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Abstract: Distributed applications that span mobile devices, computing clusters, and the cloud, require robust and flexi-
ble mechanisms for dynamically loading code. This paper describes LADY, a system that augments the .NET

platform with a highly reliable mechanism for resolving and loading assemblies and arranges for safe execu-
tion of partially trusted code. Key benefits of LADY are the low latency and high availability achieved through
its novel integration with DNS.

1 INTRODUCTION

Distributed applications require their code to be made
available locally in the memory of enlisted pro-
cessors. Traditionally, the code to be executed is
installed in advance in the operating system that
hosts the member processes, either manually or
using some application-distribution mechanism like
Ubuntu’s apt-get system (Hertzog and Mas, 2006).
In a computing cluster, code could be installed in a
shared file system and readable by all nodes. In the
case of mobile devices, the operating system is com-
monly tied to some vendor-specific application store,
like the Google Play Store, Apple’s iTunes Store, or
the Windows Store.

However, for long-lived distributed systems, per-
haps spanning both mobile device, local computing
clusters, and cloud services, run-time code injection
may be the only feasible approach to evolve the sys-
tem as requirement change and bugs must be patched.
This demands a robust system for distributing code,
managing dependencies, and resolving version con-
flicts, and there must be dynamic mechanisms for ob-
taining and load code from remote sources. The abil-
ity to dynamically obtain and load code is useful in a
wide range of contexts:

• As a foundation for extensibility, for example in
component systems like Sapphire (Zhang et al.,
2014) and Kevoree (Daubert et al., 2012), or in
plug-in systems embedded in extensible applica-
tions like IDEs and web browsers, where third
party code must be installed.

• In systems like MapReduce (Dean and Ghe-
mawat, 2004), Pig (Olston et al., 2008),
DryadLINQ (Yu et al., 2008), and Cogset (Valvåg
et al., 2013), where user-defined functions play a
central role in distributed data processing, and the
code that implements those functions must be dis-
tributed to a number of nodes.

• To enable mobility, for example with actor-based
distributed computing, mobile agents (Johansen
et al., 2001), or code offloading. Transferring
code between nodes is a recurring requirement in
these scenarios.

• As a way to improve security, by facilitating the
deployment of security fixes, which must be rapid
to reduce the window of vulnerability (Johansen
et al., 2007).

• Whenever serialization is used to transfer or store
objects. Serialized objects can be passed around
in any number of complicated ways, or stored in
files or databases to be read at a later time by an-
other process. To successfully deserialize an ob-
ject, its code must also somehow be available.

Over the years, we have built many research sys-
tems where the requirement to dynamically distribute
code was present, in one or more of the contexts out-
lined above. With the work presented here, we have
focused exclusively on solving this one recurring re-
quirement in a comprehensive and reusable way.

This paper describes LADY1, a .NET library for
loading assemblies dynamically and an associated

1LADY is an acronym for Loading Assemblies Dynamically
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cloud service for maintaining and looking up meta-
information about assemblies. LADY provides a ro-
bust and generic infrastructure for code distribution,
allowing applications to locate, obtain, and dynami-
cally load code—in the form of .NET assemblies—
from remote repositories. LADY aims to do just a few
things, but do them well:

• Provide a reliable and highly available service for
finding up-to-date information about assemblies,
including available versions and ways of obtain-
ing them.

• Implement the required mechanisms for obtaining
assemblies, for example through direct downloads
or through a package installation system.

• Discover dependencies between assemblies, re-
solve the versioning conflicts that may result, and
hide latency by caching and prefetching assembly
data.

• Arrange for safe execution of partially trusted
code, while retaining the ability to load new as-
semblies into sandboxed environments.

LADY offers a simple and unobtrusive interface
that focuses on the central task of loading assemblies,
and does not impose any particular architecture on the
application. For example, it can be combined and co-
exist comfortably with dependency injection frame-
works like Microsoft’s Managed Extensions Frame-
work or Ninject, for systems that focus on extensi-
bility. It can be used as an auto-updater to check for
bugfixed versions of libraries, as a deserializer that au-
tomatically resolves references to missing assemblies,
or as a utility to load and safely execute user-defined
functions.

2 LADY OVERVIEW

LADY targets the .NET platform, and therefore re-
volves around assemblies, which are containers for
compiled code and the fundamental unit of deploy-
ment in .NET. An application is compiled into at least
one assembly, which contains its entry point and is
stored as an executable .EXE file. The main assem-
bly typically also references several other assemblies,
which are stored as .DLL files2 and contain class li-
braries. Assemblies can be cryptographically signed
by their creators, which lets the .NET runtime verify
that they are authentic before loading them. When
an assembly is signed, the public key of the signer

2Both .EXE and .DLL files have the same Portable Exe-
cutable file format.

is combined with the assembly’s short name, its cul-
ture3 and its version number to produce a so-called
strong name. Strong names are globally unique and
therefore allow assemblies to reference each other by
name without ambiguity.

2.1 Assembly Lookup Service

The most central feature of LADY is a globally avail-
able and resilient lookup service that, given the strong
name of an assembly, can tell you where to find it.
LADY can also determine if an assembly has been su-
perseded by a more recent version, and provides the
functionality for actually obtaining assemblies in a
number of ways, for example by downloading them
via HTTP. Additional features include caching of as-
semblies, automatic resolution of assembly references
(for example during deserialization) prefetching of
assemblies based on dependencies, and creation of
sandboxed environments to execute partially trusted
code.

LADY stores meta-information about assemblies
in a cloud database. To load an assembly and proceed
with execution, an application may have to wait for a
database lookup to complete. We therefore value pre-
dictable and low-latency lookup performance. Cur-
rently, we use Amazon’s DynamoDB (DeCandia
et al., 2007) as our database backend as it has an of-
ficial API for C#, boasts scalability, and offers pre-
dictable performance. LADY does not rely on other
advanced database features and can therefore easily
be adapted for other database systems.

For each unique (name,culture, publicKeyToken)
tuple we store a base record containing the informa-
tion common across all versions of that particular as-
sembly. Most notably, the base record contains a list
of known assembly versions, so that wildcard queries,
for example to request the most recent version, can be
satisfied. For each specific version of an assembly,
we also store an assembly record, which is keyed by
the full (name,culture, publicKeyToken,version) tu-
ple of the assembly; in other words, its strong name.
The assembly record contains information about how
to obtain that specific version. For example, the
record may contain a download URL, or a NuGet4

package identifier and version.

2.2 Security

The public-key token of an assembly is defined by the
.NET framework as an 8-byte hash of the public key

3A culture is a .NET abstraction for localization.
4NuGet is a package management system, closely inte-
grated with Microsoft Visual Studio.
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in the key pair that was used to sign the assembly. It is
commonly displayed as a 16-digit hexadecimal num-
ber. Since the public key token is determined by the
signer of the assembly, and also incorporated into its
strong name, it is not possible to modify a signed as-
sembly without knowing the private key of its signer
or breaking the RSA encryption. With access to the
source code, you could recompile the assembly and
sign it with another key pair, but that would result in
a different strong name.

While this protects against malicious tampering
with the code in an assembly, we would also like to
guarantee that LADY can provide genuine and valid
locations for assemblies. Even if an attacker can-
not manufacture fake assemblies, he could potentially
register an assembly with invalid meta-information,
rendering it unobtainable through LADY. To guard
against this, we require registrations of assemblies to
be in the form of signed messages, where the message
signer’s public key must correspond to the public key
token of the assembly in question. This ensures that
the person or program registering the assembly is the
same as the signer of the assembly, and third parties
cannot register invalid information about assemblies.

2.3 Assembly Registration

To perform the registration of an assembly, LADY pro-
vides a simple command-line utility. This is suit-
able for scripting and can be integrated into build
systems so that new releases are registered auto-
matically whenever an assembly’s version number is
bumped. The utility does not directly update the cloud
database, and lacks the permission to do so. Instead, it
constructs a registration message, signs it with a key
pair provided by its user, and sends the signed mes-
sage to LADY. The service verifies that the message
is authentic and that the signer’s public key matches
the public key token of the assembly, before updating
the database. Below is one example usage of the lady
command-line client:

$ lady register -a MyLibrary.dll -p
MyLibrary -v 1.2.4 -k mykey.pfx

Here, the assembly to register is MyLibrary.dll,
specified with the -a option. LADY uses reflection
to extract the strong name of the assembly. The -p
and -v options specify a NuGet package identifier
and version, respectively, so the assembly will be reg-
istered as obtainable by using NuGet to install ver-
sion 1.2.4 of the MyLibrary package. Finally, the
mykey.pfx file, specified with the -k option, contains
the key pair of the user. It is used to sign the regis-
tration message, and if the public key does not match

the public key token of the assembly, the registration
will fail.

We have settled initially on this model, where as-
semblies are registered explicitly by their creators. It
would also be possible to create automated tools for
registering assemblies that have been created by oth-
ers. For example, we could integrate with existing
package management systems like NuGet and scan
all newly uploaded packages for strong-named assem-
blies, automatically registering them with LADY. This
could improve the coverage of our lookup service, and
possibly be more convenient for developers, but we
have deferred that investigation to future work.

2.4 Loading Assemblies Explicitly

LADY provides the LoadAssembly method to appli-
cations for explicit loading of assemblies at runtime.
For example usage, consider the configuration parser
in Code 1. Here, the code calls LoadAssembly at
an early point in the program execution5 to load the
YamlDotNet library, identified by its assembly name
and public key token. The culture is left unspecified
and defaults to “neutral”. The latest release with ma-
jor version 3 is requested by specifying “3.*” as the
version number.

YamlDotNet provides functionality for parsing
of YAML—a human-friendly serialization language
commonly used in configuration files. Bugs in con-
figuration parsing can be unpleasant and can poten-
tially render the application exploitable. By loading
the code dynamically with LADY, the application can
ensure that it always has the latest available version
of YamlDotNet library, thereby picking up any bug-
fix releases promptly and automatically. It will not be
necessary to deploy a new version of the application
just because a bug has been discovered and fixed in
one of the libraries that it depends on.

Once an assembly is loaded, its functionality can
be accessed programmatically in two ways. The first
approach is to use reflection to instantiate objects and
invoke methods. This is exemplified in the method
AccessUsingReflection, which parses a YAML string
into a Config object. The implementation instantiates
a Serializer object using reflection, before invoking its
Deserialize method. This approach certainly works,
but there are some factors that make it cumbersome:

1. Types must be specified as strings with fully-
qualified type names, which is a verbose and
error-prone task. The verbosity stacks up when
multiple types are involved; in the example, the

5In this example, the call happens in the static constructor
of the ConfigParser class.
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Code Listing 1: Example to illustrate dynamic loading of an assembly, and how to access its functionality.

using YamlDotNet.Serialization;
using YamlDotNet.Serialization.NamingConventions;

class ConfigParser
{

static readonly ILady lady = LadyFactory.Init();
static readonly Assembly yaml = lady.LoadAssembly(

name: "YamlDotNet", publicKeyToken: "ec19458f3c15af5e", version: "3.*");

public class Config
{

public string ConferenceName { get; set; }
public DateTime Deadline { get; set; }

}

public static Config AccessUsingReflection(string data)
{

var namingConvention = yaml.NewInstance(
"YamlDotNet.Serialization.NamingConventions.CamelCaseNamingConvention");

dynamic d = yaml.NewInstance("YamlDotNet.Serialization.Deserializer",
null, namingConvention, false);

return d.Deserialize<Config>(new StringReader(data));
}

public static Config StaticallyTypedAccess(string data)
{

var d = new Deserializer(namingConvention: new CamelCaseNamingConvention());
return d.Deserialize<Config>(new StringReader(data));

}
}

Serializer constructor requires a CamelCaseNam-
ingConvention object, which must be instantiated
first.

2. Constructor arguments are specified as object in-
stances, without static type checking. Method
calls have similar constraints. The invocation of
Deserialize looks superficially as if it might be
type-checked by the compiler, but in fact the code
relies on dynamic variables, which are assumed to
support any and all operations, and defer actual
type checking until run-time.

3. Named and default arguments cannot be used.
Combined with the lack of static type checking,
this often leads to long lists of null arguments
where any non-default arguments must be posi-
tioned with great care.

4. Finally, reflective invocations add overhead,
which may be an issue if they end up sitting on
the critical path.

Also note that the NewInstance method used in
this example is itself an extension method that we
have implemented as a convenience in a utility li-
brary. NewInstance fills in default values for various

optional hooks and packs the constructor arguments
into an array. Without relying on such helpers, the
object instantiation code would have to be even more
verbose.

In sum, all these drawbacks of relying on reflec-
tion might call into question the practical utility of
loading assemblies dynamically. Fortunately, there
is a way to get the best of both worlds, and bene-
fit from static type checking and related IDE features
like code completion while still using LADY under the
hood. This second approach is to compile the appli-
cation with the most recent assembly versions that are
available at build time, and override the assembly res-
olution mechanism at run-time so that LADY gets a
chance to load any newer versions that may have been
released since then.

Staying with the example in Code 1, the Statical-
lyTypedAccess method shows this approach in action.
The method does the exact same thing as AccessUs-
ingReflection, only with the clarity and safety of nor-
mal syntax and type checking, and without the over-
head of reflective calls. This works because the com-
piler has access to the YamlDotNet assembly at com-
pile time, but also means that a reference to that spe-
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cific version of YamlDotNet is included in the appli-
cation’s assembly.

However, assembly references are not resolved
immediately when an application starts. The .NET
runtime resolves assemblies on demand, when a
method that references the assembly is first entered.
On startup, LADY hooks into the assembly loading
mechanism by overriding certain event handlers, and
therefore gets to decide how exactly to resolve an as-
sembly reference. By the time StaticallyTypedAccess
is invoked, LADY has already been instructed to load
the latest version of the YamlDotNet assembly, so that
is the version that will be used.

2.5 Loading Referenced Assemblies

In additional to explicitly loaded assemblies, as de-
scribed in Section 2.4, LADY also supports loading
assemblies as a result of references in the code. For
example, an application might load a plug-in assem-
bly through LADY, and the plug-in might contain ref-
erences to other assemblies that have not been loaded,
or even installed. Another scenario that may trigger
assembly resolution is during object deserialization
when data contain references to types defined in unre-
solved assemblies. A prime advantage of LADY is that
any blob of serialized data can be deserialized at any
node and at any time, so long as all of the referenced
assemblies have been registered with LADY.

Resolving assemblies on demand raises the ques-
tion of how to deal with conflicting versions. If plug-
ins A and B both reference assembly C, but demand
different versions of C, or if two blobs of data were
serialized with different versions of an assembly, a
potential conflict will result. One technical possibil-
ity is to load multiple versions of the same assem-
bly. However, this is not a recommended practice,
due to the confusion that may arise when types have
the same name but different identities (Microsoft De-
veloper Network, 2016).

In some cases, the right thing to do is simply
to load the most recent assembly version that ex-
ists. Of course, this only works for versions that are
backwards-compatible. There is a standard called se-
mantic versioning (sem) that would resolve this issue
if it was adopted universally. With semantic version-
ing, the major version number is bumped whenever a
backwards-incompatible change is introduced. How-
ever, a 2014 survey indicates that this standard re-
mains to be widely adopted (Raemaekers et al., 2014).
Therefore, LADY takes a more conservative approach
and does not attempt to infer automatically if two ver-
sions of an assembly are compatible. Instead, we rely
on hints from the client, in the form of a compatibil-

ity policy, which is a simple boolean-valued function
that may be specified programmatically. Whenever
LADY must determine if a given pair of assembly ver-
sions should be considered compatible, it consults the
compatibility policy by invoking this function. The
default compatibility policy is a slightly stricter ver-
sion of semantic versioning: if both the major and the
minor version numbers are equal, the assemblies are
considered compatible. (Build and revision numbers
may still differ.)

Armed with this concept of compatibility policies,
LADY takes the following approach to assembly reso-
lution: the assembly lookup service is first queried to
retrieve all known versions of the assembly in ques-
tion, and the most recent version that is compatible
with the requested version is then selected. LADY
then proceeds to obtain and load this specific version
of the assembly. For example, if an assembly is reg-
istered with versions 1.0.1, 1.0.2, and 1.0.3, and three
plug-ins each reference one of these versions, then the
actual version that will be loaded (under the default
compatibility policy) is 1.0.3, regardless of the order
in which the plug-ins are loaded.

2.6 Loading Partially Trusted Code

While plug-ins might be considered trusted code by
some applications, there are many cases where ap-
plications wish to load and execute partially trusted
code with a limited set of permissions. For exam-
ple, distributed data processing models like MapRe-
duce rely on user-defined functions for flexibility and
expressiveness. When invoking these functions, it is
prudent to do so from a sandboxed environment with
restricted capabilities for hazardous actions like net-
work and file I/O. On the surface, this appears to pre-
clude the use of LADY from user-defined functions,
since network and file I/O are needed to locate and
obtain an assembly, and a full, unrestricted permis-
sion set is required in order to override the assembly
resolution mechanism.

LADY resolves this problem by offering a sandbox
abstraction based on .NET application domains (Mi-
crosoft, 2015). Application domains provide an iso-
lation boundary for security, reliability and version-
ing, and for loading assemblies. They are typically
created by runtime hosts—which are responsible for
bootstrapping the common language runtime before
an application is run—but a process can create any
number of additional application domains to further
separate and isolate execution of code.

LADY must be initialized (using the LadyFactory
class) exactly once per process, and from a fully
trusted application domain—typically the initial ap-
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Code Listing 2: Example code using LADY to load partially trusted user-defined functions inside a sandbox.

using Microsoft.Hadoop.MapReduce;

class MapReduceSandbox : LadySandbox
{

public MapReduceSandbox(object x) : base(x) { }

public override void Play()
{

// Load an assembly with partially trusted UDFs
Assembly myUDFs = lady.LoadAssembly(name: "MyUDFs",

publicKeyToken: "8c11fe16618d1673", version: "*");
var mapper = myUDFs.NewInstance("WordCountMapper") as MapperBase;
var reducer = myUDFs.NewInstance("WordCountReducer") as ReducerCombinerBase;
// The mapper and reducer may now be invoked in relative safety; they
// cannot access the file system, network, environment, etc.

}
}

class MapReduceProgram
{

static void Main(string[] args)
{

LadyFactory.Init().MakeSandbox(typeof(MapReduceSandbox)).Play();
}

}

plication domain that is created on startup. This
singular instance of LADY thus executes with unre-
stricted permissions, as required. However, users may
create additional sandboxes using the MakeSandbox
method, as exemplified in Code 2, where the user-
defined functions required for a MapReduce job are
loaded inside a sandbox. The sandbox is a partially
trusted application domain that is initialized with a
figurative umbilical cord that leads back to the fully
trusted application domain. Concretely, the applica-
tion must implement a subclass of LadySandbox with
a single-argument constructor that passes on a special
proxy object to its base class. The proxy object is
named x in the example, and constitutes the umbilical
cord.

Inside a sandbox, execution starts in the Play
method. Any LoadAssembly calls made inside the
sandbox get routed back to LADY using cross-domain
remote method calls on the proxy object. LADY will
determine which version to load, as described in the
previous section, and retrieve the assembly data, ei-
ther directly from its cache, or by first obtaining the
assembly. The assembly data is then passed back
to the sandbox, where it is loaded into the partially
trusted application domain. Assemblies that must
be loaded due to code references or during deseri-
alization are handled similarly. This approach ef-
fectively grants sandboxes full capabilities with re-

gards to loading of assemblies, so long as this hap-
pens through LADY. The implementation details of
how to communicate across application domains are
hidden. All sandboxes also share the benefit of a com-
mon cache.

3 DNS INTEGRATION

With its assembly lookup service, LADY adds a level
of indirection to the process of loading an assembly.
This relieves applications of various responsibilities,
and enables several useful applications, but it also
raises some important concerns:

Availability. If the assembly lookup service be-
comes unavailable, applications may also experience
various forms of unavailability. For example, it might
not be possible to start a scheduled MapReduce job
because the assembly that contains its user-defined
map function cannot be located. (LADY does main-
tain a client-side cache, but it could be missing there,
too.)

Scalability. LADY is designed to serve numerous
application instances running in many different loca-
tions all over the globe. The aggregated number of
queries for assembly information is expected to be
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large. While cloud databases like DynamoDB gen-
erally promise great scalability, this scalability does
come with a monetary cost. As the volume of re-
quests grows, the financial cost of operating the as-
sembly lookup service could become prohibitive.

Latency. Applications may have a tendency to load
assemblies sequentially, either as a result of logical
dependencies or due to the sequential nature of their
execution. Any extra latency incurred when an as-
sembly is loaded may thus stack up and result in un-
wanted user-perceptible delays, for example on appli-
cation startup. We should therefore strive to minimize
the latency of individual assembly lookups.

To address these three concerns, we have inte-
grated the assembly lookup service with the Domain
Name System (DNS). Given that registration of new
assemblies is expected to be a relatively rare event,
our workload is almost completely read-only. This
implies that caching can be an effective way to re-
duce both load and latency, and DNS is a globally dis-
tributed cache with extremely high availability. While
the most common use of DNS is to associate globally
unique host names with IP addresses, we use it to as-
sociate globally unique (strong) assembly names with
their metadata. To locate an assembly, or check if any
new versions are available, a quick DNS lookup will,
in practice, suffice in the majority of cases. This ap-
proach addresses all three concerns above, since DNS
is globally available, will significantly alleviate the
load on the cloud database, and can generally be ac-
cessed with low latency.

For the DNS integration we rely on some of our
previous work (Pettersen et al., 2014), which mir-
rors all database keys as labels in the DNS names-
pace, translates database lookups into DNS requests
on the client-side, and sets up a relay-node close to
the cloud database that performs the opposite transla-
tion. Figure 1 shows how this works in (a) the base-
line case where we have no DNS integration, (b) the
case where we miss the DNS cache, and (c) the com-
mon case where we hit the DNS cache. This approach
is very effective at reducing latency for read-mostly
workloads like the one exhibited in LADY (Pettersen
et al., 2014).

4 EVALUATION

Many of the reasons to adopt LADY are anecdotal, and
it is hard to quantify benefits like flexibility and exten-
sibility. However, there may also be concrete perfor-
mance benefits, as we will demonstrate in this sec-
tion. As a case study and vehicle for our evaluation
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(a) Baseline, without DNS integration.
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Figure 1: Assembly lookups with and without DNS integra-
tion.

we use our previous work on satellite execution (Pet-
tersen et al., 2015). This is a technique to reduce la-
tency for applications that need to interact repeatedly
with cloud services, by temporarily offloading code
so that it executes in closer proximity to the cloud,
with lower latency to the targeted services. While
exploring this concept we developed a programming
abstraction called mobile functions, and an execution
server designed to receive and execute offloaded mo-
bile functions.

In our original implementation, which we will re-
fer to as the baseline implementation, the execution
server received mobile functions as serialized objects,
which were then deserialized and allowed to execute
by invoking an entry point implemented by the ob-
jects. Deserialization can fail if an unresolvable as-
sembly reference is encountered. We handled this and
other assembly resolution errors by returning an error
to the client. The client would then upload the miss-
ing assembly to the execution server, before making a
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new attempt to offload the mobile function.
This design was grounded in two assumptions: (1)

the client will have the code for any assemblies that
are referenced by its mobile functions, and (2) the
server may encounter assembly resolution errors and
will have to handle them in some way. Both of these
assumptions are reasonable, but the resulting design
may cause excessive back-and-forth communication
between the client and the execution server for mo-
bile functions that depend on multiple assemblies.

When refactoring our implementation to use
LADY, we were able to simplify the code both in the
execution server and on the client-side, while making
the whole system more robust. The refactored execu-
tion server can simply deserialize a mobile function
and trust LADY to resolve assemblies, without inter-
acting with the client. Similarly, a mobile function
can be invoked through its entry point, and any refer-
enced assemblies will be loaded through LADY. Ad-
ditionally, we use LADY’s sandboxing support, as de-
scribed in Section 2.6, to isolate the execution of mo-
bile functions in a separate application domain, min-
imizing the potential for disruption by misbehaving
mobile functions.
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Figure 2: Observed mean latency when executing a mobile
function with a varying number of assembly dependencies
with and without LADY.

To compare our two implementations, we set up
an experiment where the execution server was hosted
on an Amazon EC2 node in Ireland, and our client
executed from a desktop computer in Norway. Typi-
cal ping latency between the client and the server was
around 64 milliseconds. We stored a set of assem-
blies in a separate table in DynamoDB, acting as our
package management system, and registered these as-
semblies with LADY. We then tried executing mobile
functions with a varying number of assembly depen-
dencies that would be resolved sequentially as the ex-

ecution progressed.
Figure 2 shows the difference in latency between

our baseline implementation of satellite execution,
and the refactored implementation that uses LADY.
Given that the motivation behind satellite execution is
to reduce latency, these savings in latency are highly
significant. Even when the mobile function has no ad-
ditional dependencies beyond its own assembly, we
save a round-trip of communication between Ireland
and Norway. By comparison, LADY is only making
low-latency DNS requests to resolve assemblies, cou-
pled with lookups to DynamoDB to retrieve the as-
sembly data. So, the reason that we save latency in
this scenario is two-fold:

1. We substitute long round-trips between Norway
and Ireland with much faster DNS lookups.

2. Assembly data is stored in the cloud, instead of at
the client. Since we need to load the assemblies
at a node in the cloud, this data placement is more
optimal.
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Figure 3: Observed mean latency when executing a mobile
function with all assembly data present, where LADY per-
forms DNS lookups to ensure that the latest versions will
be loaded, and the baseline does not check for updated ver-
sions.

Not every application that employs LADY will
benefit from the same fortuitous circumstances. For
example, if all assemblies are obtained in advance,
LADY will add the overhead of a DNS lookup for each
assembly that is resolved, in exchange for guarantee-
ing that the most recent version of the assembly will
be loaded. Whether this is a sensible trade-off for an
application depends on its requirements for flexibility
and extensibility. Figure 3 shows the overhead added
by LADY for the satellite execution scenario, when the
experiment is set up so that all assembly data has been
obtained in advance. The overhead is proportional
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to the number of dependencies, as each dependency
adds another DNS lookup.

It should be noted that this overhead is only sig-
nificant if latency is a concern. The actual resource
requirements for performing a DNS lookup are negli-
gible.

5 RELATED WORK

Package management systems backed by online code
repositories have become common for deploying ap-
plications in many modern systems. For instance,
popular operating systems like the Linux based
Ubuntu and Debian systems rely on the Advanced
Package Tool (APT) for software installation, up-
grade, and dependency resolving (Hertzog and Mas,
2006). To host the code online, these communities
depend on donated third-party servers, known as mir-
rors, to distribute their software to millions of end-
users. Although, these software mirroring infrastruc-
tures lack the mechanisms to deal with the wide-range
of faults that can occur, solutions for resilient software
mirroring has been demonstrated (Johansen et al.,
2007; Johansen and Johansen, 2008). Systems dis-
tributed commercially, like Microsoft Windows, of-
ten come equipped with proprietary mechanisms for
distributing software updates (Gkantsidis et al., 2006)
and are generally less vulnerable to intrusions.

In the framework for code updates described
by (Hicks et al., 2001), semi-automatically generated
software patches include both the updated code and
the code for making the transition safely. By using the
Typed Assembly Language, these patches can consist
of verifiable native code, which is highly beneficial to
system safety.

However, these systems are primarily geared to-
wards installing applications into a relatively static
environment. LADY goes a step further and supports
dynamic loading of code into running applications. A
package management system generally aims to ensure
that all prerequisites for an application—e.g., the as-
semblies that it may depend on—are installed before
launching the application. LADY takes a different ap-
proach and obtains these assemblies on demand, if
and when they are referenced and must be loaded.
In some cases, the assemblies that may be required
are truly unpredictable, as in our satellite execution
system, and LADY can solve a problem that package
management systems fail to address.

The problems of applying dynamic updates of
running programs is well known and has been the
subject of research for several decades (Segal and
Frieder, 1993). DYMOS (Cook and Lee, 1983) is per-

haps the earliest programming system that explores
the ideas of dynamic updates of functions, types, and
data objects. DYMOS is based on the StarMod ex-
tension of the Modula language, and it is unclear to
what extent the proposed mechanisms are applicable
to modern application platforms like .NET. Other pro-
gramming languages, like Standard ML, have also
been demonstrated to support dynamic replacement
of program modules during execution (Gilmore et al.,
1997). Our approach specifically targets the .NET
platform and leverages the capabilities of the .NET
application domains and their customizable assembly
resolution mechanism.

The general complexity of developing and deploy-
ing modern distributed applications, which span a
variety of mobile devices, personal computers, and
cloud services, has been recognized as a new chal-
lenge. Users expect applications and their state to
follow them across devices, and to realize this func-
tionality, one or more cloud services must usually be
involved in the background. Sapphire (Zhang et al.,
2014) is a recent and comprehensive system that ap-
proaches this problem by making deployment more
configurable and customizable, separating the deploy-
ment logic from the application logic. The aim is to
allow deployment decisions to be changed, without
major associated code changes. Applications are fac-
tored into collections of location-independent objects,
communicating through remote procedure calls.

We envision LADY as a particularly useful side-
kick for the design and implementation of this new
generation of highly flexible and extensible dis-
tributed systems. By facilitating the on-demand res-
olution of assemblies, system architectures can make
the simplifying assumption that all participants will
share a common code base, and enjoy greater free-
dom in their deployment decisions.

6 CONCLUSION

A key idea underlying LADY is to make all code live in
a globally accessible namespace so that it can be ref-
erenced unambiguously by name and retrieved on de-
mand in any context. Strong-named .NET assemblies
already have globally unique names, but the ability
to load code in any context is missing. LADY fills in
this gap by creating a lookup service for assemblies,
and by implementing the mechanisms for obtaining
code on demand. This aligns with a vision where code
can be deployed only once, and then instantiated any-
where, in various configurations.

The general approach of loading code on demand
means that distribution of code is decoupled from dis-
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tribution of state. In other words, code does not have
to be propagated through a distributed system along
the same communication paths as data. Consider, for
example, a system where nodes communicate over a
gossip-based protocol. A message might contain se-
rialized data and traverse multiple edges of the gossip
graph before it arrives at a node where the data must
be deserialized. Any intermediate nodes will only be
passing along the serialized data and may never have
a need for the associated code. But the sender does
not know if the target node has the requisite code in-
stalled. So to be safe, the sender will have to include
the possibly redundant code as part of its outgoing
message, or the design must be complicated in some
other way, for example by adding additional rounds
of gossip to retrieve the code.

With the separation of concerns that LADY of-
fers, the design of such gossip-based systems could be
simplified, since code would be retrieved on demand
via an entirely independent mechanism whenever data
was deserialized. Our satellite execution refactoring
in section 4 also helps to illustrate how LADY can
simplify the design of other distributed systems, to
improve extensibility and serve as a convenient foun-
dation for mobile code.
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