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Abstract: Outdoor advertising is an old industry and the only reliably growing advertising sector other than online 
advertising. However, for it to sustain this growth, media providers must supply a comparable means of 
tracking an advertisement’s effectiveness to online advertising. The problem is a continual and emerging area 
of research for large outdoor advertising corporations, and as a result of this, smaller companies looking to 
join the market miss out on providing clients with valuable metrics due to a lack of resources. In this paper, 
we discuss the processes undertaken to develop software to be used as a means of better understanding the 
potential effectiveness of a fleet of private car, taxi or bus advertisements. Each of the steps present unique 
challenges including big data visualisation, performance data aggregation and the inherent inconsistencies 
and unreliabilities produced by tracking fleets using GPS. We cover how we increased the metric aggregation 
algorithm performance by roughly 20x, built an algorithm and process to render data heat maps on the server 
side and how we built an algorithm to clean unwanted GPS ‘jitter’. 

1 INTRODUCTION 

Advertising has evolved hugely over the past decade 
due to the amount of people that have moved online. 
It has become easy to trial different forms of digital 
advertising and find a best fit. As a result of this, 
advertising has become reliant upon metrics. Through 
platforms such as Facebook Adverts and Google 
Adwords, advertisers can track the performance and 
return on investment (ROI) of their advertisements. 
This is not to say that advertisers do not see the value 
in outdoor advertising, however their intuition will 
lead them to question its accountability. 

 

Through online advertising, advertisers can 
monitor their potential gain through metrics such as 
impressions (the number of browsers the advert has 
been loaded into) and the number of clicks. 

 

As highlighted in a survey carried out on 3000 
business executives by MIT Sloan Management 
Review and IBM Institute for Business Value it was 
discovered that over half said that “improvement of 
information and analytics was a top priority in their 
organizations” (LaValle et al, 2010). Furthermore, 
“more than one in five said they were under intense 

or significant pressure to adopt advanced information 
and analytics approaches” (LaValle et al, 2010). 

 

Vehicular advertising is a popular and effective 
form of outdoor advertising. Throughout this paper, 
we discuss how we built a platform and system that 
enables advertisers to gain similar metrics as online 
advertising, as well as other relevant information 
about their fleet of adverts. We combine connected 
car (the act of connecting cars to the Internet of 
Things) and scalable web application technologies to 
produce a web app for use in vehicular advertising. 

1.1 Objectives 

Advertisers have little means of calculating any form 
of ROI when using outdoor advertising, in this case, 
car, taxi or bus advertising. We aim to solve this by 
building a platform for advertisers to track and 
manage their campaigns. 

This paper aims to tackle three core areas; firstly 
big data visualization – due to the fact that vehicular 
advertising requires geographic analysis we focus on 
representing the data as a heatmap. Secondly we 
cover how we leveraging MongoDB’s aggregation 
functionality to return useful metrics without 
dramatically reducing the application’s performance 

Ogunshile, E.
A Big Data Analysis System for Use in Vehicular Outdoor Advertising.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 319-328
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

319



at scale. The challenge is in allowing the client to 
generate reports ‘on-the-fly’ for millions of 
geographic data points. Finally we discuss a simple 
yet effective way of reducing GPS ‘jitter’ from large 
datasets.  

1.2 Contributions 

The resultant contributions of this paper are as 
follows: 

Fleet Tracking System: The core of all of the 
system’s features is the ability to track a fleet of 
drivers concurrently using GPS and various web 
technologies. 

Big Data Metrics Aggregation: We needed a 
way of gaining metrics on a large data set of GPS 
points and so we built a scalable algorithm using a 
native MongoDB method which allows advertisers to 
gain metrics on-the-fly. 

Geographic Targeting: In speaking to 
advertisers they specified that gaining metrics of 
specified geographic areas is highly important. As a 
result of this we built a way for advertisers to draw 
areas on a geographic map and gain metrics in a 
negligible time. 

Heat Map Rendering Algorithm and Server: 
Having run into performance issues whilst rendering 
heat maps on the client-side using the Google Maps 
API, we realised that we would need to deploy a 
service that would take a set of GPS points and save 
rendered heat map tiles. We built and designed the 
algorithm that generates the ‘heat’ effect, renders the 
data visualisation as images and leverages Base 64 
encoding to save the images as strings in a database. 

GPS ‘Jitter’ Cleaning: We were unaware prior 
to the project of the amount of ‘jitter’ that average 
GPS devices produce - as a result we implemented a 
service that systematically cleans the GPS dataset. 
We leveraged the Google’s ‘Snap-to-Roads’ API, 
some simple business logic and linear interpolation to 
counteract the problem. 

GPS Data Storage Algorithm: The GPS solution 
we implemented meant that the system was receiving 
GPS points every 10 seconds from each tracker - we 
needed a way of reducing the quantity of points saved 
to the database without neglecting precision. We 
ended up with a simple algorithm that deciphered 
whether the car was on a trip or parked, and also 
counted for periods of time when it had no signal. 

1.3 Paper Organisation 

The rest of this paper is organized as follows. 
Background and related work in advertising are 

presented in Section 2 including a look into the 
technology platforms used in the implementation. 
Section 3 covers the implementation of the system 
and is split into 4 main sub-sections; firstly we discuss 
how we managed to reduce the overall dataset by 
producing a simple GPS grouping algorithm. 
Secondly we cover how we benchmarked and built an 
optimized algorithm for GPS metric aggregation. The 
following subsection covers how we implemented a 
system to render heatmaps using Node.js on the 
server. Finaly section 3.4 covers how we 
systematically clean the GPS data set of anomalies. 

2 BACKGROUND LITERATURE 
REVIEW 

2.1 Advertising 

2.1.1 Why do Advertisers Need to Track 
Their Advertisement’s Effectiveness? 

Kotler defines advertising as “any paid form of non-
personal presentation and promotion of ideas, goods 
and services through mass media such as newspapers, 
magazines, television or radio by an identified 
sponsor” (Kotler, 1984). Advertising involves 
targeting the appropriate message to the relevant end 
consumer. For example, an advertiser will place an 
advert for a computer in a computing magazine, 
rather than in a health and beauty publication. This 
process is simple enough in digital or print 
advertising, as the profile of the consumer is often 
known to the advertiser or advertising platform.  
However, in outdoor advertising, advertisers have 
little means of planning based on a demographic. This 
is why the scientific analysis lies in the tracking 
process and less in the planning process. “When the 
economic environment becomes difficult, marketers 
demand proof of advertising’s effectiveness, 
preferably in numerical form.” (Wright-Isak et al, 
1997). They wish to compare and contrast different 
formats to optimise a campaign, where a campaign 
might be a wide spread range of advertising instances, 
geographically and/or across different platforms or 
mediums. According to Wright-Isak “To understand 
effectiveness in a real-world context we need to have 
some systematic collection of the facts that tell us the 
probability that the intended audience saw the 
campaign, what intervening phenomena affected the 
campaign’s impact, and the net impact of those 
phenomena and the campaign on purchase behaviour. 
Combining this collection of facts with data about 
specific ad effects may help us understand the 
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performance of the campaigns, as well as contribute 
to theory development.” (Wright-Isak et al, 1997). 
Within the context of vehicular advertising, by 
knowing the neighbourhood in which an 
advertisement has spent the majority of its time or a 
road it’s traveled frequently, will allow the advertiser 
to better understand how the effectiveness of the 
campaign may have been supplemented by their fleet 
of drivers. 

2.1.2 How is an Advertisement’s 
Effectiveness Quantified? 

Bill Dean highlights that “understanding and 
quantifying the benefits of advertising is a problem as 
old as advertising itself. The problem stems from the 
many purposes advertising serves: building 
awareness of products, creating brand equity and 
generating sales. Each of these objectives is not easily 
measured or related to the advertising that may have 
affected it.” (Dean, 2006). It seems that directly 
quantifying an outdoor advert’s number of views or 
impressions is less of the problem, and more that 
gaining an understanding of the demographic that 
may have seen the branding. Thus a qualitative 
understanding is often perceived as more important 
than a quantitive understanding. In the context of our 
system, providing metrics and visual representations 
of the data not directly applied to the context of 
advertising and rather the context of the world, towns 
or neighbourhoods, i.e providing driving data 
visualised on a heat map rather than a prediction of 
total impressions. 

2.1.3 CPM – Advertising’s Benchmark 

Cost per mille (CPM) is the common metric used to 
benchmark advertising campaigns in a quantitive 
manner. It equates to the financial cost per thousand 
impressions of an advert, where an impression is a 
potential sighting of the advert. Impressions can often 
be confused with views, a good way of differentiating 
is in digital outdoor advertising where impressions 
can be tracked by using infra-red to determine the 
presence of a person and potential viewer. However 
eye-ball tracking can be used to determine whether or 
not that person has looked at the given advert (view). 
Without the use of infra-red, calculating impressions 
in outdoor advertising is an approximate projected 
calculation using a formula that has been developed 
by several outdoor advertising research bodies. 
Although outside the scope of this paper we will use 
the formula in Listing 1 for providing a planning tool 
for advertisers. 
 

1:dailyCirculation = 0.46 *averageAnnualDailyFlow  

2:  totalDailyCirculation = dailyCirculation * 
mediaSpace  
3: Impressions = totalDailyCirculation * 
campaignDays  

4: CPM = Price / (Impressions / 1000) 
 

Listing 1: Outdoor advertising media math (OAAA, 
2006) 

 

The formula broken down into its separate 
components is as follows: 

Average Annual Daily Flow (AADF) - AADF is the 
average amount of cars that travel down a road (or set 
of roads) each day. The government makes this data 
freely available via their website – we take the 
average for each city and town rather than down to 
road or street level. 

Constant (0.46) - This constant is an industry 
standard ‘illumination factor’. It is used to take into 
consideration whether or not the advertisement is 
illuminated (lit up, and so visible at night) and for 
how long, 0.46 represents advertisements that are un-
illuminated and thus assumed visible from 6am — 
6pm. 

Media Space - Media space is the quantity of 
advertisements within the campaign. The common 
unit of measurement is ‘sheets’, the most common 
sizing is a six sheet (1800 mm x 1200 mm). One 
car/taxi advertisement roughly equates to two six 
sheets. 

Campaign Days - This figure is simply the amount 
of days the campaign runs for. 

CPM (Cost Per Mille) - Cost (in currency) per 
thousand impressions. 

2.1.4 Route Research 

With tracking campaign effectiveness being a well 
established challenge in outdoor advertising; it has 
become an attractive area of research for large 
advertising corporations, notably a London based 
company called Route Research. Taken from their 
home page - ‘Route is an entirely independent 
research organisation, providing audience estimates 
to the out-of-home industry in Britain’ (Route 
Research, no date). They manage independency by 
selling their data to the few large outdoor advertising 
corporations for an annual fee. Each of the 
subscribers have independent implementations of the 
data, however all with the goal of allowing media 
planners to effectively calculate the potential 
performance of any given outdoor billboard site; as 
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opposed to track the effectiveness of their own 
existing campaigns. 

2.2 Technology  

2.2.1 System Technology 

We chose the MEAN stack for the implementation of 
the proposed system and in this section, we discuss 
the how it is mostly a perfect fit for handeling 
performance data-driven web services. The MEAN 
stack is heavily focused around JavaScript and well 
suited for data driven, responsive web applications. 
Node.js brings JavaScript to server-side applications 
and away from just being a client-side browser 
language. Due to JavaScript operating with non-
blocking I/O it results in generally faster applications 
that are easily scalable. MEAN is a relatively new 
stack but is the go-to platform for most modern web 
applications due to its seamlessly integrated layers, 
passing data in JSON format from one to the other. It 
keeps business logic and large computations to the 
back-end server-side code and the Model-view-
controller (MVC) architecture on the front-end. It 
comprises of the following layers: 

MongoDB - is a NoSQL database that stores its data 
in ‘collections’ of JSON formatted ‘documents’ as 
opposed to ‘tables’ of ‘rows’. This often means that 
the structure is in a more logical format and is less 
restrictive. 

Express - is a framework for Node.js with a wealth 
of Hypertext Transfer Protocol (HTTP) functionality 
making it perfect for building Representational State 
Transfer (REST)ful application program interface 
(API)s. It will be useful for processing requests from 
the front-end client, and data sent from the GPS 
tracking solution. 

AngularJS - is a front-end MVC framework, great 
for building powerful data driven Single Page 
Applications - ideal for our data dashboard. 

Node.js - is a platform that enables network 
applications to be built with JavaScript on Google’s 
V8 runtime engine. Node.js can be used for a variety 
of different purposes, from background processes, 
networking, all the way to building APIs. 

The MEAN stack has its weaknesses and so in the 
following section we cover where exactly the 
technology may strike performance issues. 

2.2.2 JavaScript 

There are a number of distinguishing points that make 
JavaScript a perfect fit. The features include non-

blocking IO, one single thread and its primary data 
structure is JSON; each of which we define within 
this section. 

2.2.3 MongoDB 

MongoDB is a noSQL (i.e. doesn’t use the common 
query language - SQL), schema-less database that 
stores its data in a binary representation of JavaScript 
Object Notation (JSON), known as BSON. This is 
great as it is the primary data structure used in 
JavaScript (i.e. Node.js and Angular.js), and so there 
is no need to parse any data as it’s returned from 
database queries; thus speeding up the development 
process and system performance. Being a document 
and schema-less based database, it is structurally a lot 
more flexible than table based databases such as 
MySql. ‘Documents’ are stored in ‘collections’, 
whereas in table based databases, ‘rows’ are stored in 
‘tables’. As a result of this each document in the 
database can take a different form than the next, 
meaning that the system can conditionally add or 
remove fields throughout its lifecycle. Each 
document can comprise of nested documents, 
meaning that there is no risk of ending up with a 
database with multiple tables to cater for one-to-one 
relationships. 

Shema-less databases do however have their 
drawbacks, if you are able to simply store any JSON 
document in a collection it may end up with zero 
coherence and as the database scales maintainability 
will become a larger challenge. For this reason we 
implement a Node.js middleware package called 
Mongoose. Mongoose provides a foundation and all 
the necessary tools for creating shema/models for 
collections. It is a layer between managing data on the 
server and the database. Every time a collection is 
queried the Mongoose middleware will construct 
objects with each of the database records using the 
matched Schema. MongoDB also comes with a range 
of useful query methods. Each query is made using a 
JSON object and completes without blocking - thanks 
to Node.js. MongoDB provides a powerful Geo 
Query API that allows searching GeoSpatial indexes 
relative to a given point or polygon. Queries can be 
formed, for example, to search for all coordinates 
within five kilometres of a given point, or to find all 
points within a given polygon.  

As a means of gathering data and querying based 
on a matching set of results, MongoDB provides its 
aggregation method. It allows you to query a 
collection and produce a report of metrics on the 
results of the query. As an example, if one wanted to 
calculate the average age of males in the user base 
stored   in   a  database,  an  aggregation query can  be 
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formed to: 
 

 Find all males. 
 Add all ages. 
 Increment query total. 
 Divide ageTotal by queryTotal. 

 

As queries are non-blocking, these potentially 
expensive calculations can be offloaded to the 
database without blocking the callstack and thus other 
requests to the RESTful service. Furthermore, the 
queries in MongoDB are made in its native driver by 
searching the binary representation, so the speed of 
filtering results will likely be dramatically improved. 
Due to the demanding computational task of 
gathering metrics of driver activity it seems that this 
might be a perfect solution, due to the fact it is non-
blocking and queries natively rather than in a 
blocking server side algorithm. 

3 IMPLEMENTATION 

3.1 GPS Data Grouping 

 

Figure 1: UML Activity diagram representing algorithm 
used to group inbound GPS data points. 

GPS data will be transmitted by each device every ten 
seconds and so would result in a maximum of 8,640 
data points per car per day. The collection would 
quickly grow to an excessive size and so the system 
will need to implement an algorithm to reduce the 
resultant data size. Arrays of coordinates are 
dispatched from the GPS gateway to the end point at 
the web app that stores them in the database. At this 
endpoint the controller will leverage the following 
algorithm, represented using a UML Activity 
Diagram: 

This logic results in incrementing a ‘weighting’ 
integer property to a given coordinate. For every ten 
seconds spent within the same area (using an arbitrary 
radius), the weighting is incremented and thus 
assumes it is parked in the same spot. As a result the 

total amount of documents in the collection will be 
roughly the same as total seconds driving divided by 
ten, as opposed to the total seconds in the day divided 
by ten. 

3.2 Implementing a Metrics 
Aggregation Algorithm 

Providing statistics on large data sets is an area of 
concern in which may have to fallback onto a 
background process and saved periodically to the 
database, as opposed to being produced on-the-fly by 
the client. However our initial thought is that there are 
three potential solutions for aggregating the required 
metrics. We will compare them by benchmarking 
against each other. The required outcomes to the 
algorithm are as follows: 

For each target/defined polygon/closed array of 
coordinates, including a target containing the entire 
UK: 

 

 Driving time 
o Return as a total 
o Return as a total per day 

 Total time parked 
o Return as a total 
o Return as a total per day 

 Driving distance 
 Average driving speed 

 

The above metrics will be aggregated from the 
following input data. 

For each coordinate (plotted at 10 second 
intervals): 

 Time 
 Speed 
 Coordinate 

3.2.1 Benchmarking 

In order to test the three solutions we gather a months 
worth of test data from a GPS tracker and repeat insert 
the collection 60 times, resulting in the equivalent of 
running a campaign of 20 cars for three months. We 
then repeat the process four times, and thus test with 
60 car months, 120 car months, 180 car months, 240 
car months and 300 car months. This will hopefully 
result in evidence for whether or not each solution 
could potentially scale beyond these numbers, for 
example, 1000 car months (100 cars for ten months). 
For each increase in ‘car months’ we run the test ten 
times and take an average. We run the tests from the 
AWS instance to cater for the performance difference 
between our machine/internet connection and the 
hosted application. 
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Solution One – Simple Server Side Algorithm. 
Perhaps the most simple solution, and a good starting 
point, is to run the algorithm on results returned from 
the database in one go on the main cloud instance. It 
is likely that this solution will have poor performance 
when taking into account that it will also block all 
other requests to the service, but will allow us to 
benchmark solutions two and three. It is also worth 
considering that this solution could be used in a 
background task so that the main API instance can 
remain unblocked and simply add this algorithm to an 
asynchronous task queue. 

Solution Two – Server Side Algorithm with 
Database Streaming. For this test we compare the 
difference in performance when streaming the data 
from the database and running the algorithm 
alongside the stream of results, rather than waiting to 
receive the data and only then running the algorithm. 
By running the algorithm in parallel to the streaming 
data, we hope for a dramatic performance increase. 

Solution Three – MongoDB Aggregation 
Method. The final solution will leverage 
MongoDB’s native aggregation method. This already 
has three major positives over solutions one and two; 
firstly that it remains asynchronous and won’t block 
any other requests made to the service, secondly that 
it runs the algorithm on the binary representation of 
JSON, and thus geo spatial queries will be much 
faster. Finally that the amount of code required is 
much less, at the same time as being much more 
readable/maintainable. 

Results. Below are the results of the test, 
interestingly streaming the data from the database had 
by far the worst performance with roughly 20x the 
time of solution three - the aggregation method. It is 
also useful to know that each of the methods increase 
in time taken linearly, so we can expect around eight 
seconds for 1,000,000 points, which would roughly 
equate to 480 car months or for example 40 cars on a 
single campaign for one year. 

Table 1: Results of three data aggregation methods. 

TOTAL 

POINTS/

COORDI

NATES 

CAR 

MONTHS 

ONE 

(TIME IN 

MILLISE

CONDS) 

TWO 

(TIME IN 

MILLISE

CONDS) 

THREE 

(TIME IN 

MILLISE

CONDS) 

0 0 0 0 0 
125,872 60 3,425.8 21,701.9 919.9 
251,744 120 6,817.8 44,468.5 2,036.7 
377,616 180 11,232.7 67,446.8 3,233.9 
503,488 240 14,480 89,690.4 4,072 
629,360 300 17,560.3 106,418.2 5,299.1 

 

3.3 Heat Map Rendering and Big Data 
Visualisation 

Google Maps provide an easy to use API for 
rendering heat map overlays to their maps for 
representing datasets, however having scaled the 
dataset size and run some tests we realised that the 
total time to return the dataset and render on the map 
was unfeasible at the scale in which the system will 
produce. Having run the system for four weeks on one 
car the app saved 8,782 data points and thus for 
example would produce 439,100 points for 50 cars 
per month. The following graph shows the results of 
our test, we measured both the time taken to return 
from the API and the time to render. 

 

 

Figure 2: Graph showing time taken to return and render the 
heat map on the client side. 

The results show that it is unfeasible to scale the 
process of rendering a heat map on the client side. 

One way around this could be to aggregate the 
heat points and group coordinates if they are within a 
small distance of each other, and add weighting 
accordingly. The problem with this method however 
is that the layer would be more ‘blotchy’ when 
zoomed in than normal. Furthermore the results to the 
tests show that the major lag in performance is in 
returning the results from the server to the client and 
so to increase the overall performance a solution is to 
render the heat map on the server and return only the 
heat map images. Tiles can be rendered on a 
scheduled process and the images can be saved in the 
database. We predict two main reasons why this is a 
preferable solution: 

 Since the data being returned from the 
database is standardised and uniform, the 
speed in which the tiles are returned is not 
increased with the amount of data points in 
the database. The background process 
performance will decrease, likely at the 
same rate as when rendering client side, 
however since they will be rendered on a 
background process in a separate 
environment, the task won’t block any web 
requests to the main web application. 
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 Using this solution there is no other 
need for exposing an end point for the API 
that returns driving data, so security is 
dramatically improved. Although the API 
uses authorisation it is important that the 
data is as secure as possible and only 
managed and analysed within the trusted 
network. The worst that could happen is that 
an intruder gets hold of the heat map images, 
although they would still need to somehow 
get past the API’s authorisation. 

3.3.1 Map Tiling and Projections 

Mapping the world for use on the web follows three 
standards; projecting the spherical surface to whats 
know as a Mercator projection, splitting the resultant 
flat representation of the world into square ‘tiles’ of 
dimensions 256px by 256px and finally creating 
different tiles for each level of zoom. Since each of 
the tiles will be mapped onto a Google Map (which 
uses Mercator projection) we can build tiles as if they 
are segments of a spherical map. Each tile will have 
bounding box coordinates so that we can use the 
Google Maps Overlay API to accurately map the 
generated tiles onto the projection. 

3.3.2 Rendering Images with Node.Js and 
WebGL 

Although Node.js is perhaps not the go-to language 
for server side image manipulation and rendering, for 
example most would use a language like Java or 
Python. There have been some useful open sourced 
projects that have resulted in a suitable and 
competitive solution for generating images. The two 
dependancies that the system will rely on are Cairo 
and Node Canvas. Node Canvas is an implementation 
of the HTML5 Canvas element for the server side 
which enables access to webGL - a 3D rendering API 
for the web. Furthermore, not only does it meet the 
standards for image manipulation found in languages 
such as Java and Python but it is well documented and 
easy to use as it provides the exact same interface as 
when rendering images on the client side with the 
Canvas element. Each of the tiles will use this 
package to render the PNG images and encode as a 
base 64 string to be saved in the database along with 
meta data including bounding coordinates, zoom 
level and heat map identifier. 

3.3.3 High Level Tiling Algorithm 

At the most abstract level, the process with follow 
theses steps for each campaign to build its heat map: 

 Get all data points for the campaign from the 
database. 

 For each zoom level produce a tile grid to 
cover the array of point’s Minimum 
Bounding Box. The closer the zoom the 
smaller the representation of the tile, i.e. 
there will be more tiles the closer the zoom. 

 For each point and for each heat map/zoom 
level find which tile the point falls in. 

o In order to optimise this, for each 
point, the algorithm checks with 
the tile in which the previous point 
fell within as well as the one just 
after and before it, due to the points 
being in order and will most likely 
fall close to one and other. Thus 
saving the algorithm from 
searching each tile (on the nearest 
zoom level that makes up 125,824 
tiles) for each point, and more often 
than not just searching 3 tiles for 
each point. 

 For each point represented in a tile; find its 
relative pixel position. 

o Get distance in meters between 
south west coordinate of tile’s 
bounding box and the given data 
point. 

o Get angle of given data point from 
bounding box’s south west 
coordinate. 

o Use angle and distance to calculate 
percentage of tile north and east 
using Pythagorus’ theorem. 

o Use percentage north and south to 
get pixel x and y position by getting 
percentages of 256 (width and 
height of tile in pixels). 

 Render white radial gradient on tile, at the 
radius of the preset zoom levels radius 
constant. 

 For each tile loop through each pixel 
o If the opacity is greater than the 

threshold constant. 
 Convert the opacity level 

to a hue/colour level on an 
‘hsl’ (hue, saturation and 
lightness) colour wheel. 0 
or 360 is red, 120 is green 
and 240 is blue, and thus 
mapping an opacity level 
from an RGBA colour 
wheel (‘A’ represents 
alpha/opacity) as created 
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by the canvas pixels. 
o Encode the PNG image as a base 64 

string and save in the database 
along with meta data. 

These three images show how a single tile will 
evolve through the algorithm. The reason why the 
‘heat’ is applied in white to begin with is so that 
intensity is built up where lots of data points fall in 
the same place. Each white point has a 50% opacity 
from the middle and so as they overlap, the level of 
opacity will increase, until it is completely white, and 
the whiter the more intense the red colour. 

 

Figure 3: Example of the condition of an individual heat 
map tile at each stage of the algorithm. 

Haversine Formula 
An integral part of the algorithm is to be able to 
calculate the distance and angle between two points; 
for both of these calculations the system will 
implement the Haversine formula (Bell et al, 2011). 
The following is used to find the distance between 
two points on a sphere. 

 

(1)
 

The algorithm and process result in a solution that 
matches the visual appearance of producing the heat 
map using the Google API, as seen below. Although 
the process is cumbersome, it has plenty of room to 
scale as it has no effect on the end user’s experience 
and the size of the image in bytes is not dramatically 
increased by the quantity of data points. The 
following show the resultant heat map at 6 different 
zoom levels. 

 

Figure 4: Visual results of test data plotted using the server-
side heat map algorithm at 6 zoom levels. 

Having met the visual requirements we will run a test 
on its performance, we expect that the greatest factor 
in reducing the performance is the quantity of tiles. 

Thus if the drivers travel all over the country there 
will likely be a decrease in performance due the the 
fact there is more tiles/images. In order to benchmark 
against the Google maps solution we simply increase 
the amount of data points and calculate the time taken 
to retrieve and overlay the images onto the map. As a 
means of optimising this solution we only load the 
tiles required for the map bounds and the mmediate 
surrounding area, and use Google Map’s ‘drag’ and 
‘zoom’ event for loading in the new map tiles as the 
map is zoomed and dragged. Below are the results of 
the test, each of the tests were run at zoom level 11 
(half way). 

 

Figure 5: Graph showing the time in seconds to return the 
heat map tiles from the server and overlay on a map. 

The results show that there is no correlation between 
the total data points and the time to render the heat 
map and thus proving this is the best solution of the 
two, given the quantity of the data. It is also worth 
noting that the time taken to render the heat map on 
the server for all of the 22 zoom levels, save to the 
database and delete the previous map is on average 
around one minute, which for the test data results in 
around 400 base 64 encoded 256px by 256px images. 

3.4 GPS Data Cleaning 

GPS ‘jitter’ is a very common problem with GPS 
trackers, it is where the data that is produced by the 
tracker contains anomalies and slight deviations from 
where the actual device has traveled. Stated in a paper 
written by R. Zito et al. “Field data collection under 
“ideal” GPS conditions indicated that accurate speed 
and position data were readily obtained from the GPS. 
Under less favourable conditions (e.g. in downtown 
networks), data accuracy decreased but useful 
information could still be obtained” (Zito et al, 1995). 
Having tested the off-the-shelf OBD GPS devices and 
mapped all the coordinates onto a map we noticed that 
the device produced a number of anomalies both 
extreme and small. The larger anomalies will need to 
be removed completely from the visualised data, 
however the smaller anomalies need to be refined. 
Below are examples of both large and small 
anomalies. 
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Extreme anomalies 
You can see here that 
the GPS has had jitter 
causing GPS points to 
be displayed as far as 

the Netherlands, whilst 
the Car has traveled 

only as far east as West 
London. 

Small anomalies 
Shown here is a small 
amount of deviation 
from the road going 

from top to bottom of 
the image. Points are 
grouped around the 

road and when zoomed 
out, these 

imperfections are not 
noticeable. 

Figure 6: Two classification of GPS ‘jitter’. 

The proposed system will need to implement an 
algorithm to clean these two classes of anomalies. 

The main purpose of the heat map data is to 
represent an overall impression of where the fleet of 
cars has traveled and spent more of its time. Therefore 
maintaining accuracy as to exactly where individual 
cars have been remains a secondary requirement and 
rather displaying a well presented dataset that gives 
the advertiser an understanding of where their advert 
has spent most of it’s time is a key requirement. 

The algorithm comprises the following three 
steps: 

 Snap groups of points to their nearest road 
using Google’s ‘snap-to-road’ API. 

 Loop all snapped points: 
o If the distance between the current 

and next is small or large (example: 
less than 10 meters or greater than 
200) – simply add the point to the 
resultant dataset. 

o If it does not meet the above criteria 
linearly interpolate the points at an 
interval dictated by the calculated 
travelining speed. 

The algorithm comprises of three arbitrary values 
that have come as a result of tweaking the algorithm 
to best represent the given data set. Notably it says 
that if the distance between the current point in the 
loop and the next is in between ten and 200 meters 
then interpolate at three meter intervals linearly. The 
hope is that by using the Google Roads API the larger 
anomalies will naturally be removed as it will see that 
there is no justifiable way that the journey could jump 
from a ‘clean’ point to an anomaly. 

Linear interpolation can be achived by running the 
following: 
 

newLatitude = startPoint.latitude * (1 - 
distance) + destinationPoint.latitude * 
distance; 
newLongitude = startPoint.longitude * (1 
- distance) + destinationPoint.longitude 
* distance; 
 

Listing 3: Linear interpolation logic. 

3.4.1 Results 

 

Figure 7: Results at each stage of the cleaning algorithm. 

The results to the algorithm are very positive and as a 
result produce a dramatically improved 
representation of the data set. The first image shows 
the raw data, the second is after the points have been 
returned from Google’s snap-to-road API and the 
third is after the points have been conditionally 
interpolated. 

3.5 Implementation Summary 

Within this section we’ve discussed the main 
challenges faced and overcome in the build phase of 
the system. We overcame an array performance based 
challenges and have ended with a system that meets 
the set out requirements of this project. 

It is clear that introducing GPS based systems 
incur, in general, a vast amount of boundaries to 
building a system such as this. Most of these 
challenges however were most definitely not clear 
from the outset.  

4 CONCLUSIONS 

In this paper, we investigated how modern web 
technologies can be leveraged to assist in producing 
high performance big data analysis systems. Along 
with this establishing a foundation to what will be an 
ever growing area of research as outdoor advertising 
seeks to persist a firm foothold in the advertising 
industry. We have designed and implemented a 
system that provides a means analysing the potential 
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effectiveness of an outdoor vehicular advertising 
campaign.  

The system produces the expected and required 
results in a scalable way. Initially we expected that 
the data aggregation would be able to run from 
Node’s single thread however it was not feasible with 
the quantity of data that was needed to be processed. 
Thus we implemented MongoDB’s native 
aggregation method and increased performance by 
300% meaning that the application can be scaled and 
return the metrics on-the-fly for the campaign. It’s 
clear that if data is structured well – MongoDB 
provides the fundamental building blocks to building 
big-data analytics systems. 

On a similar theme, visualising the required 
quantity of data was not completed in a reasonable 
time if processed on the client side and thus we moved 
the processed to a scheduled worker that renders map 
tiles and saves to the database. Each of the tiles are 
then efficiently loaded into the client, based on the 
current map zoom level and bounds. The major 
benefit of this solution is that the performance on the 
client side is not effected by an increase in GPS data 
points.  
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