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Abstract: Due to the distribution characteristic of the data source, such as astronomy and sales, or the legal prohibition,
it is not always practical to store the world-wide data in only one data center (DC). Hadoop is a commonly
accepted framework for big data analytics. But it can only deal with data within one DC. The distribution
of data necessitates the study of Hadoop across DCs. In this situation, though we can place mapper in the
local DCs, where to place reducers is a great challenge, since each reducer almost needs to process allmap
output across all involved DCs. Aiming to reduce costs, akeybased scheme is proposed which can respect
the locality principle of traditional Hadoop as much as possible while realizing deployment of reducers with
lower cost. Considering both data center level and server level resource provision, a bi-level programming
is used to formalize the problem and it is solved by a tailored two level group genetic algorithm (TLGGA).
Extensive simulations demonstrate the effectiveness of TLGGA. It can outperform both the baseline and the
state-of-the-art mechanisms by 49% and 40%, respectively.

1 INTRODUCTION

Distributed cloud consists of multiple geo-distributed
data centers (DCs) which are connected by dedicated
high-speed links or expensive long distance links. It
provides abundant computation and storage capac-
ity and has been widely adopted to support vari-
ous services, especially for data intensive applica-
tions (Schadt et al., 2010). Because these data have
sheer size and even come from disparate geographical
locations, it is impractical to move such heavy geo-
spanned data together and store all data in one DC.
Not to mention the fact that in some countries, such as
the EU, the data security laws require some data must
be stored locally. Generally, data can be stored in DCs
closer to data generating sources to facilitate the more
frequent local data analysis with smaller access de-
lay. For example, the US census data are collected
and stored by each state (Jayalath et al., 2014). The
huge remote sensing data are stored in geo-distributed
data centers (Zhang et al., 2014). Although these data
are managed regionally, they also aim to be processed
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collaboratively for a common purpose (Jayalath et al.,
2014) (Zhang et al., 2014). How to process such
distributed data has arrested extensive attentions of
scholars (Jayalath et al., 2014) (He et al., 2012) (Wang
et al., 2013) and practitioners.

Hadoop, the open source version of MapReduce,
which has been widely used in big data analytics,
does not support data analysis across DCs in the
current versions (Apache, ) (White, 2010). In re-
cent years, several MapReduce-like frameworks, such
as G-Hadoop (Wang et al., 2013) and G-MR (Jay-
alath et al., 2014) (we use G-frameworks to repre-
sent them), have been proposed to process distributed
data across DCs. Both G-frameworks try to inherit
the legacy of current MapReduce. They respect data
locality principle and prefer tomapdata locally (we
useitalic format to indicate the general MapReduce
terminologies). But the great differences introduced
by multiple DCs have led to new challenges to be
addressed. The main differences include determina-
tion of reducers locations, the intermediate data copy
and storage. Detailed information please refer to sec-
tion 2.1.
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To process data across DCs, a cloud service
provider (CSP) should first select DCs and then the
hosted servers to place the reducer Java virtual ma-
chines (VMs, Fig. 1). In the single-DC scenario, ba-
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Figure 1: Reducer placement for distributed data analysis
considering both DC and server level resource provision in
distributed cloud.

sically, the network within one DC is a flattened two
level topology (White, 2010) (Bard, ). Servers or
physical machines (PMs) in each rack have a top-of-
rack switch. Top-of-rack switches are connected by
off-rack switches. The maximum number of hops is
2. Considering that the intermediate mapper results
are dispersed across the racks and each reducer almost
needs toreducethe outputs of all mappers, MapRe-
duce does not sedulously select the location of reduc-
ers (White, 2010) (Bard, ).

In the multi-DC scenario, themapoutput is stored
locally in each DC. The scheme thatreducesthe data
in each DC and then aggregates the intermediate re-
sults may change the final result (e.g., to calculate
the global commodities sales proportion) or ineffi-
cient (Tudoran, 2014). So the universal case is to
move all the intermediate data to DC where the re-
ducer locates. Generally, in each DC, the intermedi-
ate outputpartitionedto a reducer has different size.
The intuitive method is to place reducer in the DC
where more intermediate datapartitioned to it are
stored. But it is required to know the data volume in
advance. Fortunately, MapReduce has providedsam-
plers which can be used to sample a subset ofkey
space produced by mapper to approximate the dis-
tribution of keys, further to estimate the data volume
partitionedto one reducer. This scheme has been rec-
ommended by the definitive Hadoop guide in chap-
ter 8 (White, 2010) and used by other work (Jayalath
et al., 2014). The analysis result of data used for sam-
pling can be reused later. The huge volume data trans-
fer across long distance links will incur great costs, in-
crease job delay and even deteriorate the availability.
Moreover, the price of computation resource of PMs
in different DCs varies widely (Amazon, ). Placing
more reducers in the expensive DC will lead to more
costs. The locations of reducers have a big influence

on costs and services.
Because the data transfer across DCs will take

more time, the G-framework supposes a dedicated
component to copy data from one DC to the target
DC where the reducer locates. The copied data should
be stored in the target DC in the wholereducephase.
This leads to additional storage costs. Similar to the
computation resources, each DC differs in the pric-
ing of storage (Amazon, ). Large volume data should
avoid being stored in expensive DC.

To make the maximum profit, CSP strives to cut
costs as much as possible. In addition to the afore-
mentioned bandwidth costs consumed by data trans-
fer and PM costs (includes computation and stor-
age) which contribute about 60% to the costs of a
DC (Greenberg et al., 2008), another key contribution
is power. Power draw accounts for 15% not includ-
ing cooling and power distribution (Greenberg et al.,
2008). CSP can further cut power costs by exploiting
various electricity prices of distributed DCs (EIA, )
when placing reducers.

Each reducer can be assigned to a slot equipped
with a same determined computation and memory
resources in Hadoop 1.0. To improve the resource
efficiency, capture the heterogeneous capability of
PMs and match the volume of data to be pro-
cessed, Hadoop 2.0 (YARN) has permitted to config-
ure the CPU and memory of VMs ofmapandreduce
tasks (Lublinsky et al., 2013). Inside each DC, VM of
different size can be consolidated so that fewer PMs
are used and more power is saved.

Focusing on the distributed data analytics, this pa-
per tries to place reducer VMs costs efficiently across
the involved DCs. The main contributions are as fol-
lows:

1. We propose akeybased scheme to determine the
location of reducers and optimize data transfer.
This method can further indicate the configuration
of reducers based on the data volumepartitioned
to it. It is applicable to all data no matter data are
associative (Section 2.2) or not.

2. Considering the costs of data transfer and storage,
computation and power, we formulate the prob-
lem as a 0-1 integer linear bi-level programming.

3. A novel unified algorithm, two level grouping ge-
netic algorithm (TLGGA) is tailored. It can real-
ize the selection of DC and server simultaneously
at the lest costs.

4. Extensive simulation demonstrates TLGGA out-
performs the traditional Hadoop 49% and the
state-of-the-art algorithm (G-MR) 40%.

The remainder of the paper is organized as fol-
lows. In section 2, background information and re-
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lated work are introduced. Section 3 formulates the
problem. Section 4 presents a novel genetic algorithm
(GA). It is evaluated in section 5 and concluded in
section 6 with some future works.

2 BACKGROUND AND RELATED
WORK

2.1 MapReduce and MapReduce Across
Data Centers

2.1.1 MapReduce

Generally, MapReduce is backed up by Hadoop dis-
tributed file system (HDFS). In HDFS, data are di-
vided into equal size data blocks (default value: 64M)
which distribute across the flattened network. Each
data split consists of one (normally) or more data
blocks and is processed by one mapper in the fash-
ion of key-valuepair (< key1,val1 >). MapReduce
includes two phases:map phase andreducephase.
The number of mappers is determined by the number
of MapReducejob input: data splits. Normally, it is
the same as that of the blocks. The number of reduc-
ers needs to be configured. It is suggested to be 2/3
of the number of mappers (Tannir, 2014). Mappers
and reducers all run in independent VMs. Mapper re-
spects data locality principle, i.e., prefers colocating
with the input split data to decrease data copying and
speed up thejob. If it is impossible (e.g., computation
resources are not enough in the PM where the split lo-
cates), the computation nodes in the same rack will be
tried, and then the nodes in other racks. The interme-
diatemapoutput,list(< key2,val2 >), is stored in the
local disk.

Then, by default, the intermediate data arepar-
titioned to each reducer by hashingkey2 space. Al-
though, a reducer is tried to be placed in a node where
the intermediate data are stored, since each reducer
almost need to process the outputs of all mappers, it
does not have the advantage of data locality in despite
of the slight differences between intra-rack and inter-
rack data copying. Essentially, a random scheme is
used to place the reducer. All the intermediate data to
bereducedshould be copied to where the reducer lo-
cates for further process. At last, the reducer outputs
the final resultslist(< key3,val3 >) and writes them
to HDFS.

2.1.2 MapReduce Across Data Centers

G-hadoop (Wang et al., 2013) and G-MR (Jayalath
et al., 2014) are two extensions of MapReduce. Both

of them aim to process data intensive service across
DCs. Although they differ in some ways, they
have similar architectures. Comparing to MapReduce
within one DC, a HigherJobTracker is introduced to
coordinate data and determine the locations of map-
pers and reducers across all involved DCs. Job-
Tracker in each DC is responsible for the execution
of the tasksassigned to the DC. Generally, themap
input is bigger than its output, movingmap input is
not an ideal way. Mappers are still placed in each
DC according to data locality principle and themap
phase in each DC is just the same as the scenario of
one DC. The intermediate data are stored locally in
Gfarm (Wang et al., 2013) or HDFS (Jayalath et al.,
2014). Since reducer will process almost all output of
all mappers, it necessitates data copying across DCs.
Once the location of one reducer is determined, Job-
Tracker will use a dedicated component, CopyMan-
ager, to copy data forreducing. The copied data is
stored either in a shared SAN (Wang et al., 2013),
or DHFS/S3 (Jayalath et al., 2014). Since SAN/S3
is independent from cluster, so wherever the reducer
is, the intra-DC network occupied is the same. If the
mapoutput is stored in HDFS, it is similar to Hadoop
in terms of the distribution of data across nodes within
DC though Hadoop stores output in local disk. Now
the original Hadoop scheme (Wang et al., 2013) or
other advanced one (Jayalath et al., 2014) can be used
to place reducers. In total, the MapReduce across data
centers introduces many differences, such as deter-
mination of reducers locations, the intermediate data
copy and storage.

2.2 Existing Work in Distributed Data
Intensive Services

Within one DC, The authors of (Tudoran et al., 2012)
propose an iterativereducescheme forreduceinten-
sive services. It uses areducetree to get the last re-
sult. The assumption is that the input data are associa-
tive, i.e., the iterative and hierarchicalreducewill not
change the final result. Fast completion time of sets
of MapReduce is pursued by authors of (Chang et al.,
2011). Various off-line and online approximation al-
gorithms are proposed to decrease thejob completion
time. Energy is explored for MapReduce by decreas-
ing the servers used (Maheshwari et al., 2012). The
MapReducejobsare scheduled considering workload
in each server. The server which utilization is un-
der a threshold can be turned off so that power is
saved. Different from physical resources, thermal
aware scheduling schemes are presented in (Kulka-
rni, ). The temperature distribution is optimized so
that cooling costs are minimized. Approximation al-
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gorithms are presented in (Kuo et al., 2014): a 3-
approximate algorithm followed by a 2-approximate
algorithm at a higher computing costs. Both papers
limit data nodes and computation nodes in the same
DC. Furthermore, they only consider bandwidth costs
optimization.

In DC network, the authors of (Zeng et al., 2014)
propose a centralized algorithm to distribute latency
sensitive contents and the application servers de-
pended on gradient search. Multi-party data inten-
sive services are proposed by using a multi-phase ant
colony scheme (Wang and Shen, 2014) where the ser-
vice may use a large amount of data sets. Ant colony
is also used to find the optimum of costs and execu-
tion time of a composite service (Wang et al., 2015).
Performance fairness is studied in (Xu and Li, 2012).
A subgradient based distributed solution is presented
to guarantee that users at disadvantage locations can
also enjoy proper performance. Latency is optimized
by a distributed scheme based on alternating direction
method of multipliers. The only work which consid-
ers both DCs and servers level is (Yao et al., 2014).
The authors propose a two-time-scale Lyapunov op-
timization algorithm to select DCs and servers to re-
duce power costs. It is argued that it is fit for delay
tolerant workloads, such as MapReduce. But in all
these papers, no concretemapandreducephase are
detailed. It is due to that MapReduce concerned in
the work does not support data analytics across DCs.

MapReduce across DCs are explored in pa-
per (Wang et al., 2013) (Zhang et al., 2014) (Jay-
alath et al., 2014). G-Hadoop (Wang et al., 2013)
can embrace any scheme to place reducer, though it
uses the traditional scheme by default. It randomly
places reducers in involved DCs. All intermediate
datapartitionedto one reducer are then copied to the
DC where the reducer locates. This scheme does not
consider the distribution mode of intermediate data
and reducers. In the subsequent work (Zhang et al.,
2014), scheduling strategies are studies to process re-
mote sensing data across DCs. Hypergraph integrated
with task tree is used to lessen the inter-DC data trans-
fer and select the key workflow path so that optimize
the task completion time. Comparatively, G-MR (Jay-
alath et al., 2014) uses an advanced scheme by defin-
ing a single directional weighted graph to depict the
data placement and transfer path. All input data in
each DC should be partitioned to equal size partitions.
The nodes of the graph are the combination of parti-
tions in different DCs beforemapor reducephase and
the edge is the transfer path from one node to another.
Weight of the node is the cost to maintain the node,
while weight of the edge is the cost to copy data. Ob-
viously, there aremn nodes wherem is the number of

partitions of data in each DC andn is the number of
DCs, and therefore a even bigger number of paths. If
arbitrary partition is allowed there will be a nodes and
paths catastrophe. To reduce the size of the graph, the
authors make several limits, for example, partitions
must be equal in size, data transfer only be allowed if
the number of DCs can be reduced and exchange of
data between two DC is not allowed. But these limits
lead to some unprofitable consequences and deterio-
rate the optimality.

3 PROBLEM FORMULATION

Suppose the distributed data are stored inK DCs. In
each DCk (k = 1, ...,K), there areJk PMs. The total
number of PMs in all DCs isJ, i.e.,∑K

k=1Jk = J. Map-
per works according to data locality principle and the
mapoutput is stored locally.I is the configured num-
ber of reducers. Based on thesamplingresult, the data
in DC k hashed to reducerVi is dki. The cost aware re-
ducer placement problem can be summarized as, plac-
ing I reducers which aims toreduceall the intermedi-
ate data onJ PMs distributed inK DCs, so as to min-
imize the overall costs at both DC and server level,
including power, server and network. The problem is
modeled as a 0-1 integer linear bi-level programming
(ILBLP).

3.1 Low Level Objective and
Constraints

Low level is server level. It aims to select PMs in DC
to host the reducers assigned to this DC by the higher
level, i.e., DC level, as illustrated in Fig. 1). Sup-
pose the number of reducers assigned to DCk is Ik,
∑K

k=1 Ik = I . ReducerVi requiresH kinds of resources
V1

i , ...,V
H
i , such as CPU, memory and disk storage,

etc. Pk
j denotes PMj in DC k. It possessesH kinds

of resourcesPk1
j , ...,PkH

j . Specifically, we designate

the first dimension resource as CPU (Pk1
j andV1

i ) for
ease of notation. The low level can only decide the
host PM for each reducer. The decision variable is de-
noted by a boolean variablexk

i j . xk
i j indicates whether

Vi is assigned toPk
j . It equals 1 ifVi is assigned toPk

j
and 0 otherwise. The other variable controlled by low
level isyk

j which denote whether to activate PMPk
j . It

equals 1 ifPk
j is active and 0 otherwise.

For each DCk, the low level programming is writ-
ten as:

min
y,x

f (y,x) =
Jk

∑
j=1

yk
j

H

∑
h=1

ckhP
kh
j (LLP)
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s.t.
Ik

∑
i=1

xk
i jV

h
i ≤ Pkh

j h= 1, · · · ,H, j = 1, · · · ,Jk (1)

yk
j ≥ (

Ik

∑
i=1

xk
i j )/Ik j = 1, · · · ,Jk (2)

yk
j ∈ {0,1} j = 1, · · · ,Jk (3)
Jk

∑
j=1

xk
i j = 1 i = 1, · · · , Ik (4)

xk
i j ∈ {0,1} i = 1, · · · , Ik, j = 1, · · · ,Jk. (5)

The objective function is the resource costs of PM
used inside each DCk whereckh is the price for re-
sourceh. Constraint (1) indicates that in each PM, the
resource capacity should be respected. Constraint (2)
states a PM is viewed as active if it hosts at least one
VM. Constraint (4) implies a VM can only be placed
in one PM.

3.2 High Level Objectives and
Constraints

High level focuses on choosing reducers and assign-
ing them to a certain DC. It optimizes the overall
power costs, inter-DC bandwidth costs and PM nodes
costs. Binary variablezik indicates whether assign re-
duceri to DC k. If it is true thenzik = 1 and 0 other-
wise.

Power Costs. CSP can leverage the geo-diverse
electricity price of geo-distributed DCs involved in
the MapReducejob to optimize the power costs. Sup-
pose the electricity price ofDk is ek. Leta is the coef-
ficient to reflect the relation between power and CPU
load. pk

j is the power consumption ofPk
j in idle or

standby state. Because power grows largely positive
proportional to CPU utilization (Fan et al., 2007), we
use an affine function of CPU load (∑Vi∈Pk

j
V1

i ) to esti-

mate power costs. To make the power consumed and
physical resource costs comparable, we follow the
way of (Greenberg et al., 2008). All the one time pur-
chased physical resource costs is amortized in a rea-
sonable lifetime. So all the physical resource prices
in the formulation are the amortized ones. Implicitly,
in the formulation, we only balance the costs in the
amortized period. The power costs of all the reducers
are

F1(z,y,x) =
K

∑
k=1

ek

Jk

∑
j=1

yk
j(a ∑

Vi∈Pk
j

V1
i + pk

j). (6)

The former half ofF1(z,y,x) represents power costs
caused by workload and the latter half is power in
idle or standby state.

PM Nodes Costs.PM nodes costs is determined
by server level in each DC. It is modeled the same as
f(y,x). The total PM nodes costs inK DCs cared by
high level is

F2(z,y,x) =
K

∑
k=1

Jk

∑
j=1

yk
j

H

∑
h=1

ckhP
kh
j . (7)

Inter-DC Bandwidth Costs. Let t jk is the data
transmission price fromD j to Dk derived form the
bandwidth price of cloud service providers.t jk =
tk j. t jk = 0, if j = k. d ji is the data volume in
D j witch has beenpartitioned to reduceri. Once
reducer i is assigned toDk (that meanszik = 1),
all data, i.e.,∑K

j=1d ji data should be moved toDk

for reducingand incur cost∑K
j=1(∑

I
i=1d jizik)t jk. So

for K DCs, the total inter-DC bandwidth costs are
∑K

k=1 ∑K
j=1 (∑

I
i=1d ji zik)t jk. The inter-DC bandwidth

costs are

F3(z) =
K

∑
k=1

K

∑
j=1

(
I

∑
i=1

d ji zik)t jk. (8)

Intermediate Data Storage Costs.Let sk is the
storage price in DCk, then storing all the intermediate
data in target DC needs cost

F4(z) =
K

∑
k=1

K

∑
j=1

(
I

∑
i=1

d jizik)sk. (9)

The high level optimization can be summarized as
a 0-1 linear integer programmingHLP:

min
z,y,x

F(z,y,x) = (6)+ (8)+ (7)+ (9) (HLP)

Ik

∑
i=1

zik ≥ (
Jk

∑
j=1

yk
j)/Jk k= 1, · · · ,K (10)

K

∑
k=1

zik = 1 i = 1, · · · , I (11)

zik ∈ {0,1} i = 1, · · · , I ,k= 1, · · · ,K (12)

yk
j ∈ {0,1} j = 1, · · · ,Jk,k= 1, · · · ,K (13)

wherex andy are the solutions of the low level pro-
gramming.

In the high level constraints, (10) indicates that,
once there is one active PM inDk, then must be a
reducer which is assigned to DCk. Every reducer
should be assigned to a certain DC so that all the con-
figuredI reducers are used in thejob. It is reflected in
(11).

Bi-level programming is proved to be strong NP-
hard (Bard, 1991). GA has been demonstrated as
a very efficient scheme to address bi-level program-
ming (Zhang et al., 2016b) (Sun et al., 2008). We
resort to GA to solve it.
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4 ALGORITHM

The framework of GA is same. After encoding of the
problem, crossover and mutation operations are ap-
plied to the encoded populations until the stopping
condition is satisfied. Then the result is decoded to
the solutions of the problem to be addressed. The
encoding and decoding scheme, operations should be
customized for specific problems.

4.1 Encoding and Decoding Scheme

The encoding scheme should reflect the structure and
information of the problem to be optimized in the
genes of a chromosome. Considering that we should
try to keep the VMs in a DC with the lowest power
price, the lowest resource price and the most data to
be processed, we adopt the encoding scheme of multi-
level group GA (MLGGA) (Moghaddam et al., 2014).
It is illustrated in Fig. 2.

2
VReducers:

EBADCFAF:yxxyxzxz:yxzEncoding:

1
V

PMs DCs

I
V

Figure 2: Grouping encoding.

SupposeI reducers should be assigned to PMs in
K DCs. Each candidate PM (DC) is numbered and
given a serial number (SN). The encoding comprises
three parts. The first one lists the SNs of PMs in which
VMs are placed. The second one lists the SNs of DCs
to which PMs belong. The third one is the lineup of
SNs of DCs in the second part after deleting the re-
peated ones. The three parts are isolated by a colon.
Suppose PMsA ∼ F , x = A,B,C,y = D,E,z = F
where “=” means that the right PMs belonging to the
left DC. Fig. 2 encoding the placement of 8 reducers.
The decoding is self-evident.

4.2 Initial Population Generation

We try to equip each initial population with a pretty
good gene, so that it can be inherited by the off-
springs. MLGGA only aims to reduce the number
of servers and DCs used. In our problem, the fewest
servers and DCs cannot ensure the optimality of the
solution. So we propose new initial population gener-
ation schemes.

It is assumed readers are familiar with GA, otherwise please
refer (Zhang et al., 2016a) for details.

To save power and take full use of all the PM
nodes resources dedicated forreducetasks, we mod-
ify the first fit decreasing algorithm (denoted as
MFFD). Some notions are introduced first. The ca-
pacity of an empty PMPk

j is defined as∑H
h=1ωhPkh

j ,

i.e., the sum of all the resources dimensions ofPk
j .

The normalized weight for dimensionh is ωh =
1/(maxj ,kPkh

j ). Or ∑H
h=1ωhrkh

j if there exists one VM

in this PM, whererkh
j is theh-dimension residue ca-

pacity of Pk
j . The reason is that in computer, if any

dimension is used up, then the PM cannot support any
more VMs. DC capacity is defined as the sum of the
capacity of all PMs in the DC. Capacity request of
VM Vi is similar to the upper definition except thatPkh

j

is replaced byVh
i . Sort all VMs-yet-to-be-assigned

according to their capacity. Then assign the biggest
VM to the active PM with the smallest residue capac-
ity. If the PM can accommodate the VM then the VM
is places in this PM. Otherwise, try the next active PM
until the VM can be placed or a new PM is activated.
This process is repeated until all VMs are assigned in
this DC. MFFD can optimize the objective of the low
level programming. It is also used for local optimiza-
tion to speed up the convergence.

Some genes embrace the power costsF1, the least
power costs VM placement algorithm (LPC) is pro-
posed in Algorithm 1.

Algorithm 1: Least power costs VM placement algorithm
(LPC).

1: Input: V: VMs set,DC: K Candidate DCs where the
input data are stored

2: Output: VM placement solution encodingX
3: Sort DCs according toek. Sort VMs-yet-to-be-

assigned according to their capacity
4: A cheaper DC and a bigger VM are selected with

higher probability. The selected VM is placed in this
DC by leveraging MFFD. This process is repeated until
all VMs are placed

5: Encoding the solution asX according to section 4.1

In Algorithm 1, we can replace the sorting crite-
rion ek with resource priceck (defined as the sum of
unit resources prices:ck = ∑H

h=1ckh). Then we have
another method which strives to place the biggest
VMs in the DC with the cheapest PM nodes resource.
We denote it as LeastNodeCost (LNC). LNC aims to
optimizeF2.

ForF3, we use a simple heuristic to place reducers.
A reducer is assigned to a DC with more data to be
reducedby it. If there are two same DCs, any one
is randomly selected. This scheme aims to incur the
least data transfer (LDT).

LPC, LNC and LDT will be invokedx times, re-
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spectively, to produce 3∗ x initial feasible solutions.
This scheme can produce a rather large scale initial
population and the three groups of population embody
a relatively good placement for the three factors of the
high level objective, respectively. Thus, the parents
are endowed with some optimal properties. In the lat-
ter crossover and mutation, though the initial solution
maybe will be replaced by a new one, the size of the
initial population remained at least 3∗ x so that the
GA can converge faster.

4.3 Crossover Operator

The mechanism of the crossover operator in MLGGA
is adopted. But to optimize nodes costs and power
simultaneously, we use MFFD to replace the classic
FFD used in MLGGA.

The crossover tries to inherit the property of the
parent and preserve the VMs in the inserted group
(PM or DC) unchanged. It will delete the different
resident VMs in the same group in the target chro-
mosome first and keep the common VMs. For exam-
ple, if there are two chromosomes,P1: EBADCFAF:
yxxyxzxz: |y|xzwhere DCy contains VM 1 and VM 4,
while P2 is: a f cdeabd: XZXYYXXY: |X|ZY where
DC Y contains VM 4 and VM 5. Herein we use the
same alphabet with different case represents the same
PM or DC. Therefore,y andY represent the same
DC. | means crossover point. For target chromosome
P2, when crossover operates,X will be replaced byy.
Now there are two same DCy andY in the offspring
of P2. So VMs in y should be deleted so that VMs
in Y are preserved unchanged, i.e., VM 5 iny will be
reassigned by FFD and VM 4 is kept.

Once a DC has the most intermediate data for one
reducer, the lowest power and resource prices, then
the three initial population generation schemes tend to
place the reducer in the same DC. In the crossover op-
eration, this kind of reducers will be remained. Other
reducers will be changed to different DC to seek the
smallest overall costs.

4.4 Mutation Operator

The mutation happens in the third part, i.e., DC level,
thus leads to reduction of DCs. Considering that data
transfer has most effect on costs and consumes more
time in the MapReduce work. We give a higher prob-
ability to mutate the DC with less data. All the VMs
in the mutated DC should be placed to the target DC
with MFFD.

4.5 The Unified Genetic Algorithm:
TLGGA

The unified GA algorithm, two level grouping GA
(TLGGA) is depicted in Algorithm 2. Local opti-
mization is used to speed up the convergence by ap-
plying MFFD.

Algorithm 2: The unified genetic algorithm (TLGGA).

1: Generatex initial population by LPC, LNC and LDT,
respectively. Denotes these 3∗x population asC

2: while (Stopping condition is not satisfied) do
3: Crossover. Random select one individual fromC

and denote asX1, and another differentX2. Apply-
ing crossover toX1,X2 with a probability to produce
two offspringY,Z until X1 traverseC

4: Mutation. Applying mutation with a probability to all
Y,Z to produceY′,Z′

5: Local optimization. Applying MFFD toY,Z
6: Update ofC . For eachX in C ,

If F(Y′)≤ F(X), thenX =Y′

If F(Z′)≤ F(X), thenX = Z′
The size ofC is kept not less than 3∗x

7: The X inC with the least objective value is the solu-
tion

8: end while

4.6 Algorithm Execution in
G-framework

After a small part of data in each DC, such as 5% per-
cent, ismapped, the HigherJoberTracker can sample
the outputs in each DC. The approximatekeydistri-
bution is obtained and the data volume for eachkeyis
estimated. The configuration of reducers that matches
the input size can further be predicated so that nore-
ducetask takes more time and thus decrease thejob
delay. Now HigherJobTracker can use the configu-
ration information to select the location of reducers
by invoking TLGGA. At the same time, the other ini-
tial data can bemapped. Once the location is deter-
mined, the later output of mappers will be continu-
ously copied to the target DC according tokeys.

5 SIMULATION

5.1 Evaluation Test Bed

Since there are normally a dozen of DCs for the
commercial cloud service providers (e.g., at least
11 DCs for Amazon (Amazon, ) and 13 DCs for
Google (google, )), we randomly select seven DCs
in Amazon regions to store the data. Each region is
numbered and the number indicates the sequence of
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DC to be added. Table 1 gives the sequence number,
where “H”, “M” and “C” indicates “Hour”, “Month”
and “Cents”, respectively.

In each DC, the number of PMs followsU(30−
50) and the type is uniformly selected from the four
PM classes. The configuration of PM is borrowed
from IBM System x M5 server and System x3300
M4 server. We adopt four kinds of EC2 configu-
rations of Amazon m3-serials (for consistency with
PM, GiB is replaced by GB) as the resource require-
ments of VMs. M3-serials are designed for gen-
eral purpose and are representative. According to
VMWare (VMware, ), the number of logical cores in
each PM is equal to or at most the twice of that num-
ber of the physical cores. The number of vCPUs of
VMs in the PM cannot exceed the logical cores of the
PM. So we suppose there is a one-to-one relation be-
tween vCPU and physical core. The details are listed
in table 2.

Suppose there are 900 data blocks stored in DCs
and each block is 128 MB. 900 mappers are used to
process the data. After sampling themap outputs
from all involved DCs, thekey space is 1000. In
each DC, the input data volume of eachkey follows
U(0− 0.1) GB. We follow the guidance of (Tannir,
2014) to configure 600 reducers. Eachkeyis hashed
to a certain reducer to process. Thereduceoutput is
set as 1% of thereduceinput (we call it the ratio of
reduceoutput). Assume that each medium VM can
process 2.5 GB data per hour. Other VM with multi-
ple relation configuration can process the same multi-
ple data in the same duration. Hence the time needed
can be estimated by VM type and data volume.

The price of resources are illustrated in table 1.
We try to use the public data of Amazon to keep the
price consistent. Considering the multiple relations
of configuration of PMs and requirement of VMs, we
only list the price of the medium class. The price of
other class also follows the multiple relations. For
example, xLarge VM with 4 vCPUs requires 4 times
higher price than that of the medium size one. Storage
price is from S3. Table 1 gives the price of medium
VM and storage prices in different regions. We derive
the price of data transfer from Amazon Import/Export
service and transferring each GB needs 0.0243$. The
electricity price pool is from the data of July, 2014 of
EIA (EIA, ). Each simulated DC is equipped with a
random price selected from the pool. We adopt the
idle or standby power consumptionpk

j as 60% of the
peak power (Fan et al., 2007).

The initial solution size of TLGGA is 3∗ x and
x= 15. The crossover probability is 0.6 and the mu-
tation probability is 0.3. All numerical experiments
stop after 10 thousand iterations (It is observed that

the algorithm converges after about one thousand it-
erations as illustrated in Fig. 3.).

Basicly, G-Hadoop is a direct extension of tradi-
tional Hadoop. We use G-Hadoop with the random
placement scheme of reducers as the baseline (de-
noted as GHadoop in the later simulation). All Map-
pers follow data locality principle, i.e., each mapper
locates in the same DC where the data it will process
are stored. This leads to that the mapper results are
distributed in multiple DCs. Toreducethemapout-
put, we select the DC which total costs (the sum of
F1 ∼ F4) is minimum and then move allmapoutput to
the selected DC toreduce. In the selection, the VM
is placed using MFFD just as TLGGA does and each
DC is compared straight forward. The state-of-the-art
of MapReduce across DCs is G-MR (Jayalath et al.,
2014). In the realization of G-MR, the initial partition
size is set as 20 percent of the total input size as rec-
ommended in (Jayalath et al., 2014). Note that both
GHadoop and G-MR will store thereduceresult in
only one DC. While TLGGA may distributereduce
output among DCs. To compare the cost of TLGGA
and other two algorithms, we straight forward select
the DC to move allreduceresult to it with the mini-
mum costs after execution of TLGGA.

5.2 Simulation Results

5.2.1 The Convergence of TLGGA

Fig. 3 demonstrates the convergence of TLGGA when
there are 4 DCs (DC 1∼ DC 4). In the simulation,
it is found that in the first 200 iterations (consists of
the crossover of all population, the mutation and local
optimization), the objective value decreases fast and
the curve is very steep. Then in the later 800 itera-
tions, it starts to level off. After about one thousand
iterations, the objective function value decreases very
slowly though it takes more time. We can obtain a
rather good solution within about 2 seconds.
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Figure 3: Convergence of TLGGA for 4 DCs.
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Table 1: Sequence number and resources prices of data centers in different regions.

Data centers California Frankfurt Singapore Sao Paulo Oregon Ireland Sydney
Sequence Number 1 2 3 4 5 6 7
medium PM ($/H) 0.408 0.400 0.498 0.48 0.368 0.38 0.472
medium VM ($/H) 0.077 0.075 0.098 0.095 0.067 0.073 0.093
Storage ($/GB/M) 0.033 0.0324 0.03 0.0408 0.03 0.03 0.033

Electricity (C/KW/H) 11.91 9.49 15.47 14.37 8.77 8.90 15.47

Table 2: PMs resource configurations and VMs resource requirements.

PM Cores Memory VM vCPUs Memory
medium 4 32 medium 1 3.75

large 8 64 large 2 7.5
xlarge 24 192 xlarge 4 15
2xlarge 32 256 2xlarge 8 30

5.2.2 Scalability Evaluation

To evaluate the sensitivity of the three algorithms on
the number of DCs, we add 1 DC according to the
sequence number every time. The cost is depicted in
Fig. 3 where the number of DCs increases from 2 to
7.

It is observed that the intuitive GHadoop incurs
the highest cost. G-MR comes next and TLGGA is
the most cost effective mechanism. This is due to that
aftermaplocally, GHadoop will select a DC and then
copy all themapoutput to it toreduce. For G-MR,
since it partitions data in one DC into several parts,
this enables it to find lower cost with a rather fine
grained management. But because the size of the par-
tition is fixed, it cannot differentiatekeysand cannot
take into their distribution characteristics. Thus it still
incurs most cost than TLGGA. TLGGA estimates the
keyspace and the input of eachkey. This facilitates
TLGGA to place the reducer in the DC where most
data hashed to it are stored and avoid more data trans-
fer costs. Together with the other resources, i.e., PM,
storage and electricity price, it seeks the cheapest so-
lution and saves more costs than GHadoop and G-MR
by about 49% and 40%, respectively.

With the number of DCs increasing, the costs of
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Figure 4: Cost when the number of DCs increases.

all algorithms begin to increase. This illuminates that
if data are distributed among more DCs, it will cause
more cost in the Hadoop framework. It is beneficial
to cost saving if the number of DCs is limited to a
reasonable scale.

Note that after DC 5 (Oregon) is added, the costs
of all algorithms show a slight decrease. This is due to
that all resources prices of this DC are relatively lower
than those of the former 4 DCs. This DC provides
a better candidate and all the algorithms prefer this
newly added one.

Ideally, it is desired that the algorithm is as slight
as possible. We record the execution time in table 3.
When the number of DCs is not more than 3, G-MR
and GHadoop exhibit the similar efficiency. When it
increases continually, the execution time of GHadoop
grows slowly. But the time cost of G-MR increases
with an exponential speed. The large directed graph
leads to this situation and G-MR is not suitable for
large scale application. The quality of solution of
TLGGA comes at the cost of time. It takes more time
than GHadoop and G-MR when the number of DCs is
not bigger than 5. But its time cost grows slowly with
DCs. Moreover, as discussed before, we can obtain a
rather good solution within a much shorter duration.

5.2.3 Effect ofKey Distribution

In a cloud, perhaps thekeydistribution is uneven. We
use “uneven” to indicate that the number ofkeysat
different DCs differs greatly. It will have great effect
on costs in Hadoop across DCs. Herein we get the
number ofkeysuniformly from 1000∼2000 for the
seven DCs (i.e., 1281, 1993, 1614, 1147, 1700, 1064
and 1522). The cost is demonstrated in Fig. 5 and the
cost changes are depicted in Fig. 6.

In total, the cost tendency is just similar to that of
Fig. 4. But when there are only 2 DCs, G-MR even
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Table 3: Execution time of algorithms (times are in seconds).

Number of DCs 2 3 4 5 6 7
TLGGA 19.71 20.35 21.73 22.31 22.70 23.55
GHadoop 0.17 0.19 0.28 0.44 0.58 0.62

G-MR 0.04 0.17 1.88 12.34 48.60 246.7
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Figure 5: Cost with the number of DC increasing when the
keyis uneven.
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Figure 6: Cost changes with the number of DC increasing
when thekeyis uneven.

outperforms TLGGA. This is because that there are
mostkeysin the relatively cheaper DC 2 (Frankfurt),
G-MR prefers moving more data from DC 1 to DC 2.
But TLGGA will move data across 2 DCs according
to the distribution ofkeysand thus offsets the profit of
the more granular management.

The changes demonstrate an interesting phe-
nomenon. When there are 2 DCs, the uneven distri-
bution ofkeysmakes the costs of G-MR and TLGGA
decrease. But GHadoop cannot make use of the un-
even property to save its costs. In summary, costs of
TLGGA increase least and G-MR takes the second.
GHadoop fluctuates without regularity.

Because the finalreduceoutput should be aggre-
gated to one DC, we change thereduceoutput ratio.
Fig. 7 demonstrates the effect. It is observed that GH-
daoop is almost not sensitive to thereduceoutput.
This lies in that itreducesdata only after all input
is transferring to one DC. G-MR is more sensitive to
reduceoutput since it willreducepart data and then
aggregates. TLGGA is most sensitive to it because it
only moves thereduceoutput. But generally, costs of

TLGGA are still much smaller than those of the other
two algorithms. Note that thereduceoutput is rather
small generally, TLGGA is suitable for data process
across DCs.
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Figure 7: Cost when the ratio ofreduceoutput changes.

6 CONCLUSION AND FUTURE
DIRECTIONS

This paper explores the reducer placement for
Hadoop across data centers. Aiming to save costs and
respect the locality principle of tradition Hadoop as
much as possible, the problem is formalized as a bi-
level programming which can capture both DC level
and server level resources. A new scheme to place re-
ducers based on thekeydistribution is proposed. The
scheme tries to place the reducer in the DC where the
data hashed to it have the largest volume together with
optimal resources costs. A two level group genetic al-
gorithm (TLGGA) is tailored to facilitate the scheme.
Specific initial population methods are presented ac-
companied with a local optimization tactic. Extensive
simulations revealed the effectiveness of TLGGA. It
outperforms both the baseline method, i.e., traditional
Hadoop, and also the state-of-the-art, G-MR.

Due to data across DCs, latency is also a factor
which should be considered in Hadoop across data
center (Chang et al., 2011). In addition to the long dis-
tance between DCs, many factors may increase the la-
tency, such as file size, job failures, etc. We try to op-
timize latency while keeping low costs and compare
the performance by utilizing the OSM model (Chang
and Wills, 2015) which can capture all the factors.

Another issue worthy of study for data analytics
across DCs is security (Chang and Ramachandran,
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2016) and disaster recovery (Chang, 2015). Inside
one DC, the job can be completed within one VPN
and is in a trust network. Job across DCs may span
public network and it would absolutely have to be
over one VPN. A framework integrated with some
major security technologies, such as firewall, iden-
tity management and encryption has been proposed
for business cloud (Chang et al., 2015) (Chang and
Ramachandran, 2016). Focusing on GHadoop, the
authors of (Zhao et al., 2014) explores the framework
for big data computing across data centers. All these
works can be coordinated with the G-framework to
refine the architecture.
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