
Testing of Web Services using Behavior-Driven Development

Ahmet Furkan Oruç and Tolga Ovatman
Department of Computer Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey

Keywords: Behavior-Driven Development, Gherkin, JMeter, Software Testing, Testing of Web Services, Web Services.

Abstract: Web services are commonly used in the communication of software over the web. To fully trust a web
service, it should be tested and certified, but testing of web services provoke new challenges. Behavior-
Driven Development (BDD) can be applied to the testing of web services. Gherkin language is used to
define scenarios in BDD. We used Gherkin language to define test cases for web services and we developed
a tool to convert these test cases into JMeter test scripts.

1 INTRODUCTION

A web service is defined as ”a software system
designed to support interoperable machine-to-
machine interaction over a network” by W3C
(World Wide Web Consortium, 2015). Web services
provide a pre-defined web platform, where different
applications can interoperate with each other. Web
services are commonly used in exchanging data over
the internet.

One of the biggest issues about web services is
the trust issue. A web service should work correctly
every time it is executed. This is only achieved via
tests and certification. Since testing of web services
only from client side is not enough to issue the trust,
different solutions should be applied. To test a web
service, following functionalities should be tested:
Basic web service functionality, web service
interoperability, SOA functionalities, quality of
service and load/stress testing (Tsai et. al., 2005).

Behavior Driven Development (BDD) is a
software development process, in which the
requirements and the expected behavior of the
system are specified in a human readable, ubiquitous
language to be able to perform acceptance tests
(Lopez-Pellicer et. al., 2014). According to Evans
(2003), the ubiquitous language is defined as a
common language between developers and domain
experts to understand business specifications. With
the use of such a language, behavior of the system is
specified before development and unit test cycles.
An example to such a language in today’s software
industry is called Gherkin. Gherkin is a business
readable, domain specific language created

specifically for behavior descriptions (Behat, 2016).
Typical Gherkin syntax can be seen in Figure 1.

Feature: Some terse yet descriptive
text of what is desired
In order to realize a named business
value
As an explicit system actor
I want to gain some beneficial outcome
which furthers the goal

 Additional text...

Scenario: Some determinable business
situation
Given some precondition
And some other precondition
When some action by the actor
And some other action
And yet another action
Then some testable outcome is achieved
And something else we can check happens
too

Scenario: A different situation

Figure 1: A sample Gherkin document.

Conformance testing is the process to ensure if a
system fulfills the requirements (Gray et. al., 2010).
In addition, web service performance testing is the
process to determine if a web service replies within a
limited time in an environment where many users
access the web service concurrently. There are some
available tools for testing web services like SoapUI
(SmartBear, 2016) and JMeter (Apache Software
Foundation, 2016). These tools provide a GUI to
create test plans, run the tests and view the results.
Variety of these tools and other web service testing

Oruç, A. and Ovatman, T.
Testing of Web Services using Behavior-Driven Development.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 85-92
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

85

approaches are inspected in a survey paper which is
written by Bozkurt et. al. (2013).

There is another paper about Behavior-Driven
Development web service testing approach which is
written by Lopez-Pellicer et. al. (2014), which is
applied to the conformance testing of INSPIRE web
services. However, this work mostly focuses on
INSPIRE web services.

In a survey which inspects the publications
written in behavioral software engineering field, it is
mentioned that there are only two publications
regarding software testing (Lenberg et. al., 2015).
This result proves how software testing field is open
for more studies. In this work, we use the power
of the Gherkin language to define test cases for web
services. These test cases may include either
conformance or performance tests for the given web
service. Then, we develop a tool to convert the
Gherkin language into a test script which can be run
by using one of the most widely used testing tools
which is JMeter (Apache Software Foundation,
2016). JMeter test scripts are easily modified and
may contain different types of tests and scenarios.
As a result, creating and doing the actual test and
observing the results can be done by any domain
expert who does not required to have software
knowledge.

In section II, we have explained basic software
testing, TDD and BDD concepts, in section III, we
presented how we applied BDD to the conformance
and performance testing of web services, in section
IV, we gave a simple application on how to use the
tool we developed and shared a sample test and
results of the test and finally in section V, we
discussed the results of our work.

2 APPLYING BDD APPROACH
TO THE SOFTWARE
DEVELOPMENT CYCLE

According to Sommerville (2007), software testing
process has two distinct goals. First, to ensure that
the software meets its requirements. Second, to
discover parts in the software where the behavior of
the system is wrong. In Figure 2, a standard model
for the software testing process is given.

Test Driven Development (TDD) is a software
development cycle which is defined as writing the
unit tests before writing the production code
(Osherove, 2009). On the other hand, traditional
method for software development emphasizes the
opposite which is testing after development.

Figure 2: A model of the software testing process
(Sommerville, 2007).

According to Osherove (2009), the traditional way
of writing unit tests is given in Figure 3, while TDD
cycle is given in Figure 4.

Behavior Driven Development (BDD) has
emerged from Test Driven Development (TDD). In
BDD, the requirements and the expected behavior of
the system are specified in a human readable,
ubiquitous language to be able to perform
acceptance tests (Lopez-Pellicer et. al., 2014).

Figure 3: The traditional way of writing unit tests
(Osherove, 2009).

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

86

Figure 4: Test Driven Development - A bird's eye view
(Osherove, 2009).

During acceptance tests, the system requirements,
the tests and the actual code may be re-factored. As
a result, domain experts are joined to the software
development cycle and software is written according
to the tests while tests are written according to the
system requirements.

3 CONFORMANCE AND
PERFORMANCE TESTING OF
WEB SERVICES USING BDD

Conformance and performance testing of web
services are achieved by the use of testing tools. One
of the most accepted unit testing tools used in
software industry is JMeter (Apache Software
Foundation, 2016). With using JMeter, many unit
test cases for web services can be completed. To
achieve desired tests, a test plan should be created
from JMeter GUI. Each test plan is saved as a
JMeter script (xml file). These test plans may
contain multiple threads, http requests, response
assertions, response graphs, shell scripts, database
scripts etc. Test plans can run either from GUI or
using a terminal command. Once the test plan is run,
results can be viewed via listener components added
to the plan.

In our work, we used Gherkin language to create
JMeter test plans dynamically. By this, we achieved
two benefits. First; It removes the need of
developing unit testing software, since we are using

Table 1: Gherkin string variable explanations.

Part Variable Explanation
Scenario Operation

Name
Name of the operation which is
stated in the configuration file

Given Some, a Number of threads to be used in
test (Some: stated in
configuration file)

Given With/out With: Existing users are used,
Without: Random users are used
(Both has different jdbc queries
which are stated in the
configuration file)

Then/And Positive/
Negative

Used for response assertion.
Real response values are stated
in the configuration file.

Then/And Duration Used for duration assertion.

JMeter to do the tests. Second; since Gherkin is a
business readable, domain specific language, unit
tests can be created and run by domain experts,
instead of developers. In addition to these benefits,
this method removes the possibility of bugs which
may occur during testing software development.

Generation of JMeter test plans are based on a
Gherkin string and a configuration file. We
developed a Gherkin parser tool which requires a
proper Gherkin string and a configuration file as
inputs and generates JMeter test plan as the output.
Configuration file is a simple xml file which
contains the technical information about related web
service methods. This information includes;
operation name, web service url, web service action,
request xml, number of threads to test, response
assertion key and values, parameters to be used in
request, jdbc configuration and jdbc queries. So, the
configuration file contains the technical information
about the web services to test, while the Gherkin
string contains the test case scenarios written in a
domain specific language.

The Gherkin language format we support with
the tool is given in Figure 5. In the Gherkin string,
the parts which are shown with braces are
considered as variables by the Gherkin parser tool.
During the generation of the JMeter test plan,
variables are mapped to the values which are taken

Scenario: Scenario explanation
{Operation Name}

Given {some, a} user{s} {with/out}
something

When the user asks for present status

Then a {positive, negative} answer
should return

And response time should be lower than
{duration} miliseconds

Figure 5: A sample Gherkin document.

Testing of Web Services using Behavior-Driven Development

87

from the configuration file. The variables used in
Gherkin string are explained in Table I.
Configuration file contents are also explained in
Table II.

The tool we developed, parses the Gherkin string
and uses the configuration file to create the JMeter
script. It also has the option to run the JMeter script
with a command, print to results to screen and write
results to a jtl file. The tool GUI can be seen in
Figure 6.

The functionalities of the tool can be inspected in
3 steps. First step is to generate sample configuration
file. The tool generates a sample configuration file,
which should be modified with the technical
information of the web service to test. Second step is
to generate JMeter script. In second step, tool asks
for a configuration file (which is generated in Step
1), and by using the Gherkin stated in GUI, it
generates the JMeter script. After that the script can
be opened using either JMeter GUI or can be tested
directly from our tool which is the third step. After
running the test, results are printed to the GUI and
written to a jtl file for further inspection. JMeter
GUI is also given in Figure 7.

Figure 6: Testing tool GUI.

Table 2: Contents of the configuration file.

Node Parent Node Explanation
TestConfig - Root node
MethodList TestConfig List of web service

methods
Method MethodList Contains information

regarding the method
Name Method Name of the web

service method
Url Method Url of the web service
Action Method Web service action
Request Method Web service request

body which may also
contain parameters

ThreadCount Method Number of threads to
be used in test

AssertionList Method List of the assertions
Assertion AssertionList Created for each

assertion
Key Assertion Key value used in

Gherkin
Object Name Assertion Object to do the

assertion
ObjectValue Assertion Value of the object to

assert
ParameterList Method List of the parameters
String ParameterList Name of the parameter
JDBCConfig Method Main JDBC

configuration node
Url JDBCConfig JDBC connection

string
Driver JDBCConfig JDBC driver
Username JDBCConfig JDBC username
Password JDBCConfig JDBC password
JDBCQueryList Method List of the JDBC

queries
JDBCQuery JDBCQueryList Created for each

JDBC query
Key JDBCQuery Either

Random/Existing
Value JDBCQuery Query to get either

random/existing
record form the
database

Table 3: Invoice WCF service information.

Method Name Request Response Explanation

Debt Inquiry
SubscriptionNo:
User subscription
number

InvoiceInfo: Object containing the invoice
information
IsDebtFound: Flag assigned if any debt found for user
Result: Object to show if the operation is successful

Users inquire their debts
using this method.

Collection
SubscriptionNo:
User subscription
number

IsPaid: Flag assigned if the payment is successful
Result: Object to show if the operation is successful

Users pay their bills using
this method.

Collection
Cancel

SubscriptionNo:
User subscription
number

IsCancelled: Flag assigned if the payment is cancelled
successully
Result: Object to show if the operation is successful

Users cancel their payments
using this method.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

88

Figure 7: JMeter GUI.

The Gherkin used in this application can be seen
in Figure 8. "Scenario" defines the name of the
operation in the web service to test. Here,
"DebtInquiry" is given as the operation name.

In the "Given" part, two things are taken into
consideration. The keyword "some" indicates that
multiple threads will be used in testing. Number of
threads used is set in the configuration file. The
keywork "with" indicates that the existing users are
used in the test. To obtain an existing user, JBDC
queries are used to select a random user from the
database. JDBC configuration and the query are set
in the confiugration file.

In the "Then" part, "positive" keyword is used to
point out that the response of the web service should
be positive for the case. Any logical response
assertion can be used in this part to achieve
conformance testing.
Scenario: User Banking Operations
DebtInquiry
Given some users with a present debt
When the user asks for present debt
status
Then a positive answer should return
And response time should be lower than
5000 miliseconds

Figure 8: Gherkin file used in application.

In the "And" part, response time assertion is
achieved. Responses which takes more than 5000
miliseconds is marked as failed. This fulfills the
performance testing issue.

The configuration file used in the test is given in
Appendix A.

After writing down the Gherkin string and
creating the required configuration file, JMeter test
script is generated using the tool. Then, actual test
can be completed in two different ways. First, the
test can be run from the tool. This method runs a
command which runs the JMeter test script. Second
method is to open the created JMeter script with the
JMeter GUI and run the test from the GUI. Either
way, test results are written to jtl file on the test
script location. By using JMeter GUI, sample test
request can be written as in Figure 9; sample test
response can be seen in Figure 10. The results of the
JMeter test is given in Figure 11.

4 RESULTS AND EVALUATION

Test results contain multiple outcomes according to
the given scenario. The results may answer the
following questions:

1. Is the web service running? Is it responding to
the requests?

2. Is the web service responding within the
expected period of time? (Performance)

3. Is the response expected? (Conformance)
By the use of our tool, it is easy to re-run all

performance and conformance tests with different
parameters and values. Therefore, it reduces all the

Testing of Web Services using Behavior-Driven Development

89

time and effort required to create different tests. In
addition, evaluation of the test results are also easy
with the GUI we propose. Also, the same GUI is
used to create different performance and
conformance tests using Gherkin language. So,
creation, running and evaluation of the test results
can all be accessed from the same GUI and it can be
used by all domain experts. We believe this is very
useful in terms of time and effort.
<soapenv:Envelope
<!-- XML Schemas -->>
 <soapenv:Header/>
 <soapenv:Body>
 <tem:DebtInquiry>
 <tem:request>
 <inv:SubscriptionNo>

222222222
 </inv:SubscriptionNo>

 </tem:request>
 </tem:DebtInquiry>
 </soapenv:Body>
</soapenv:Envelope>

Figure 9: JMeter request script.

<s:Envelope
 <!-- XML Schemas -->>
 <s:Body>
 <DebtInquiryResponse

xmlns="http://tempuri.org/">
 <DebtInquiryResult
 <!-- XML Schemas -->>
 <a:InvoiceInfo>
 <a:InvoiceAmount>

35.25
</a:InvoiceAmount>

 <a:InvoiceDueDate>
 2015-05-15T00:00:00
</a:InvoiceDueDate>

 <a:InvoiceNo>
 3
 </a:InvoiceNo>

 <a:NameSurname>

 Ali
</a:NameSurname>

 </a:InvoiceInfo>
 <a:IsDebtFound>

 True
 </a:IsDebtFound>

 <a:Result>
 <a:ErrorMessage i:nil="true"/>

 <a:IsSuccessful>
 True

 </a:IsSuccessful>
 </a:Result>
 </DebtInquiryResult>
 </DebtInquiryResponse>
 </s:Body>
</s:Envelope>

Figure 10: JMeter response code.

Figure 11: JMeter test result.

Table 4: JMeter unit time requirements.

JMeter
Component

Unit
Time

Required
Explanation

Thread Group 1 Used for creating multiple
thread requests

Soap/
Xml-Rpc
Request

10 Used for preparing web service
request body, parameters,
action and url

Response
Assertion

3 Used for conformance testing

Duration
Assertion

1 Used for performance testing

Assertion
Results

1 Used for monitoring assertion
results

JDBC
PreProcessor

3 Used for generating existing
 parameters from a database

View Results
Tree

1 Used for monitoring results

JDBC
Connection
Configuration

5 Used for configuring database
connection

For better understanding of the benefits of the
tool we propose, we have prepared a unit time cost
table which is given in Table 4. This table contains a
symbolic units of work required to create each
component using JMeter. Values given in the table
are only our estimation. By using this table, the time
required to create a test plan using JMeter and using
our tool can be compared.

According to Table 4, 25 units of time is
required to create a single web service test plan in
JMeter. This time might be reduced for similar tests,
but still it should be prepared by some technical
expert. With the tool we propose, this time is greatly

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

90

reduced and any domain expert may prepare and
apply new acceptance tests. In Table 5, unit time
requirements for the tool we propose is given.

As a result, it takes 12 units of time to create the
first test plan. After that, sequential test plans only
require 2 units of time. In addition, they can be
prepared by any domain expert.

Table 5: Web service testing tool unit time requirements.

Operation
Unit
Time

Required
Explanation

Preparation of
configuration
file

10
The technical information
about the web service is
prepared by the developer

Preparation of
Gherkin
string

2
Any domain expert may
prepare the tests using Gherkin

5 CONCLUSIONS

We have presented a new tool to ease the creation of
web service test scenarios and test software. The tool
we presented, uses the Behavior-Driven
Development concept with Gherkin language to
generate test scripts dynamically. First benefit of our
tool is: since Gherkin is a domain specific language,
any domain expert without software knowledge can
create and run web service tests. Second, developers
are not required to write unit tests manually, since
we used the powerful testing tool JMeter. We
believe that similar BDD testing approaches will
become more popular in the near future.

REFERENCES

Apache Software Foundation, 2016. Apache JMeter.
Available at: http://JMeter.apache.org/ (Accessed at:
10 January 2016).

Behat, 2016. Writing Features. Available at:
http://docs.behat.org/en/latest/guides/1.Gherkin.html
(Accessed at: 10 January 2016).

Bozkurt M., Harman M., Hassoun Y., 2013. Testing and
verification in service-oriented architecture: a survey.
In Softw Test Verif Reliab vol. 23 pp. 261–313.

Evans E., 2003. Domain-driven design, Addison-Wesley
Professional, Boston, pp. 123–135.

F. J. Lopez-Pellicer, M. Á. Latre, J. Nogueras-Iso, F. J.
Zarazaga-Soria, J. Barrera, 2014. Behaviour-Driven
Development Applied to the Conformance Testing of
INSPIRE Web Services. In Connecting a Digital
Europe Through Location and Place Lecture Notes in
Geoinformation and Cartography, pp. 325-339.

Gray M., Goldfine A., Rosenthal L., Carnahan L., 2010.
Conformance testing. In Information technology
laboratory, NIST. Available at: http://www.nist.gov/itl
/ssd/is/conformancetesting.cfm (Accessed at: 10
January 2016).

Lenberg, Per, Robert Feldt, Lars Göran Wallgren, 2015.
Behavioral Software Engineering: A Definition and
Systematic Literature Review. In The Journal of
Systems and Software vol. 107 pp. 15-37.

Microsoft Developer Network, 2016. What Is Windows
Communication Foundation. Available at:
https://msdn.microsoft.com/en-us/library/ms731082%
28v=vs.110%29.aspx (Accessed at: 10 January 2016).

SmartBear, 2016. SoapUI. Available at: http://www.soap
ui.org/ (Accessed at: 10 January 2016).

Sommerville, Ian, 2007. Software Engineering. Addison-
Wesley. Harlow, England, 8th ed., pp. 537-540.

Osherove, Roy, 2009. The Art of Unit Testing: With
Examples in .NET. Manning, Greenwich, pp. 42-44.

W. T. Tsai, X. Wei, Y. Chen, and R. Paul, 2005. A robust
testing framework for verifying web services by
completeness and consistency analysis. In SOSE ’05:
Proceedings of the IEEE International Workshop, pp.
151–158.

World Wide Web Consortium, 2015. Web Services
Glossary. Available at: http://www.w3.org/TR/ws-
gloss/ (Accessed at: 10 January 2016).

APPENDIX A

<TestConfig
<!-- XML Schemas -->>

 <MethodList>
 <Method>
 <Name>DebtInquiry</Name>
 <Url>

http://localhost:4444/Invoic
eService.svc?wsdl

 </Url>
 <Action>

http://tempuri.org/IInvoiceS
ervice/DebtInquiry

 </Action>
 <Request>
 <!--SOAP Request -->
 </Request>
 <ThreadCount>100</ThreadCount>
 <AssertionList>
 <Assertion>
 <Key>Positive</Key>
 <ObjectName>

 IsDebtFound
 </ObjectName>

<ObjectValue>
 true
</ObjectValue>

 </Assertion>

Testing of Web Services using Behavior-Driven Development

91

 <Assertion>
 <Key>Negative</Key>
 <ObjectName>

 IsDebtFound
 </ObjectName>

 <ObjectValue>
 false

 </ObjectValue>
 </Assertion>
 </AssertionList>
 <ParameterList>
 <string>SubscriptionNo</string>
 </ParameterList>
 <JDBCConfiguration>

 <Url>
 <!--DB URL -->

 <Url>
<Driver>
 <!—DB Driver -->

 </Driver>
 <Username />
 <Password />
 </JDBCConfiguration>
 <JDBCQueryList>
 <JDBCQuery>
 <Key>Existing</Key>
 <Value>

 SELECT
TOP 1 SubscriptionNo
FROM Invoice
WHERE IsPaid = 0
ORDER BY NEWID()

</Value>
 </JDBCQuery>
 <JDBCQuery>
 <Key>Random</Key>
 <Value>SELECT RAND()</Value>
 </JDBCQuery>
 </JDBCQueryList>
 </Method>
 <Method>
 <!--Other web service

methods...-->
 </Method>
 </MethodList>
</TestConfig>

Figure 12: Configuration file used in the test.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

92

