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Because of their ability to efficiently store, access, and process data, Database Management Systems (DBMSs)

and Rule-based Systems (RBSs) are used in many information systems as information processing units. A ba-
sic function of a RBS and a function of many DBMSs is to match conditions on the available data. To improve
performance, intermediate results are stored in Discrimination Networks (DNs). The resulting memory con-
sumption and runtime cost depend on the structure of the DN. A lot of research has been done in the area of
optimising DNs. In this paper, we focus on re-using network parts considering multiple rule conditions and
exploiting the characteristics of equivalences. Hence, we present an approach incorporating the potential of
both concepts as an enhancement to previous work.

1 INTRODUCTION

Because of their ability to efficiently store, access,
and process data, Database Management Systems
(DBMSs) and Rule-based Systems (RBSs) are used
in many information systems as information process-
ing units (Brownston et al., 1985; Forgy, 1981). A ba-
sic function of a RBS and a function of many DBMSs
is to match conditions on the available data. Check-
ing all data repeatedly every time some data changes
performs badly. It is possible to improve performance
by saving intermediate results in memory introduc-
ing the method of dynamic programming. A com-
mon example for this approach is the Discrimination
Network (DN). Different DN optimization techniques
are discussed in (Forgy, 1982), (Miranker, 1987), and
(Hanson and Hasan, 1993). These approaches only
address optimisations limited to single rules. Fur-
ther improvement is possible by optimising the full
rule set of a RBS. By exploiting the characteris-
tics of equivalences, additional performance improve-
ments are possible. In this paper, we will introduce
an approach extending (Ohler and Terwelp, 2015) and
(Ohler et al., 2016) incorporating the potential of both
concepts.

This paper is organized as follows: In Section 2,
we introduce DNs and in Section 3, we explain the
concept of re-using network parts for different rules.
Section 4 describes the potential of binding variables
in rule conditions. In Section 5, we discuss the arising
problems in the field of node sharing. Existing work
in the area of DN and query optimisation are pre-
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sented in Section 6. The identified problems are then
addressed in Section 7 by introducing an advanced
version of the block notation. Section 8 comprises
the conclusion and gives an outlook on future work.

2 DISCRIMINATION NETWORKS

Rules in RBSs and DBMSs both comprise a condi-
tion and actions. The actions of a rule must only be
executed, if the data in the system matches the con-
dition of the rule. DNs are an efficient method of
identifying rules to be executed employing dynamic
programming trading memory consumption for run-
time improvements. Rule conditions are split into
their atomic (w.r.t. conjunction) sub-conditions. In
the following, such sub-conditions are called filters.
DNs apply these filters successively joining only
the required data. Intermediate results are saved to
be reused in case of data changes. Each filter is rep-
resented by a node in the DN. Additionally, every
node has a memory, at least one input, and one out-
put. The memory of a node contains the data received
via its inputs matching its filter. The output is used
by successor nodes to access the memory and receive
notifications about memory changes. Data changes
are propagated through the network along the edges.
The atomic data unit travelling through a DN is called
fact. Changed data reaching a node is joined with the
data saved in nodes connected to all other inputs of the
node. So only the memories of affected nodes have to
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be adjusted. Each rule condition is represented by a
terminal node collecting all data matching the com-
plete rule condition.

data input nodes serve as entry points for specific
types of data into the DN. They are represented
as diamond shaped nodes.

filter nodes join the data from all their inputs and
check if the results match their filters. They are
represented as inverted triangle shaped nodes.

terminal nodes collect all data matching the condi-
tions of the corresponding rules. They are repre-
sented as triangle shaped nodes. The action part
of a rule should be executed for each data set in
its terminal node.

3 NODE SHARING

The construction of a DN that exploits the structure
of the rules and the facts to be expected in the sys-
tem is critical for the resulting runtime and memory
consumption of the RBS. To avoid unnecessary re-
evaluations of partial results, an optimal network con-
struction algorithm has to identify common subsets of
rule conditions. In the corresponding DN, these com-
mon subsets may be able to use the output of the same
network nodes. This is called node sharing and was
already described in (Brant et al., 1991).

Despite the fact, that there is a lot of potential
to save runtime and memory costs, current DN con-
struction algorithms mostly work rule by rule (cf. Sec-
tion 6). This way it will not always be possible to ex-
ploit node sharing to its full extent, e. g., if the nodes
were constructed in a way, that the network is (lo-
cally) optimal for the single rule it was constructed
for, but prevents node-sharing w.r. t. further rules and
might therefore thwart finding the (globally) optimal
DN for all rules in case sharing the nodes would have
reduced costs (cf. example 3.1).

Example 3.1. Assume there are two filters: filter fj
uses facts of type a and b, filter f, uses facts of type b
and c. Furthermore, there are two rules: rule | using
f1 and rule r, using f; and f>. Then filter f; is used
in both rules and we can construct a DN where both
rules use the same node to apply f; to the input (see
Figure 1).

If we were to construct rule r; first and would have
decided to construct the node f> as an input for fi,
sharing f; with r; afterwards would have been im-
possible, since the output of the node for f; is also
already filtered by f>.

It is therefore advisable to construct the DN taking
into account the set of rules as a whole.
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Figure 1: Simple node sharing example network.

4 EQUIVALENCE CLASSES

The common rule description languages resemble
the Domain Relational Calculus (DRC) such that
variable symbols that appear multiple times (e.g.,
within different relations or comparable constructs)
implicitly cause that the condition is only true
if the values of all symbol occurrences are the
same. Considering the following condition in DRC
{a,b,c | X(a,b)\Y(a,c) A a> 20} one may choose
whether the test a > 20 is applied to the data of X or
Y (or both). The occurrences of a variable symbol in
locations where the variables can be bound to values
are collected in what we will from now on call equiv-
alence classes. The resulting freedom in choosing an
element of the equivalence class for filters can be con-
sidered within DN construction algorithms. Addition-
ally, a minimal set of tests to ensure the equality of all
elements of an equivalence class can be chosen freely.

S CHALLENGES

Since node sharing is beneficial in most situations,
DN construction algorithms should be presented the
necessary data to maximise the potential savings in
runtime cost and memory consumption. This section
will present the challenges associated with generating
these information.

Sadly, identifying common subsets of rule condi-
tions isn’t sufficient to make use of node sharing in
network construction. This can be seen by extending
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the previous example.

Example 5.1. Assume there is an additional third rule
r3 using only the filter f>. Now f] is part of r; and r
while f, is part of r, and r3. Despite the fact that
there are two non-trivial rule condition subsets, we
can’t share both filters between the three rules in an
intuitive way. The rule r, requires a network that ap-
plies the filters f; and f, successively. Yet, the rule
r1 (r3) needs the output of a node applying nothing
but f1 (f2), meaning the corresponding nodes receive
unfiltered input. Thus, we need two nodes for the two
filters side by side at be beginning of the network and
some additional node to satisfy the chained applica-
tion of the two filters. There are three result networks
still applying node sharing to some extent: We can ei-
ther share f; and duplicate f>, share f, and duplicate
f1, or re-use both nodes for r, by introducing an ad-
ditional node that selects only those pairs of facts that
contain identical b-typed facts in both inputs.

Formalising the phenomenon just observed, we say
that two filters are in conflict if they use the same
facts. Since in (Ohler and Terwelp, 2015) it has been
shown that the runtime costs of the third network in
example 5.1 are always higher than those of the other
two networks, we will not consider such networks
here. The decision which of the two remaining net-
works performs better depends on the data to be ex-
pected.

Furthermore, there may be situations where node
sharing is not beneficial. For example, two rules shar-
ing a filter that all facts pass should not share that filter
if they have other (more selective) filters that could be
applied to the data first. Sharing the filter would re-
quire to apply that filter first resulting in a high main-
tenance cost for the corresponding node. Applying
the filter last could lead to very low maintenance costs
as very few facts reach the node such that even the
twofold costs are lower than the costs in the sharing
situation. Detecting these situations requires informa-
tion about e. g., filter selectivities, but can continue to
improve the quality of the resulting network.

Finally, integrating the degree of freedom intro-
duced by the equivalence classes as mentioned in Sec-
tion 4 into the network construction is a further aspect
considered here.

6 STATE OF THE ART

There are several DN construction algorithms creat-
ing different types of networks such as Rete (Forgy,
1982), TREAT (Miranker, 1987), and Gator (Hanson
et al., 2002). Yet, they all consider the rules one after
another so that the degree of sharing network parts is
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governed mainly by the order in which the rules are
considered and the order of the filters within the rule
conditions. Moreover, the optimisation potential in-
troduced by the equivalence classes is neglected and
all variables are assumed to be bound or are bound in
a preliminary consideration.

An approach for query optimisation for in-
memory DRC database systems is presented in
(Whang and Krishnamurthy, 1990). They exploit the
concept of equivalence classes, but only consider left-
deep join plans and look at each query on its own
without evaluating node-sharing.

In (Aouiche et al., 2006), the authors apply a data-
mining technique to decide which views to materi-
alise during the processing of a set of queries in a rela-
tional database system. Here, several queries are con-
sidered together and grouped by a similarity heuristic.
Columns relevant for materialisation are identified by
a cost function and re-used as much as possible to pre-
vent repeated evaluations. In doing so, the filters to be
applied are reduced to the ones relevant to all queries
involved. Thereby, they do not identify the problem
of conflicts as such and decisions are made based on
columns to be materialised instead of filters as done
here.

A first version of the block notation was presented
in (Ohler and Terwelp, 2015), which was a rather sim-
ple approach not yet considering equivalence classes,
existentials and predicates occurring more than once
per rule among other aspects. It was further developed
and evaluated in (Ohler et al., 2016). The new version
integrates the gaps mentioned before, but still suffers
from some shortcomings. Predicates occurring multi-
ple times per rule could not be fully exploited for shar-
ing and some situations, in which sharing would be
possible, could not be taken advantage of since all oc-
currences of an equivalence class within a block were
restricted in the same way.

7 APPROACH

Previously, we referred to different types of facts,
which we will now call templates. A template resem-
bles a class and its fields are called slots. All facts are
instances of templates. More specifically, we will use
the term fact binding to be able to distinguish between
several facts of the same template. Every fact in the
resulting fact tuple of a rule condition corresponds to
a fact binding and vice versa. Equivalence classes
as introduced in Section 4 contain fact bindings, slot
bindings (bindings to a slot of a fact binding), con-
stants, and functional expressions (i. e. 7x+?7y). A fil-
ter comprises a predicate (the test to be executed) and



the equivalence classes to be used as parameters.

Existential parts of a condition have to be pro-
cessed in a special way. If an equivalence class con-
tains bindings originating from two different scopes,
it is split into two classes containing the correspond-
ing elements. Additionally, equivalence classes in
child scopes know of their corresponding equivalence
class in parent scopes. New scopes are created by ex-
istentials, which can also be nested. Filters appearing
within existential parts can then be divided into three
categories:

1. filters using only equivalence classes belonging to
the current scope

2. filters using only equivalence classes belonging to
parent scopes

3. filters using equivalence classes belonging to the
current and parent scopes

The filters of the first two categories can be processed
separately and have to be applied to the data prior to
those of the third category. When applying the filters
of the third category, the corresponding join merges
the regular data with the existential data and imple-
ments the existential semantics. In a pre-processing
step, all filters of the third category are merged into
one filter, which we call the final filter of an existential
condition part. It also contains the tests for equality
of equivalence classes contained in the surrounding
as well as in the existential scope. The parameters of
this predicate are marked according to whether they
are regular, existential or negated existential ones. As
a consequence, existential condition parts can be inte-
grated into the concepts to be presented.

We will now introduce a directed graph containing
different types of nodes for different concepts repre-
sented. For this, we use the following example ex-
plaining the key parts.

Example 7.1. Consider the following rule condition
with two template instances (i.e. facts) and a filter
with three arguments:

(t (s ?x))
(L’ (s" 2x) (s'' ?y))
(test (f ?x 2y ?y))

In the so called assignment graph, we create a node
for every filter (f) and every template instance (¢ and
t"). We let F denote the set of filter nodes and T de-
note the set of template instance nodes. As the rule
contains three slot bindings, we create three corre-
sponding nodes b for t: :s, b’ for t’ ::s’, and b” for
t’::s’’. These nodes are gathered in the set of fact
and slot bindings Br. The variable ?x can be bound to
t::sand t’::s’, so the corresponding equivalence

An Enhanced Block Notation for Discrimination Network Optimisation

class contains those two slot bindings. For every ele-
ment of an equivalence class, we create a correspond-
ing node in the assignment graph gathered in the set
O; of implicit equivalence class occurrence (more on
that later). Thus, for the equivalence class corre-
sponding to ?x, there are the two nodes o; for t::s,
and o} for t’ : :s. Since the variable ?y can only be
boundtot’::s’’ and the corresponding equivalence
class only contains one element, we omit the creation
of a corresponding node as for all trivial equivalence
classes. Finally, we create a node for every parameter
of a filter (oy, 0} and 0’;). These nodes are gathered
in the set Of of equivalence class occurrences within
filters.

Figure 2 shows the assignment graph with the cor-
responding directed edges. One can identify four lay-
ers the way the graph is depicted. The top layer con-
tains the filters (F). Below, there are the equivalence
class occurrences (O). Every filter is connected to its
occurrences via edges. The third layer contains the
bindings (B). The occurrences are connected to the
bindings contained in the corresponding equivalence
classes via edges. In the bottom layer the template
instances are contained (7') and connected to the cor-
responding bindings in the third layer via edges.

P
ol

N

Figure 2: Assignment graph example.

The four layers already described i.e. the corre-
sponding sets of nodes form the node setV =F U O U
BUT of the assignment graph G = (V, E). The set of
occurrences O = O; U O U Oy additionally contains
the set Oy of occurrences within functional expres-
sions and the set of bindings B = By U B¢ U By addi-
tionally contains the set B¢ of constant bindings and
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the set By of functional expression bindings. Note
that constants occurring in multiple rules are mapped
to one node per rule they are contained in. Oy contains
one node per equivalence class element.

The set of edges E = Er U Ep U Eg of the as-
signment graph comprise the edges Er from the filters
f € F to the corresponding occurrences in Oy C O,
the edges Er to the template instances ¢ € T origi-
nating from the corresponding slot and fact bindings
in B; C Br, and the edges Ep from the occurrences
Op C O of an equivalence class Q to its bindings
BQ C B.

Every rule is represented in the graph by at least
one connected component of the assignment graph.
Thus there are no edges between rules.

A non-empty subset Z C E(G) of the edges of the
assignment graph G is called a block row if the fol-
lowing conditions are fulfilled:

* If an edge adjacent to a filter is in Z, all edges in
G adjacent to that filter have to be in Z.

* The edge to a non-implicit occurrence is in Z iff at
least one edge from that occurrence to a binding
isin Z.

* The edge from a fact or slot binding to the corre-
sponding template instance is in Z iff at least one
edge from an occurrence to a binding of this tem-
plate instance is in Z.

* If an edge from an occurrence to a functional ex-
pression binding is in Z, all edges originating from
that binding have to be in Z.

* If an edge from a functional expression binding is
in Z, at least one edge to that binding has to be in
Z.

* An edge from an implicit occurrence to its corre-
sponding binding is in Z iff at least one other edge
to that binding is in Z.

If the edges (0,b), (0,b’), and (o', b) for occur-
rences o, o' and bindings b, b’ are in Z, then (o', ')
has to be in Z.

* For all occurrences in functional expressions with
adjacent edges in Z, it holds that there are paths in
Z from these occurrences to slot, fact, or constant
bindings.

If an existential edge (f,0) adjacent to a filter f is
in Z, the connected component originating from
removing all existential edges adjacent to f that
contains o has to be a subset of Z.

Two block rows are compatible iff both block rows
are disjoint and no edge in the one block row is adja-
cent to an edge in the other block row.
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A non-empty subset S C E(G) of the edges of the
assignment graph G is called a block column if the
following conditions are fulfilled:

» All edges in § are pairwise non-adjacent

* For the set of start or target nodes V' of the edges
in S one of the following conditions holds:

— V/ contains filters only and they all apply the
same predicate having the same parameters
marked as (negated) existential

— V’ only contains implicit occurrences

— V/ only contains non-implicit occurrences rep-
resenting the same position in the list of param-
eters of a filter or functional expression.

— V’ only contains bindings to the same constant.

— V/ only contains bindings to slots of the same
name. The equality of the template is assured
via the compatibility of block columns (see be-
low).

— V' only contains fact bindings.

— V' only contains bindings to functional expres-
sions and they all use the same function.

— V’ only contains template instances (facts) of
the same template.

« If all start nodes of the edges in S are implicit oc-
currences, either all or none of the edges lead to
the corresponding binding.

Two different block columns S and S’ are compat-
ible iff at most one pair of the sets of start and target
nodes of S and the sets of start and target nodes of S’
are identical and all others are disjoint.

We also refer to the number of the elements of a
block column as the height of the block column.

A set of pairwise compatible block rows Z
together with a set of pairwise compatible block
columns S is called a block iff the set of all edges
of the block rows is identical to the set of all edges
of the block columns and the amount of block rows
corresponds to the height of the block columns.

A block with more than one row represents the
possibility of sharing its included filters. So only one
row of the block has to be implemented in the DN
and can be reused for the implementation of the other
rows. Implicit occurrences allow sharing of implicit
equalities represented by equivalence classes.

Two blocks X = (2,5),Y = (Z/,5') are in conflict
iff none of the following conditions are satisfied:

e TNT' =0 with T and T’ being the template in-
stances of the blocks X and Y, respectively.

*V0eQIRER RCQfor QR €{5,5'} as
wellas Q, R € {2, Z'} with Q # R _in both cases.



A block set free of conflicts between blocks is use-
ful to prevent conflicts between filters.

We say that a set of blocks is complete, if every
node of the assignment graph is contained in at least
one block, none of the blocks contains all elements of
another block partitioned the same way, and no block
can be extended further.

Constructing the DN for a complete, conflict-free
block set can be done by materialising the filters in the
blocks starting with the blocks containing the fewest
columns. Within the set of blocks containing an equal
number of columns the order is arbitrary, since none
of these blocks can be the input of another block in
that set (otherwise they would “overlap” and would
have been in conflict). A more detailed explanation
of how to construct the network (part) for a block in-
cluding considerations about the optimisation poten-
tial and what to keep in mind w.r. t. filters with exis-
tential parameters is given in (Ohler et al., 2016).

The construction order is relevant only if blocks
contain the same nodes. Since the block set is
conflict-free and complete, if one block overlaps with
another block, the columns of one of the blocks are a
subset of the columns of the other block. As the one
with fewer columns is constructed first, its output can
be used to construct the larger (w.r.t. column count)
block.

8 CONCLUSION & OUTLOOK

We presented a concept for an optimisation of DNs
for RBSs considering node-sharing and integrating
the degree of freedom emerging from being able
to choose between elements that are supposed to
be equal. This block concept is able to formalise
the problems of node-sharing, i.e. which network
parts would compete against each other. Equivalence
classes were integrated into the block concept to allow
for a free choice of which element to use for which
filter and of how to check the equality among the ele-
ments efficiently, e. g., using a minimal spanning tree.

Based on the notation presented, we are currently
developing optimisation algorithms considering sev-
eral rules at once. The output of such an algorithm
should be a conflict-free set of blocks, where no block
can be extended and no block contains all elements
of another block partitioned the same way. An opti-
mising DN construction algorithm can then use this
information to decide, whether node-sharing is bene-
ficial in terms of runtime cost and memory consump-
tion w.r.t. the data to be expected. Developing such
an algorithm with acceptable runtime costs — despite
the fact that it has to look at a set of rules instead of a
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single one — is pending.
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