
UML-based Model-Driven REST API Development

Davide Rossi
Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

Keywords: UML, REST, Web Services, Model-Driven Development.

Abstract: In the last few years we have witnessed the expansion of REST APIs as a method to implement machine-
to-machine interactions in open distributed systems. Recently REST APIs can also be found in several B2B
and enterprise scenarios that were previously reserved to alternative technologies such as SOAP-based Web
Services. Despite that, the development of REST-based solutions has remained mostly inspired by agile ap-
proaches with no or limited explicit modeling artifacts produced during the development process. This clashes
with software development methods in which modeling artifacts are expected to be available for all developed
software. Another problem is related to the resource-based nature of these APIs that miss standardized meth-
ods to discover and understand their capabilities akin to what object-oriented interfaces can do for objects and
services. In this paper we propose a model-driven approach to REST API development; this approach is com-
posed by two main steps: (i) UML modeling of the API using specific profiles and (ii) a model transformation
that exploits RAML, a recent RESTful API modeling language, as an intermediate notation that can be used
to automatically produce documentation and code for various languages/platforms.

1 INTRODUCTION

SOAP-based (W3C XML Protocol Working Group,
2007) web services have been the leading integration
technology in enterprise and B2B scenarios for the
last few years. Besides the obvious advantages re-
lated to standardization and interoperability there are
arguably two sets of reasons explaining this success.
First the availability of a rich technologies stack, en-
abling the implementation of the advanced non func-
tional requirements enterprise software is usually ex-
pected to meet (that includes features such as reli-
able messaging, advanced security, transactions sup-
port and so on). Secondly the ease of integration
with existing OO-based modeling methods: while
SOAP has been designed to adapt to different in-
teraction models (such as the message-based one) it
fits naturally object oriented methods thanks to the
natural mapping of WSDL (Web Services Descrip-
tion Working Group, 2007) concepts such as port
type and operation to classes and methods. Further-
more, when UML (OMG, 2015b) is adopted in the
development process, SoaML (OMG, 2012) provides
a OMG-standardized approach for SOAP-based web
services modeling within service-based architectures,
allowing them to fit nicely in most plan-based meth-
ods (such as the large family of UP-inspired (Jacob-
son et al., 1999) software development processes).

All of this, however, comes at a price: complexity.
SOAP and WSDL, mostly because of their roots in
XML schema, can pose difficulties to newcomers, and
the full WS-* stack (as the set of variously supported
specifications associated to SOAP-based web services
is usually called) has widely been criticized for its in-
tricacy which translates into elaborated software li-
braries and frameworks to deal with. RESTful API,
on the other side, make simplicity their aim. This cou-
ples well with the diffusion of agile approaches into
the realm of distributed programming and their pref-
erence to light, simple, composable technologies and
determined a wide adoption of REST-based APIs.

As this adoption started to interest more and more
enterprise software projects, the lack of a standard-
ized approach to declare and discover REST API
capabilities becomes a relevant issue. What is in
fact missing is a uniform way to model available re-
sources, allowable operations, messages parameters
and payload formats. This impacts software devel-
opment: on the provider side no modeling artifact is
available to guide the implementation of the API, on
the consumer side there is no formal documentation
on how to use the API. As a consequence also the
concept of a contract among the parties cannot be ad-
dressed.

The relevance of this problem can easily be per-
ceived by the number of recent proposals for both

194
Rossi, D.
UML-based Model-Driven REST API Development.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 194-201
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



the description/modeling of the API itself and for
the modeling the data that are exchanged through it
(REST API data modeling is arguably one of the main
forces behind the development of JSON schema, cur-
rently an IETF Internet-Draft1). Among the existing
proposals we can list WADL2 (Web Application De-
scription Language), Swagger3 and RAML4 (REST-
ful API Modeling Language). Notice that also WSDL
2.0 can be used to model RESTful services but has
been sparingly adopted. Although most of these pro-
posal are a welcome addition, when developing soft-
ware within a model-first perspective it should be
taken into account that they (i) are not visual and (ii)
are not UML, that is they are not a standard, widely
used and tool-supported notation but are yet another
DSL (domain specific language) (Van Deursen et al.,
2000) to learn and integrate in the toolchain.

The research work presented in this paper aims
at defining a standards-based approach to the model-
driven development (Schmidt, 2006) of REST APIs;
this approach has been designed under the guidance
of the following desiderata (we could have called
them requirements, but the idea of self-imposing re-
quirements seems a bit rhetoric), most of them stem-
ming from aforementioned considerations:

D1. The solution should be based on UML: it should
be possible to automatically transform an initial
UML model into code supporting the implemen-
tation of the API and its consumption; automatic
or semi-automatic generation of the API docu-
mentation is also welcome.

D2. The solution should be agnostic with respect to
the language and the platform used to implement
the API.

D3. The use of intermediate formats in the D1’s
transformation is possible but this should not in-
troduce novel DSLs.

D4. The solution should focus on structural model-
ing; behavioral aspects could be added with fu-
ture extensions but are not a primary concern at
this point.

D5. The solution should not require spe-
cific/proprietary software tools; a fully-FOSS
software-based tool chain is advisable.

The solution we present here is based on two main
contributions:

C1. A flexible REST API modeling approach based
on leyered UML profiles.

1http://tools.ietf.org/html/draft-zyp-json-schema-04
2https://wadl.java.net/
3http://swagger.io/
4http://raml.org

C2. A model-driven transformation chain based
on an existing intermediate representation from
which documentation and code for various lan-
guages/platform can be refined.

C3. A workflow defining a method to implement the
proposed MDE approach.

This paper is structured as follows: section 2 dis-
cusses some of the existing proposals for the mod-
eling of RESTful APIs, some of which make use of
UML. A brief introduction to RAML can be found
here as well. In section 3 our proposal is presented:
starting with a set of desiderata we evaluate the possi-
ble options and end up with a method making use of
UML profiles and model-to-text transformations. In
section 4 a typical workflow adopting our approach is
presented. Section 5 concludes the paper and outline
future work.

2 RELATED WORKS

A few works are related to the approach we present
in this paper. In (Rathod et al., 2013) the authors pro-
pose an approach based on UML to model structural
(via class diagrams) and behavioral (via protocol state
machines) aspects of a RESTful API. In the class dia-
gram individual resources are mapped to plain classes
whereas collections are explicitly marked using a col-
lection stereotype. No further description of the oper-
ations is provided in this diagram: HTTP transactions
are used as triggers and state behaviors in the state
machine diagram. In a example the authors refine (in
a way which is not described) an .NET implementa-
tion of the API provider. In (Rauf et al., 2010) the
authors propose the use of UML to model the com-
position of RESTful web services. Structural model-
ing happens in a way that is very similar to the pre-
viously discussed work. Behavioral modeling is also
very similar in which state machines are used and the
various HTTP invocations are mapped to call behav-
ior actions, the main difference being that in this case
what is modeled is the behavior of a composition of
services. A conceptual metamodel for RESTful APIs
is presented in (Schreier, 2011); also typical resource
types (such as primary, sub, list, filter, ...) are taken
into account. The author does not map these con-
cepts to any concrete modeling language leaving the
option to use them as the basis for a DSL or for a
UML extension. In (Ormeno et al., 2012) the au-
thors present a UML profile for modeling RESTful
services based on the controllers and artifacts gener-
ated by Spring Roo5. The (structural) UML model is

5http://projects.spring.io/spring-roo/

UML-based Model-Driven REST API Development

195



then transformed, using Enterprise Architect’s6 pro-
prietary Code Template Framework, into a Spring
Roo application skeleton. In (Schreibmann, 2014) the
authors propose a model-driven approach for the de-
velopment of RESTful APIs. Their proposal is based
on a meta-model that serves as the basis for a DSL
used to model the API. By using Xtext7 the DSL
can be converted into Java/JAX-RS. The IBM product
Rational Software Architect includes a (non-formally
described) REST profile that is described in the doc-
umentation library8. Stereotyped class diagrams can
be transformed to JAX-RS-based Java code using pro-
prietary tools.

As stated in the introduction another aspect re-
lated to REST API is the surge of DSLs to doc-
ument/model them. A comparison between these
proposals is outside the scope of this paper, in our
work we focus on RAML. This is mostly due to the
fact that, as the ML (modeling language) letters in
the name implies, this proposal is more oriented to
the modeling of the API rather than simply to its
documentation/description in favor of potential con-
sumers, enabling what it s called an API design-first
approach. RAML is a non-proprietary, vendor-neutral
open specification. The workgroup developing the
specification includes representatives from MuleSoft,
VMware and Cisco. A RAML model is represented in
a text document adopting the YAML9 format (a pop-
ular human friendly data serialization standard) and
contains a structural description of the API: its re-
sources, their methods, the URI and query parameters
used in invocations, the format for the body of the ex-
changed entities, and so on. The RAML developers
and a large user community also make available var-
ious tools (usually as open source software), among
them several converters to transform RAML specifi-
cations in documentation or skeleton code for many
language/platform pairs.

3 FROM UML TO REST APIs

The solution we designed is meant to satisfy the
desiderata exposed in the introduction section. What
follows is a brief discussion of how these requirement
affected our choices.

D1 implies that a new modeling notation should
not be developed and if a metamodel is defined it

6http://www.sparxsystems.com/products/ea/
7https://eclipse.org/Xtext/
8http://www.ibm.com/developerworks/rational/library/

design-implement-restful-web-services/
9http://www.yaml.org/

should then be possible to express it using UML pro-
files. This strongly drove us toward the adoption of a
UML profile.

D2 implies that a starting model should be eas-
ily transformed into different language/platform tar-
gets. As a result, no implementation-specific con-
cerns should percolate upward to the starting nota-
tion. But this also means that, in order to max-
imize the adoption of the solution, several trans-
formation targets should be supported (like PHP,
Javascript/Node.js, Java/JAX-RS, and so on). Being
this far from trivial we started considering the adop-
tion of an intermediate notation even more appeal-
ing if that has available code generators that can be
adopted in the tool chain.

D3 goes in this very same direction: if the analysis
of the other requirements drive toward the adoption of
an intermediate notation, this notation should be an
existing one, allowing the adoption of existing tools
and avoiding the need to learn yet another DSL by the
development team members.

Taking into account also D4 and D5 we decided
to adopt an intermediate RAML artifact. The deci-
sion to use RAML impacts the definition of the ini-
tial profile. As usual when adopting transformations
in model-driven approaches, the problem of seman-
tic equivalence arises: if the starting notation contains
more information than the target, this information is
inevitably lost in the transformation. On the other
side, if the target notation contains more information
then it is possible that the resulting artifact needs to be
furtherly modified to add information if that is used
in later stages. Since RAML can express implemen-
tation details (such as the schema of the payloads or
the authentication mechanisms) that can be fruitfully
exploited in later transformations and since, by de-
sign, we decided that these details should not be part
of the UML profile, it is pretty obvious that we are in
the second of the two aforementioned cases. What
this means is that the RAML file produced by the
UML-to-RAML transformation is a skeleton contain-
ing structural information and it has to be enriched
with additional details before refining it in successive
artifacts. The modification of an intermediate artifact
in model-driven approaches is always problematic:
what happens when the transformation producing the
original version of the artifact is re-executed? Should
the artifact be overwritten and all the additional ele-
ments discarded? For model-to-text transformations
most of the times we witness solutions based on the
creative use of comments to mark elements that have
to be preserved and/or elements that can be overwrit-
ten. RAML wisely includes a layering mechanism
(based on so called overlays) that allow manual re-

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

196



finements of a specification to take place in extension
artifacts without the need to modify the initial file pro-
duced by the transformation, allowing its regeneration
without having to worry about overwriting it. While
this is a viable solution for most scenarios we still
would like to support development strategies in which
adding as much information as possible in the initial
UML model is the preferred option. To make this pos-
sible we decided to develop a second UML profile,
meant to be used as a second layer on top of the first,
more general profile. For the first profile we evaluated
the use of the existing ones discussed in the related
works section but most of them either included a rele-
vant behavioral part or are not fully documented (as is
the case for the IBM profile, that we used as inspira-
tion). Given D5 we decided to create the two profiles
using the open source Papyrus10 modeler. The result-
ing artifacts should be usable in other UML tools with
no or minimal effort.

The UML-to-RAML transformation should ac-
cept UML models using the generic profile (the
REST profile) and use the information added using
the second profile (the RAML profile) if present.
Since no formal MOF-based meta model exists for
RAML we decided to avoid going in the direction
of a model-to-model transformation (potentially using
QVT (OMG, 2015a) or ATL (Jouault et al., 2006)) tar-
geting the RAML metamodel with a later model-to-
text transformation to create the actual RAML YAML
file. The transformation is then a model-to-text from
UML+REST/RAML profiles to the RAML YAML
file.

The architecture (in the sense of significant design
decisions that characterize a solution (Buschmann
et al., 2007)) we propose is shaped as follows:
• A novel generic REST API profile focusing on

structural aspects is developed, this profile is de-
signed so that no implementation details perco-
lates upward.

• A RAML-specific profile is developed, meant to
be used along the generic one.

• An UML-to-RAML transformation is defined.
The transformation is implemented with the OMG
MOF Model to Text Language (MTL) standard
(OMG, 2008).

• Existing (open source) tools allowing RAML
specifications to be transformed into documen-
tation/code for various languages/platforms are
used.

• The profiles and the MTL code is made available
as open source software11.

10https://eclipse.org/papyrus/
11https://bitbucket.org/DavideRossi/uml2raml

3.1 Two UML Profiles for REST APIs

The two layers (REST only and REST with RAML)
approach has been discussed before. This approach
could be realized by using different techniques: the
RAML profile could be a subprofile of the REST
one or they could be totally distinct. We decided to
chose for the latter option: in the tool we used sub-
profiles have to be defined in the same model as the
profile they depend on and we wanted to make the
REST profile available as fully standalone. Designing
a UML profile for REST APIs does pose some techni-
cal problem. In a REST API we usually find two kind
of elements: single resources and collections. Con-
sider a simple API to access the details for a set of
persons. The path to access persons such as Alice,
Bob and Cecilia could look like /api/persons/alice,
/api/persons/bob, /api/persons/cecilia. That is, the
path specification /api/persons/{name} can be used to
access all person resources. But also /api/persons in-
dicates a resource, in this case a collection that, for
example, can be queried to have the list of all the
available persons or be used (possibly using a POST
factory pattern (Pautasso, 2014) to create new per-
sons. In an API like this the elements we want to
model are the ones accessed via /api/persons/{name}
(that represent a class) and the one at /api/persons that
represent a single resource (a collection). Mapping
these concepts in a OO way would mean to use classes
for /api/persons/{name} and instances of a collection
type for /api/persons. Not only this is hardly achiev-
able in standard UML even mixing imports and pro-
files but, most importantly, would result in a very
unnatural way of modeling. Some of the existing
proposal use distinct stereotypes to mark single re-
sources and collections but this distinction is not re-
ally needed from a structural point of view. For this
reason we decided for a simpler, yet conceptually not
fully accurate, solution: model both concepts with the
same stereotyped class. The resulting profile is very
straightforward and is represented in figure 1. An ex-
ample of its application can be seen in figure 2.

The approach is quite straightforward: an API
is contained in a API stereotyped package. Re-
sources are modeled as Resource stereotypes classes

Figure 1: The REST profile as modeled in Papyrus.

UML-based Model-Driven REST API Development

197



Figure 2: A sample model using the REST profile.

within these packages. These resources could be
non-correlated and characterized by their own abso-
lute path or can be explicitly organized in hierarchies
by tying them together with a ResourcePath stereo-
typed dependence. In the latter case the path of a
sub-resource is derived from the path of the super-
resource it references and from the path property of
the ResourcePath stereotype that is applied to the de-
pendency edge.

The second profile contains much more details
with respect to the first one, since it has to capture sev-
eral aspects that can be modeled in RAML (notice that
we decided not to represent the whole RAML meta-
model). That is, there are valid RAML documents
that cannot be represented by the profile. This was
never our intention: the profile is meant to help the
design of REST APIs via UML and convert them to
RAML descriptions adopting the most usual REST
API patterns, not to work as a RAML visual notation.
If the use of very specific RAML constructs is need,
the suggestion is to make use or RAMLs own layer-
ing mechanism to enrich the specification produced
by the transformation of the UML model. Despite be-
ing limited, the RAML profile can easily be misused
by trying to model too many details, leading to intri-
cate, unreadable diagrams. Also consider that some
of the stereotypes’ properties are defined with respect
to data types defined in the profile, and the values of
these properties cannot be displayed by most existing
UML modelers.

The profile, instead, is intended to be used along-
side the modularization and reuse mechanisms pro-
vided by RAML: data types, resource types and traits.
RAML data types can be derived by a set of built-in
types (by using scalar specialization, inheritance, ar-
rays, enumerations, unions and maps) or can refer-
ence JSON or XML schema. RAML resource types
are partial resource definition specifying common
characteristics such as security schemes and meth-
ods. RAML traits are partial method definitions spec-

ifying common characteristics such as description,
headers, query string parameters, and responses. So,
while is is possible to use the profile to specify that
a POST method on a resource accepts a JSON pay-
load composed by a name and a birthDate, the sug-
gested way to proceed is to define a PersonType with
these properties in an external file that is imported,
and use the profile to specify that the method accepts
a PersonType payload. Similarly, while is possible to
use stereotypes properties to specify that a collection
resource accepts query parameters such as start and
count in its GET method, the suggested way to pro-
ceed is to define a ”paged” trait and refer to that in the
UML model. The same applies to resource types.

For terseness we are omitting the other details of
the RAML profile here; an example of a model using
the two profiles together can be found in figure 3.

Notice the application of stereotypes from both
profiles in elements such as in the outer package rep-
resenting the API. One advantage of this approach is
that by filtering out the whole second profile, a valid
view of the model with respect to the generic REST
profile can be easily obtained.

3.2 From UML to RAML

To convert the UML model adopting one or both the
profiles we decided to design a model-to-text transfor-
mation using Acceleo12 an Eclipse-based implemen-
tation of the OMG MTL standard; since both Papyrus
and Acceleo are part of the Eclipse Modeling Project
this should limit interoperability issues. The trans-
formation needs the REST profile to be used; if the
RAML profile is also applied the additional informa-
tion is used. The basic structure of the API is de-
rived from the resources and their hierarchies (speci-
fied using the ResourcePath stereotyped dependencies
as detailed above). MTL is a transformation language
similar to XSLT. Templates are used to define how to
transform specific parts of the input UML model (the
one matching a pattern specified in OCL); functional
expression (based on a superset of the OCL language)
are used to manipulate model elements and produce
the textual result. The following snippet

1 [template public generateAPI
2 (aPackage : Package) ?
3 (hasStereotype(aPackage, ’RestProfile::API’))]

shows the definition of a template (generateAPI) to
be applied to all the package elements in the source
model to which the API stereotype defined in the
RestProfile has been applied. hasStereotype is a util-
ity function defined in the same MTL module. Inside

12https://www.eclipse.org/acceleo/

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

198



Figure 3: A sample model using both profiles.

the template all the Resource stereotyped classes con-
tained in the package identified by the generateAPI
can be iterated by using

1 [for (e : Element | aPackage.ownedElement->
2 select(e1 | e1.oclIsTypeOf(Class) and
3 hasStereotype(e1, ’RestProfile::Resource’)))]

An example fragment of the output of the transfor-
mation on the simple model of figure 3 is as follows:

1 #%RAML 1.0
2 title: ACME API
3 version: v2
4 baseUri: https://api.acme.org/{version}
5 mediaType: application/json
6 description: |

7 This is a sample RAML API generated
8 from a UML model
9 securitySchemes:

10 - oauth_2_0: !include security/oauth_2_0.raml
11 types: !include types/products.raml
12 resourceTypes:
13 collection: !include types/collection.raml
14 traits: !include traits/common.raml
15 securedBy: [oauth_2_0]
16 documentation:
17 - title: Home
18 - content: |
19 Welcome to the ACME API documentation
20

21 /products
22 displayName: Products

UML-based Model-Driven REST API Development

199



23 type: collection
24 get:
25 description: Get a list of products
26 is: [paged, secured, rateLimited]

4 SUGGESTED WORKFLOW

Having tried this approach with a few realistic test
cases we gained some experience and we developed
a feel for how to approach the modeling phase. As
previously suggested good modeling assumes that
the modularization and reuse features of RAML are
adopted. Resource types and traits usually respond
to patterns an are defined in common libraries and
reused among different projects so most of the times
no explicit modeling is required (usually some refac-
toring is needed, though). The situation is a little
different for data types: these are usually domain-
specific so reuse is not an option. RAML has a well-
defined data model and it could be interesting to cre-
ate a UML profile allowing the definition of RAML
types. Many times, however, the RAML data model
is ditched in favor of JSON schema and XML schema
(something that is fully supported by RAML) so we
saw little value in another profile and decided to re-
consider it as a potential future work. What follow is
the typical workflow we suggest when adopting our
approach.

1. A UML model adopting the generic REST profile
is created to define the structure of the API (the
available resources and their topology).

2. Data is modeled considering all the payloads for
all the resources’ HTTP methods presented in the
model. This is usually realized using either JSON
schema or XML schema. If needed RAMLs own
type system can be used.

3. Traits common among different methods (such
as authentication mechanisms, pagination for re-
sources, REST factory pattern and so forth) are
defined. The same is performed with resource
types. Both are usually reused from repositories,
libraries or other projects.

4. The RAML profile is added to the UML model
and stereotypes are used to characterize resources
with respect to resource types, methods with re-
spect to traits and payloads and query parameters
with respect to data types.

The resulting UML model is clear, readable and, once
feeded to the model-to-text transformation, produces
a RAML file that can be used for successive transfor-
mation with no or minimal editing.

All the activities of this workflow can be realized
with open source software tools.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we presented a UML-based model-
driven approach for the development of RESTful
APIs. An initial UML model adopting one or two
proposed profiles is created and can be automati-
cally transformed into a RAML file. Depending of
the information contained in the UML model, this
RAML specification can be directly used to automat-
ically create documentation and code in various lan-
guages/platform pairs or can be extended using a lay-
ering mechanism before further transformations. Sev-
eral design alternatives for the method have been dis-
cussed and the adopted ones have been chosen to ad-
dress a set of desiderata stemming from an analysis of
the state of the art. As it is usual in these cases, these
decisions make sense in the specific context we de-
scribed, in other contexts other decisions would pos-
sibly be preferable. Also notice that we not claim
that this is an overall better approach with respect to
other existing ones based on DSLs: we are present-
ing an option for those who value the use of UML
in their workflows. Future works on this subject in-
clude data modeling and the development of an envi-
ronment based on patterns and libraries so that a sim-
plified intermediate profile can be used instead of the
full RAML one to model in detail most RESTful APIs
with minimal or no knowledge of the intermediate no-
tation.

ACKNOWLEDGEMENTS

The research presented in this paper has been partially
funded by the Italian grant PRIN in the context the
IDEAS project.

REFERENCES

Buschmann, F., Henney, K., and Schimdt, D. (2007).
Pattern-oriented Software Architecture: On Patterns
and Pattern Language, volume 5. John wiley & sons.

Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., and
Booch, G. (1999). The unified software development
process, volume 1. Addison-wesley Reading.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Val-
duriez, P. (2006). ATL: a QVT-like transformation
language. In Companion to the 21st ACM SIGPLAN

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

200



symposium on Object-oriented programming systems,
languages, and applications, pages 719–720. ACM.

OMG (2008). MOF Model to Text Transformation Lan-
guag.

OMG (2012). Service oriented architecture Modeling Lan-
guage (SoaML).

OMG (2015a). Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT).

OMG (2015b). Unified Modeling Language (UML).
Ormeno, E., Lund, M., Aballay, L., and Aciar, S. (2012).

An UML profile for modeling RESTful services. In
13th Argentine Symposium on Software Engineering,
ASSE 2012, pages 119–133.

Pautasso, C. (2014). RESTful web services: principles, pat-
terns, emerging technologies. In Web Services Foun-
dations, pages 31–51. Springer.

Rathod, D. M., Parikh, S. M., and Buddhadev, B. (2013).
Structural and behavioral modeling of RESTful web
service interface using UML. In Intelligent Sys-
tems and Signal Processing (ISSP), 2013 Interna-
tional Conference on, pages 28–33. IEEE.

Rauf, I., Ruokonen, A., Systa, T., and Porres, I. (2010).
Modeling a composite RESTful web service with
UML. In Proceedings of the Fourth European Confer-
ence on Software Architecture: Companion Volume,
pages 253–260. ACM.

Schmidt, D. C. (2006). Guest editor’s introduction: Model-
driven engineering. Computer, 39(2):0025–31.

Schreibmann, V. (2014). Design and Implementation of a
Model-Driven Approach for RESTful APIs. In Proc.
Fifth IEEE Germany Students Conference.

Schreier, S. (2011). Modeling restful applications. In
Proceedings of the second international workshop on
restful design, pages 15–21. ACM.

Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
Specific Languages: An Annotated Bibliography. Sig-
plan Notices, 35(6):26–36.

W3C XML Protocol Working Group (2007). Latest SOAP
versions.

Web Services Description Working Group (2007). Web Ser-
vices Description Language (WSDL) 1.1.

UML-based Model-Driven REST API Development

201


