An Appropriate Method Ranking Approach for Localizing Bugs using
Minimized Search Space

Shanto Rahman and Kazi Sakib
Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Keywords:

Abstract:

Bug Localization, Search Space Minimization, Information Retrieval, Static and Dynamic Analysis.

In automatic software bug localization, source code analysis is usually used to localize the buggy code with-

out manual intervention. However, due to considering irrelevant source code, localization accuracy may get
biased. In this paper, a Method level Bug localization using Minimized search space (MBuM) is proposed for
improving the accuracy, which considers only the liable source code for generating a bug. The relevant search
space for a bug is extracted using the execution trace of the source code. By processing these relevant source
code and the bug report, code and bug corpora are generated. Afterwards, MBuM ranks the source code meth-
ods based on the textual similarity between the bug and code corpora. To do so, modified Vector Space Model
(mVSM) is used which incorporates the size of a method with Vector Space Model. Rigorous experimental
analysis using different case studies are conducted on two large scale open source projects namely Eclipse and
Mozilla. Experiments show that MBuM outperforms existing bug localization techniques.

1 INTRODUCTION

In automatic software bug localization, developers
provide bug reports and buggy projects to an auto-
mated tool, which identifies and ranks a list of buggy
locations from the source code. After getting the list
of buggy locations, developers traverse the list from
the beginning until they find the actual one. Hence,
the accurate ranking of buggy locations is needed to
reduce the searching time for localizing bugs.
Automatic bug localization is commonly per-
formed using static, dynamic or both analysis of the
source code (Zhou et al., 2012), (Saha et al., 2013). In
static analysis, buggy locations are identified by fol-
lowing probabilistic approach which may produce bi-
ased results when unnecessary information i.e., whole
source code is considered for a bug. Dynamic analy-
sis based techniques analyze the execution trace of the
source code with suitable test suite to identify the ex-
ecuted method (Eisenbarth et al., 2003), (Poshyvanyk
et al., 2007). Although dynamic analysis provides ex-
ecuted methods call sequence, it cannot extract the
method contents which is necessary for Information
Retrieval (IR) based bug localization techniques.
Although a large number of literature addresses
software bug localization with bug report, to the best
of the authors knowledge those do not specifically fo-
cus on the minimization of search space. Lukins et
al. (Lukins et al., 2008) propose a Latent Dirichlet

Rahman, S. and Sakib, K.

An Appropriate Method Ranking Approach for Localizing Bugs using Minimized Search Space.

Allocation (LDA) approach, while Ngyuen et al. cus-
tomizes LDA by proposing BugScout (Nguyen et al.,
2011). Zhou et al. (Zhou et al., 2012) propose
BugLocator where VSM is modified by proposing tf-
idf formulation. An extended version of BugLocator
is proposed by assigning special weights on structural
information (e.g., classes, methods, variables names,
comments) of the source code (Saha et al., 2013).
PROMISER combines both static and dynamic anal-
ysis of the source code (Poshyvanyk et al., 2007).
Since most of the techniques suggest classes as buggy,
developers need to manually investigate the whole
source code class to determine more granular buggy
locations (e.g., methods). Besides, all the aforemen-
tioned techniques consider the whole source code dur-
ing static analysis, though some techniques incorpo-
rate dynamic analysis. As a result, localization accu-
racy may be biased by unnecessary information.

This paper proposes an automatic software bug lo-
calization technique namely MBuM where buggy lo-
cations are identified by eliminating irrelevant search
space. MBuM identifies a relevant information do-
main by tracing the execution of the source code for a
bug. As dynamic analysis provides a list of executed
methods names, static analysis is performed to extract
the contents of those methods. Several pre-processing
techniques are applied on these relevant source code
along with the bug report to produce code and bug
corpora. During the creation of bug corpora, stop

303

In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 303-309

ISBN: 978-989-758-189-2

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

words removal, multiword splitting, semantic mean-
ing extraction and stemming are applied on the bug re-
port. In addition to these, programming language spe-
cific keywords removal is applied for generating code
corpora. Finally, to rank the buggy methods, simi-
larity scores are measured between the code corpora
of the methods and bug corpora by applying mVSM.
mVSM modifies existing VSM where larger methods
get more priority to be buggy.

In experiments, three case studies are performed
where Eclipse and Mozilla are used as the subject.
Results are compared with four existing bug local-
ization techniques namely PROMISER, BugLocator,
LDA and LSI. In Eclipse, MBuM ranks the buggy
method at the first position in three (60%) among five
bugs, while other techniques rank no more than one
(20%) bug at the top. Similarly in Mozilla, LDA,
LSI and BugLocator rank no bug at the top position
whereas MBuM ranks three (60%) and PROMISER
ranks two (40%) bugs at the first position. Above re-
sults show that, MBuM performs better than other ex-
isting state-of-the-art bug localization techniques.

2 LITERATURE REVIEW

This section focuses on recent researches which were
conducted to increase the accuracy of bug localiza-
tion (Kim et al., 2013; Zhou et al., 2012; Rahman
et al., 2015). The following discussions first hold
static analysis and later describe the dynamic analy-
sis based bug localization approaches.

Lukins et al. proposed a LDA based static bug lo-
calization technique where word-topic modeling and
topic-document distribution were prepared (Lukins
et al., 2008). Similarity score was measured between
each word of the bug report and topics of the LDA
model. By considering previous bugs information,
another bug localization technique was proposed in
(Nichols, 2010) where method documents were gen-
erated which contained the concepts of each method.
Latent Semantic Indexing (LSI) was applied on the
method documents to identify the relationships be-
tween the bug report and concepts of the method doc-
uments. This approach may fail due to depending on
the predefined dictionary words and inadequate previ-
ous bugs. Besides, results may be biased, as the whole
source code is considered.

BugLocator measured similarity between bug re-
port and source code where previous bug reports were
considered to give previously fixed classes more pri-
ority than others (Zhou et al., 2012). As this technique
did not consider semantic meanings, exact matching
between source code and bug report may not provide

304

accurate results. An improved version of Bugloca-
tor was proposed in (Saha et al., 2013) where spe-
cial weights were assigned in structural information
(e.g., class, method, variable names and comments).
Due to including programming language keywords,
the accuracy may be degraded. For example, if a
bug report contains “In dashboard, public data cannot
be viewed” and a source code class contains a large
number of occurrences of public as programming lan-
guage keyword. Besides, all these approaches suggest
a list of class level buggy locations where developers
need to manually find buggy location in more granu-
lar level (e.g., methods).

Poshyvanyk et al. proposed a method level bug
localization technique where both static and dynamic
analysis were combined (Poshyvanyk et al., 2007).
Initially two analysis techniques produced similar-
ity scores differently without interacting with each
other and finally calculated a ranking score using the
weighted sum of those scores. Although this tech-
nique used dynamic information of the source code,
it cannot minimize the solution search space rather
the whole source code was considered during static
analysis. This may increase the biasness, as a conse-
quence the accuracy of bug localization deteriorates.

From the above discussions, it appears that ex-
isting bug localization techniques follow static, dy-
namic or both analysis of the source code. Among
those, most of the approaches suggest a list of buggy
classes which demand manual investigation into the
class file to find more granular buggy locations such
as methods. Moreover, none of the IR based bug lo-
calization techniques eliminate irrelevant information
rather consider whole source code information which
degrades the bug localization accuracy.

3 PROPOSED SOLUTION

In this section, Method level Bug localization using
Minimized search space (MBuM) is proposed which
increases the ranking accuracy by considering only
the relevant source code for a bug. Thus false positive
rate is minimized. MBuM also ensures that the actual
buggy methods must reside within the extracted rele-
vant domain. The overall process of MBuM is briefly
discussed as follows.

At the beginning, source code dynamic analysis
is performed to minimize the solution space which
provides only the relevant methods for generating a
bug. Afterwards, static analysis is used to retrieve the
contents of those relevant methods. These valid and
relevant information of the source code is further pro-
cessed to create code corpora. Similarly, bug report is

An Appropriate Method Ranking Approach for Localizing Bugs using Minimized Search Space

[Code Corpora Creation 11 Bug Corpora |
|

' |

‘ Static analysis ‘ ‘Dyuamic analysis | : |
. |

! |

! |

! |

Minimized search space
Text processing

[}
I
I
|
I
I
I
I
I
I
I
i
|
I
I
I
I
I
[}
I
I
I
I

Retrieval and
Ranking

Programming language
specific keywords removal

[[splitting]
Semantic meaning
extraction
[Stemmine ||

Figure 1: Functional block diagram of MBuM.

processed to produce bug corpora. Finally, similarity
between the bug and code corpora is measured using
mVSM to rank the source code methods. The over-
all process of MBuM is divided into four steps and
those are Code Corpora Creation, Indexing, Bug Cor-
pora Creation, Retrieval and Ranking where each step
follows a series of tasks as shown in Figure 1.

3.1 Code Corpora Creation

Code corpora are the collection of source code words
which are used to measure the similarity with bug
corpora (Nichols, 2010), (Wang and Lo, 2014). So,
the more accurate the code corpora generation is, the
more accurate matching can be obtained which in-
creases the accuracy of bug localization. For generat-
ing valid code corpora, dynamic analysis is performed
followed by static analysis. In dynamic analysis, ex-
ecution traces are recorded by reproducing the bug
using buggy scenario. From this trace, method call
graph is generated which does not contain the method
contents. The contents of the source code methods
are retrieved by parsing the source code using static
analysis. This is done by traversing the Abstract Syn-
tax Tree (AST) to extract different program structures
such as package, class, method and variable names.
This static analysis is conducive to dynamic analysis
because it provides the contents of dynamically traced
methods, results in minimized search space.

Contents of the minimized search space are pro-
cessed to generate relevant code corpora as shown in
Figure 1. This is needed because source code may
contain lots of unnecessary keywords such as pro-
gramming language specific keywords (e.g., public,
static, string), stop words (e.g., am, is). These key-
words do not provide any bug related information and
so these are discarded from the source code corpora.

Within source code, one word may consist of mul-
tiple words such as ‘beginHeader’ consists of ‘begin’

and ‘Header’ terms. Therefore, multiword identifiers
are also used for separating these two words. More-
over, statements are splitted based on some syntax
specific separators such as ‘., ‘=", (",)", ‘{’, ‘}’, </,
etc. Semantic meanings of each word are extracted
using WordNet ! because one word may have multiple
synonyms. To describe a single case, the word choice
of developers and QA may be different, though the se-
mantic meanings of developers and QA described sce-
nario is same. For example, ‘close’ word has multiple
synonyms such as ‘terminate’, ‘stop’, etc. To describe
a scenario if a developer uses ‘close’ but QA uses ‘ter-
minate’, the system cannot identify these words with-
out using semantic meanings of the words. Hence,
semantic meaning extraction plays vital role in accu-
rate ranking of buggy methods.

The last step for generating code corpora is Porter
Stemming (Frakes, 1992) which transforms the words
to the original form so that ‘searching’, ‘searched’ and
‘search’ are identified as the same word. After com-
pleting these, source code corpora are produced.

3.2 Indexing

In this step, the generated code corpora are indexed
where packages, classes, methods and method con-
tents are stored according to the structural hierarchy
of the program. Each method contains multiple words
and those are stored sequentially. For this purpose,
LSI is used (Deerwester et al., 1990).

3.3 Bug Corpora Creation

A software bug report contains bug title and descrip-
tion which provide important information about a
bug. However, these information may also contain
stop words and words may be in present, past or fu-
ture tense. So, bug report needs to be pre-processed to
remove these noisy information. At the beginning of
bug corpora generation, stop words are removed from
the bug report. Porter stemming is applied (as used
for code corpora generation) and valid bug corpora
are generated which provide only the relevant words.

3.4 Retrieval and Ranking of Buggy
Methods

In this phase, the probable buggy methods are ranked
by applying mVSM on the code and bug corpora.
We use mVSM where Vector Space Model (VSM) is
modified by giving emphasis on large sized methods.

LA large lexical database of English, for details - https:/
wordnet.princeton.edu/

305

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

Table 1: The ranking of buggy methods using different bug localization techniques in Eclipse.

#Bug | BugLocator | PROMISER | LSI | LDA | MBuM Methods

5138 7 2 7 2 1 JavaStringDoubleClickSelector.doubleClicked
31779 4 1 2 2 1 UnifiedTree.addChildrenFromFileSystem
74149 12 5 8 1 1 QueryBuilder.tokenizeUserQuery

83307 6 5 13 7 2 WorkingSet.restore WorkingSet

91047 4 6 9 5 3 AboutDialog.buttonPressed

In VSM, ranking scores are measured between
each query (bug corpora) and methods as the cosine
similarity, according to Equation 1.

= —

_ VXV (l)

Similari = cos =
imilarity(q,m) = cos(q,m) AT

Here, 17; and \7>m are the term vectors for the query (q)
and method (m) respectively. mVSM uses the loga-
rithm of term frequency. imf is also used to give more
importance on rare terms in the methods. #f and imf
are calculated using Equation 2 and 3 respectively.

tf (t.m) = 1+ 1ogfm o))

imf = log(
Here, f;,, is the number of occurrences of a term (¢)
in a method m, #methods refers to the total number of
methods in the minimized search space, and 7, refers
to the total number of methods containing the term t.
The VSM score is calculated using Equation 4.

#method.
mertlto S) (3)

cos(gq,m) = Zfeqﬂm(l ‘Hngrq) X (1 41ogfym) x imf2
X 1 X 1
VEieq(1H10gfig) ximf2 = /Y e (1-H10g fom) x imf?
“)
MBuM also considers method length because previ-
ous studies showed that larger files are more likely
to contain bugs due to having many information of a
software (Zhou et al., 2012). The impact of method
length is provided by Equation 5.

w(terms) = 1 _exprorm(#terms) (5)
Here, #terms is the number of terms in a method and

Norm(#terms) is the normalized value of #terms. The
normalized value of a is calculated using Equation 6.

Norm(a) = —4=min_ (6)

Amax —Amin

Where, a,,,; and a,,;, are the maximum and minimum
value of a. Now the weight of each method, w(zrerms)
is multiplied with the cosine similarity score to calcu-
late mVSM score which is shown in Equation 7.

mVSM(q,m) = w(terms) X cos(q,m) (7

After measuring mVSM score of each method, a list
of buggy methods is ranked according to the descend-
ing order of scores. The method with maximum score
is suggested at the top of the ranking list.

306

4 CASE STUDY

In this section, a comparative analysis between
MBuM and existing bug localization techniques such
as PROMISER, LDA, LSI and BuglLocator has been
performed by conducting several case studies. Most
of the case studies are similar to PROMISER (Poshy-
vanyk et al., 2007) and LDA (Lukins et al., 2008). El-
ements of the case studies followed by experimental
details, are described in the following subsections.

4.1 Objectives of the Case Studies

Since MBuM performs method level bug localiza-
tion, methods are chosen as the level of granularity
in all the case studies. Documented bugs with cor-
responding published patches are considered, where
each patch specifies the methods which are actually
changed to fix a bug. The considered bugs are well-
acquainted and reproducible which meet the follow-
ing criterion.

* The bug reports do not contain method and class
names directly to prevent the bias.

* The bugs have large similarity with multiple sce-
narios. For example, Bug #74149 states ‘search
from help in Eclipse’ and there are several pack-
ages of the source code related to ‘search’.

* The bugs are chosen with published patches.

4.2 Elements of the Case Studies

Two large scale open source projects named as
Eclipse and Mozilla are used as the subjects of case
studies. Eclipse is a widely used Integrated Develop-
ment Environment (IDE). For the experimental pur-
pose, version 2.1.0, 2.1.3, 3.0.1, 3.0.2, and 3.1.1 are
used, and the volume of each version is too large.
For example, version 2.1.3 contains 7,648 classes
with 89,341 methods. Another subject Mozilla is
a web browser, which is also used for the experi-
ments. Mozilla version 1.5.1, 1.6 (a) and 1.6 are con-
sidered, each of which has a large volume of code.
For instance, version 1.5.1 contains 4,853 classes and
53,617 methods (Poshyvanyk et al., 2007).

An Appropriate Method Ranking Approach for Localizing Bugs using Minimized Search Space

Table 2: The ranking of buggy methods using different bug localization techniques in Mozilla.

#Bug BugLocator | PROMISER | LSI | LDA | MBuM Methods

182192 4 2 37 3 1 nsAbAddressCollecter::CollectAddress
216154 7 6 56 4 2 nsMailboxService::NewURI

225243 5 6 24 9 2 nsPostScriptObj::begin_page

209430 6 1 49 9 1 nsPlaintextEditor:DeleteSelection
231474 3 1 18 4 1 Root::MimeObject_parse_begin

—=— BugLocator —¥— PROMISER
60 —+— LSI—»— LDA —s— MBuM

Pra—

9 74149 83307 91047 182192 216154 225243 200430 231474
Bug Id 1

(b) Mozilla
Figure 2: Ranking provided by different methods.

s138 3177

(a) Eclipse

The actual buggy methods which are identified
from the published patches for Eclipse and Mozilla
are presented in (Rahman, 2016). In case of more
than one published patches for a bug, the union of
the most recent and earlier patches are considered. A
brief overview of each bug title, description and the
generated queries are provided in (Rahman, 2016).

4.3 Case 1: Searching from Help in
Eclipse

The goal of this case study is to show the effectiveness
of the minimized search space for a specific bug. Bug
report #74149 titled as, “the search words after * ” ’
will be ignored”, tells about searching from ‘Help’ in
Eclipse. In this case, MBuM executes the following
scenario to retrieve the relevant methods.

* Expand the ‘Help’ menu from Eclipse and click
on the search option.

 Enter a query within the search field.

* Finally, click on ‘Go’ button or press enter.

Although Eclipse contains a large number of
classes and methods, MBuM finds only 20 classes and
100 methods as relevant to this bug. If a query con-
tains lots of ambiguous keywords, in this case MBuM
may suggest the buggy method at most 100tk posi-
tion, while all other existing bug localization tech-
niques suggest buggy method at the 53,617¢th posi-
tion.

A query is prepared using the bug descrip-
tion which contains ‘search query quot token’.
After applying query, MBuM suggests the ac-
tual buggy method ‘org.eclipse.help.internal.
search.QueryBuilder.tokenize.UserQuery’ at the
1*" position of ranking. Same query is applied on
PROMISER, LSI and BuglLocator to find the buggy

location. PROMISER and LSI rank the actual buggy
method at the 5¢th and 8¢k position respectively. So,
comparing with PROMISER and LSI, the effective-
ness of MBuM is 5 and 8 times better respectively.
On the other hand, Buglocator suggests buggy class
at 12th position which shows that MBuM performs
m times better, where m represents total number
of methods in the suggested first 12 buggy classes.
LDA creates a different query as ‘query quoted
token’ which discards the ‘search’ term from the
query due to obtaining ‘search’ term in multiple
packages (Lukins et al., 2008). That is the reason
for suggesting the buggy method at the 1*" position.
Hence, it can be concluded that dynamic execution
trace followed by static analysis of the source code
improves the ranking of the buggy method.

4.4 Case 2: Bug Localization in Eclipse

This study considers five different bugs in Eclipse,
and the details of these bugs are available in (Rah-
man, 2016). Table 1 presents the ranking of the first
relevant method using MBuM as well as PROMISER,
LDA, LSI and BuglLocator. It is noteworthy, BuglLo-
cator suggests classes instead of methods.

The results show that MBuM ranks the actual
buggy methods at the 1% position for three (60%)
among five bugs. Table 1 and Figure 2 (a) show
that for bugs #5138, #83307 and #91047, MBuM per-
forms better than four other techniques. MBuM ranks
equal with PROMISER for bug #31779 but ranks bet-
ter than other techniques. In case of bug #74149, al-
though LDA ranks equal as MBuM, LDA discards the
‘search’ term. Therefore, it can be concluded that
due to performing proper pre-processing for gener-
ating valid code corpora, and applying mVSM, the
accuracy of ranking buggy methods is improved.

4.5 Case 3: Bug Localization in Mozilla

For this case study, five widely used bugs are also
taken from Mozilla bug repository, which are de-
scribed in (Rahman, 2016). Similar queries are ex-
ecuted by all the techniques and the results demon-
strate that MBuM provides better ranking over Bu-
glocator, LDA, PROMISER and LSI techniques.

307

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

Table 2 and Figure 2 (b) show that three (60%)
out of five bugs are located at the 1*" position and an-
other two are ranked at the 2" position by MBuM.
Among other techniques, only PROMISER suggests
two (40%) of the five bugs at the 1% position and other
three techniques rank no bug at the 1% position (see
Table 2). Although for bugs #209430 and #231474,
PROMISER provides the same ranking as MBuM,
it produces noticeably poor ranking in other three
bugs as shown in Figure 2 (b). In case of #182192,
#216154 and #225243, MBuM ranks the actual buggy
methods more accurately than other four techniques.
This comparative analysis of results also shows the
significant improvement of ranking by MBuM.

S THREAT TO VALIDITY

Although MBuM performs better than the existing
bug localization techniques, still the improvement of
accuracy may be affected by the following reasons.
If the bug report does not contain proper repro-
ducible scenario, it is sometimes difficult to find the
accurate execution trace of the source code. However,
without reproducing a bug, even a developer cannot
manually fix the bug. Besides, if a developer does not
follow proper naming conventions, the performance
of MBuM may be affected. In practice, develop-
ers follow good naming conventions in most of the
projects. Moreover, bug report containing inadequate
information may affect the performance of MBuM,
though it may mislead in manual bug localization.

6 CONCLUSION

This position paper proposes a software bug local-
ization technique named as MBuM where relevant
search space is produced by discarding irrelevant
source code. For this purpose, source code execu-
tion trace is considered. Since bug localization from
bug report is an information retrieval based technique,
static analysis is applied on the relevant source code
and bug reports to create code and bug corpora. Fi-
nally, mVSM is applied on those corpora to rank
the source code methods. For the purpose of ex-
perimentation, case studies are conducted using two
large scale open source projects such as Eclipse and
Mozilla. These experiments show that MBuM ranks
buggy methods at the 1% position in most of the cases.

In this research, although fine grained ranking
(e.g., method) is performed, statement level bug lo-
calization can be addressed in future. In addition,

308

MBuM may be applied in industrial projects to assess
its effectiveness in practice.

ACKNOWLEDGMENT

This research is supported by the fellow-
ship from ICT Division, Bangladesh. No -
56.00.0000.028.33.028.15-214 Date 24-06-2015.

REFERENCES

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas,
G. W,, and Harshman, R. A. (1990). Indexing by latent
semantic analysis. JAsls, 41(6):391-407.

Eisenbarth, T., Koschke, R., and Simon, D. (2003). Lo-
cating features in source code. /EEE Transactions on
Software Engineering, 29(3):210-224.

Frakes, W.B.(1992). Stemming algorithms. pages 131-160.

Kim, D., Tao, Y., Kim, S., and Zeller, A. (2013). Where
should we fix this bug? a two-phase recommendation
model. [EEE Transactions on Software Engineering,
39(11):1597-1610.

Lukins, S. K., Kraft, N., Etzkorn, L. H., et al. (2008).
Source code retrieval for bug localization using latent
dirichlet allocation. In /5th Working Conference on
Reverse Engineering, (WCRE), pages 155-164. IEEE.

Nguyen, A. T., Nguyen, T. T., Al-Kofahi, J., Nguyen, H. V.,
and Nguyen, T. N. (2011). A topic-based approach for
narrowing the search space of buggy files from a bug
report. In Automated Software Engineering (ASE),
26th IEEE/ACM International Conference on, pages
263-272. IEEE.

Nichols, B. D. (2010). Augmented bug localization using
past bug information. In 48th Annual Southeast Re-
gional Conference, page 61. ACM.

Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol,
G., and Rajlich, V. C. (2007). Feature location using
probabilistic ranking of methods based on execution
scenarios and information retrieval. [IEEE Transac-
tions on Software Engineering, 33(6):420-432.

Rahman, S. (4/1/2016). shanto-rahman/mbum: 2016.
https://github.com/shanto-Rahman/MBuM.

Rahman, S., Ganguly, K., and Kazi, S. (2015). An improved
bug localization using structured information retrieval
and version history. In /8th International Conference
on Computer and Information Technology (ICCIT).

Saha, R. K., Lease, M., Khurshid, S., and Perry, D. E.
(2013). Improving bug localization using structured
information retrieval. In 28th International Con-
ference on Automated Software Engineering (ASE,
2013), pages 345-355. IEEE.

Wang, S. and Lo, D. (2014). Version history, similar report,
and structure: Putting them together for improved bug
localization. In 22nd International Conference on
Program Comprehension, pages 53—63. ACM.

An Appropriate Method Ranking Approach for Localizing Bugs using Minimized Search Space

Zhou, J., Zhang, H., and Lo, D. (2012). Where should the
bugs be fixed? more accurate information retrieval-
based bug localization based on bug reports. In
34th International Conference on Software Engineer-
ing (ICSE), pages 14-24. IEEE.

309

