to describe complex setups.

2http://cobbler.github.io
3Fully Automatic Installation (Gärtner et al., 1999;

Lange, 2010) (FAI). http://fai-project.org

Ironic 4 is used for the provisioning of physical
machines within OpenStack. Thus, in contrast to the
other tools of this category, it is not a self-contained
system. Its functionality is used by TripleO and will
also be relied on by Fuel.

MAAS 5 is used for the provisioning of Ubuntu in
combination with JuJu and Charms (see Section 3.2).
Similar to Cobbler and FAI, a MAAS server acts as a
DHCP server for the provisioning of machines. Con-
figuration such as MAC to IP mapping can be done in
a JuJu YAML Ain’t Markup Language (YAML) file
(see also Section 5).

3.2 OpenStack Installation

The automated provisioning, configuration, and instal-
lation of services is addressed by CM systems. Thus,
after each node has been installed with an OS, the
installation and configuration of IaaS services can be
realized using CM. For the deployment of OpenStack
there is a variety of existing tools:

Compass 6 supports different CM systems through
a plugin architecture. By establishing abstraction lay-
ers, it also decouples resource discovery and bare metal
installation. Besides, it facilitates operations support
system (OSS) integration.

Crowbar 7 is a project that relies on the Chef CM
system for the deployment of applications such as
OpenStack or Hadoop. In contrast to other solutions
of this category it does not presume but also realizes
bare metal installation and comes with a web UI.

Fuel 8 offers a web UI frontend for the deploy-
ment of OpenStack in addition to a CLI. Cobbler is
currently used under the hood, yet, migration to Ironic
is intended. Puppet is used for CM. Some features
comprise the automated discovery of nodes and the
possibility to perform pre-deployment checks.

JuJu 9 is an orchestration technology that is also
used for MAAS. As with MAAS, also the deployment
of OpenStack is specified in form of an orchestration
in a YAML file. Charms, classified by (Wettinger
et al., 2014) as environment-centric artifacts, deploy
the actual OpenStack services.

Packstack 10 provides Puppet modules for Open-
Stack projects. Using Puppet for CM, the various
OpenStack services can be deployed. Thus, some

4OpenStack Bare Metal Provisioning (Ironic). http://wiki.
openstack.org/Ironic

5Metal as a Service (MAAS). http://maas.io
6http://wiki.openstack.org/Compass
7http://crowbar.github.io
8http://wiki.openstack.org/Fuel
9http://jujucharms.com

10http://wiki.openstack.org/Packstack
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front-end deployment tools such as RDO (see below)
make use of Packstack. Currently, distributions based
on RedHat Package Manager (RPM) are supported.

RDO 11 is a web-based deployment tool based on
Foreman, a Ruby on Rails application and frontend for
the CM with Puppet. Therefore Packstack is used.

TripleO 12 is an exception to the CM-based solu-
tions. Instead of relying on such, TripleO aims at real-
izing the functionality using OpenStack’s own cloud
features for facilitating installation, management, and
operation. For this, a deployment cloud (a.k.a. under-
cloud) needs to be setup first. Using Ironic workload
cloud(s) (a.k.a. overcloud(s)) are deployed. The de-
ployment and configuration of nodes is realized using
Heat. For this golden images need to be prepared.
These consist of a base OS with elements on top (re-
sembles FAI class and profile concept). During provi-
sioning a node will configure itself using the parame-
ters from a Heat Orchestration Template (HOT) that
constitutes the deployment plan. Finally, an overcloud
can be scaled using the Tuskar subproject.

3.3 Positioning and Contribution

Currently, there is neither a standard nor a common
datamodel for the configuration of an OpenStack de-
ployment in a cloud DC. As a result, none of the
projects exposes its configuration in a form that can
be used by other projects. This however would be in-
teresting in order to evaluate different frameworks and
avoid tool dependencies. TripleO – aiming at avoid-
ing any third party dependency for the deployment of
OpenStack – is a particular case. It is using HOT for
realizing the CM. This way, it decouples the config-
uration from the automated deployment. It may be
argued that HOT is an established format that other
tools could implement. Yet, this is not feasible, as it
dictates orchestration through Heat. Not only Heat
but also JuJu is an orchestration technology. In both
cases, therefore, configuration needs to be expressed
in a particular syntax and way by experts leading to the
problems mentioned such as scattering and tangling.

MING in contrast truly decouples configuration
from automated deployment technologies. It declar-
ativly permits the view-based modeling of DCs and
their deployments, facilitating SoC. As a result, stake-
holders that are not familiar with the used deployment
technologies and/or other concerns of the deployment
are supported as well. Similar in spirit with Cobbler
MING integrates with arbitrary tools and frameworks
(as also envisioned by Compass) through code genera-
tion.

11http://rdoproject.org
12http://wiki.openstack.org/TripleO

4 ABSTRACTING FROM
TECHNOLOGIES

MING aims at a tool agnostic, declarative specification
of configuration for realizing an IaaS deployment in a
cloud DC from bare machines. For this, configurations
from existing provisioning and deployment technolo-
gies have been sublimated using reverse model-based
engineering (MBE). That is, models are established
through abstraction. Given a valid deployment plan in
form of MAAS and OpenStack JuJu files, DC specific
values and repetitive code has been identified in a first
step.

For capturing respective information in models, a
conceptual metamodel has been derived and templates
have been created in a next step. Finally, integration
with the target technologies was realized using code
generation. That is, the same code was generated
using the MBE approach. As a result, a conceptual
modeling layer has been established with sublimated
configuration in form of models.

Modeling Cloud Datacenter Deployments (MING) 

Default Models 

Target Technologies (e.g., MAAS & JuJu) 

Models 

MING Textual Domain Specific Language (concrete DSL) 

abstraction 

conform to 

corresponds to expressed in 

defines 

MING Metamodel (abstract DSL) 

sublimation 

MING Views (e.g., Datacenter and Nodes (cf. Fig. 1)) 

code generation 

Templates 

Figure 2: Overview of the MING Framework.

Figure 2 depicts the MING framework. As an in-
terface for populating, expressing, and representing
models, a textual DSL has been defined for the MING
metamodel (i.e., abstract DSL). In order to support
SoC, distinct views permit the expression of differ-
ent aspects. One view, e.g., covers the DC related
information as depicted in the metamodel shown in
Figure 1. Other views capture networking, node as-
signments (e.g., to an aggregate), OpenStack specific
configuration, and credentials.

For supporting convention over configuration, de-
faults can be expressed in models too that are applied
to models in case of missing configuration. Finally,
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model transformation processes the (resulting) models
and generates code using templates.

5 IMPLEMENTATION

For realizing the MING prototype, the Eclipse Model-
ing Framework (EMF) 13 was chosen as a modeling
foundation. Xtext served for defining the DSL and its
views and for obtaining a respective editor. Finally,
model transformations were implemented in Xtend.

For a better understanding of the approach and in
order to present some details, two artifacts (i.e., a code
generation and a DSL view) are explained.

nodes:
  «FOR az : dc.azs»
  «FOR rack : az.racks»
  «FOR node : rack.nodes»
  - name: «model.deployment.name»-«node.name»
    «IF node.nodeType == NodeTypeName.CN»
    tags: «getComputeAggregate(zones, node, az)»
    «ELSEIF node.nodeType == NodeTypeName.SN»
    tags: storage-«getCephPool(zones, node).name»
    «ELSEIF node.nodeType == NodeTypeName.MN»
    tags: api
    «ELSEIF node.nodeType == NodeTypeName.NN»
    tags: gateway-«getGatewayZone(zones, node).name»
    «ELSE»
    tags: standby
    «ENDIF»
    architecture: «node.arch»/generic
    mac_addresses:
    «FOR nic : getNICs(node)»
      - «nic.mac»
    «ENDFOR»
    power:
      type: ipmi
      address: «getIPMI(node)»
      user: «model.credentialsIPMI.username»
      pass: «model.credentialsIPMI.password»
      driver: LAN_2_0
    «enrichWithIPs(node)»
    «FOR nic : getNICs(node).filter[it.ip4 != null]»
    sticky_ip_address:
      mac_address: «nic.mac»
      requested_address: «nic.ip4»
    «ENDFOR»
  «ENDFOR»
  «ENDFOR»
  «ENDFOR»

Figure 3: Code Generation for MAAS nodes with Xtend.

Figure 3 depicts an excerpt from the model-to-text
(M2T) transformation for generating a MAAS con-
figuration file. Three FOR loops iterate over all DC’s
availability zones, racks, and finally nodes. As a result
an entry is generated for every node containing all of
its MAC addresses and assigned IP addresses. The
latter are specified in a sticky ip address section.
Code generation assures the consistency between the
MAC addresses.

Please note that the same model can be processed
by a different template for supporting a different target
technology.

13http://eclipse.org/modeling/emf
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Figure 4: Deployment of OpenStack – DSL View.

For configuring OpenStack various variables exist
for the different services. Using the DSL editor a user
profits from code completion, syntax highlighting, and
validation. Figure 4 shows an example configuration
view for the deployment of OpenStack services at a
DC using a referenced OS image for the bare machine
installation and a certain version of OpenStack.

Together with the other views (e.g., an instance of
the metamodel as shown in Figure 1) and the default
models information is complete for model transfor-
mation to take place. The current prototype supports
generation of JuJu YAML files for MAAS and Open-
Stack. For the sublimated configuration, the ratio be-
tween the size of MING models and YAML code for
MAAS and JuJu yielded 27%. That is, the models in
MING are nearly four times more compact than the
corresponding code as generated by the templates.

6 DISCUSSION

The model-based approach enables the utilization of
diverse technologies. Given availability of respective
templates, this enables evaluation of different deploy-
ment tools. That is, from the same models config-
urations are generated using the templates. This in
turn fosters a common datamodel for establishing a
standard for configuring an IaaS deployment from bare
machines. With the separation of the models in distinct
views further benefits can be leveraged:

Discovery of nodes and their components automat-
ically yields a certain view. Credentials as stored in
another view are generated initially if not set for a
certain deployment. In both cases parts of the over-
all configuration are provided and the DSL user only
needs to focus on the other aspects of a deployment.

For a given DC it is possible to specify different
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deployments. That is, while the physical setup (i.e.,
availability zones, racks, and nodes) as captured in one
view does not change, views related to the deployment
such as the assignment of nodes or the deployment and
configuration of OpenStack services may be different.
Yet, only a part of the overall configuration is adapted
and existing views can be reused avoiding software
clones. This way, deployments can be tested and the
differences between them can be described precisely
by comparing two models.

In case a different DC shall be deployed similarly,
it is possible to reuse views such as the configuration
of OpenStack services. This eases the deployment of
multiple DCs with a tested configuration.

The possibility to specify default configuration op-
tions in models permits custom user-defined defaults.
The fact that these are then applied on the views has
two major advantages: It simplifies the models by
moving default configuration options out of the views
making the files more compact. Also, it simplifies code
generation by only processing the resulting model and
makes it independent from any (user-defined) defaults.

Regardless of the benefits of this model-based ap-
proach, it is always possible to continue work with the
output. Thus, MING does not introduce any depen-
dency in regard to the underlaying automation.

Not all fine-grained configuration options of the
bare machine provisioning or IaaS solution are re-
flected in the MING metamodel. Thus, in case these
shall be lifted to the modeling layer, the metamodel
and the views need to be extended. In case multi-
ple technologies are supported using code generation,
certain features of one technology may not be sup-
ported by alternatives. For example, the deployment
of IaaS services may be realized using Kernel-based
Virtual-Machine (KVM) or Linux Containers (LXC).
In case such a configuration option is specified but not
supported by a technology a fallback may be realized
during code generation. For early feedback this can
be addressed through validators in the DSL. That is,
when selecting an option that is not supported by some
technologies a warning is displayed in the DSL editor.

7 CONCLUSION

In this paper MING, a model-based approach, has been
presented for the tool agnostic, declarative configura-
tion of IaaS deployments in cloud DCs.

A textual DSL permits to describe such deploy-
ments from different view-points. Through code gen-
eration particular technologies for the automated in-
stallation and deployment of a base OS and OpenStack
as an IaaS solution are leveraged.
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