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Keywords: Model-Driven Software Engineering, Software Product Lines, Model Transformations, Code Generation.

Abstract: Model Transformations are a key element of Model-Driven Software Engineering. As soon as variability
is involved, transformations become increasingly complicated. The lack of support for variability in model
transformations impairs the acceptance of approaches to organized reuse such as software product lines. In
this position paper, the general problem of multi-variant model transformations is formulated for MOF-based,
XMI-serialized models. A simplistic case study is presented to specify the input and the expected output
of such a transformation. Furthermore, requirements for tool support are defined, including a standardized
representation of both multi-variant model instances and variability information, as well as an execution spec-
ification for multi-variant transformations. A literature review reveals that the problem is weakly identified and
often solved using ad-hoc solutions; there exists no tool providing a general solution to the proposed problem
statement. The observations presented here may serve for the future development of standards and tools.

1 INTRODUCTION

In Model-Driven Software Engineering (MDSE)
(Völter et al., 2006), models are developed as higher-
level abstractions of software systems using well-
defined modeling languages such as the Unified Mod-
eling Language (UML) (OMG, 2011d). The Object
Management Group (OMG) have developed the stan-
dard Meta Object Facility (MOF) (OMG, 2011b) for
the definition of metamodels, which describe the ab-
stract syntax and the static semantics of modeling lan-
guages. XML Metadata Interchange (XMI) (OMG,
2011c) serves as a standardized serialization format
for MOF models, making them compliant with dif-
ferent modeling tools. The Eclipse Modeling Frame-
work (EMF) (Steinberg et al., 2009) provides a basis
for many model driven tools and is built around the
Ecore metamodel, which implements a MOF subset.

Model Transformations (MT) are an indispensable
building block for model-driven applications. They
describe how a source model, represented as an in-
stance of an input metamodel, is to be converted to
a target model, conforming to the output metamodel.
Depending on the models’ representation, there ex-
ist model-to-model (M2M) and model-to-text (M2T)
transformations. The OMG have approved several
standards for MTs: Queries-Views-Transformations
(QVT) (OMG, 2011a) is a family of M2M transfor-
mation standards, containing, e.g., the imperative lan-

guage QVT Operational and its declarative counter-
part QVT Relational. The MOFM2T standard (OMG,
2012b) has been implemented, e.g., by the EMF-
based tool Acceleo. Apart from standardized trans-
formation languages, several alternatives exist, e.g.,
ATL (Jouault and Kurtev, 2006).

In the context of Model-Driven Architecture
(MDA) (Mellor et al., 2004), MTs are often chained.
In MDA, a platform independent model (PIM) is re-
fined to a platform specific model (PSM), from which
runnable application code is generated. MDA’s long-
term goal is to completely remove the necessity of
writing application code manually, considering mod-
eling languages as an additional layer on top of as-
sembly and programming languages.

Variability is a more and more important property
of software to be developed, in order to meet require-
ments such as customizability, platform independence
and maintainability. At source code level, variabil-
ity is mostly realized by preprocessor languages such
as the C preprocessor. Software Product Line Engi-
neering (SPLE) systematically exploits variability to
achieve organized reuse (Pohl et al., 2005). Core as-
sets of different products are provided as a platform.
Commonalities and differences among products are
captured in variability models, e.g., feature models
(Kang et al., 1990). These features are then connected
to the underlying software by traceability links. The
combination of MDSE with SPLE is subject to many
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Figure 1: Example source model: multi-variant UML class diagram with traceability links attached as comments. For the
reason of clarity, member end names and multiplicities have been omitted.

research activities, resulting in the integrating disci-
pline Model-Driven Product Line Engineering (MD-
PLE) (Gomaa, 2004). In MDPLE, traceability links
are realized by annotating model elements, e.g., using
presence conditions (Czarnecki and Kim, 2005).

In this position paper, we investigate limitations
and potentials of Multi-Variant Model Transforma-
tions (MVMT), which assume that the source model
contains variability that shall be transferred to corre-
sponding elements of the target model in an adequate
way. Our core contribution is the identification of the
following requirements being disregarded in current
MDSE/M2M standards and tools:

R1. Interchange of multi-variant model instances.

R2. Representation of variability information.

R3. Execution specification of multi-variant model
transformations.

The paper does not intend to present complete solu-
tions for these requirements. Instead, we motivate
their importance by an example and provide a short
literature review where partial solutions are aligned
with the problem statement.

Section 2 motivates the problem statement using a
simplistic example, a M2T transformation for a multi-
variant UML class diagram. In Section 3, the require-
ments outlined above are detailed. Section 4 contains
the literature review. The paper is concluded in Sec-
tion 5, which also addresses future research.

2 EXAMPLE

In this section, we present a simple example for a
multi-variant model transformation, assuming that the
requirements defined in the problem statement have
already been met. We consider a model-to-text trans-
formation, where the source model is a multi-variant

UML class diagram that represents a cut-out of the
static model of a Graph library – a standard exam-
ple in SPLE literature (Lopez-Herrejon and Batory,
2001). Variability is expressed by comments attached
to respective model elements. A multi-variant M2T
transformation is applied to the source model. The
expected outcome is provided as multi-variant Java
code, where variability information is expressed by
preprocessor-like constructs.

2.1 Source Model

Figure 1 shows the source model of the example
MVMT, a multi-variant class diagram for graphs. In
all variants, it is assumed that a Graph combines a
Vertex and an Edge set. Edges connect a start with an
end vertex. Furthermore, the model is connected to
the following options by traceability links:

directedEdges. If selected, the associations starts at
and ends at are included in the product. For
the reason of clarity, the realization of undirected
edges is not shown in the diagram. It could have
been realized by an unspecific association con-
nects with multiplicity 2.

labeledVertices. If selected, vertices have a string-
valued label assigned. This is realized by an ab-
stract class Labeled, which is specialized by Ver-
tex only in case this option is active.

labeledEdges. Realizes labeled edges in analogy.

weightedEdges. If selected, the attribute weight of
the edge class is visible. Furthermore, the class
name depends on this option: if deselected, it is
simply Edge, if selected WeightedEdge.

startContainsEdge. If selected, class Vertex will be
the container for outgoing edges, otherwise class
Graph will contain all edges.
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2.2 Generated Code

Listing 1 shows the expected output of the exam-
ple multi-variant model-to-text transformation. UML
classes were mapped to Java classes; UML attributes
and associations correspond to Java object variables,
where special collection types are used to represent
multi-valued non-containment and containment as-
sociation ends. Furthermore, the traceability links
were translated into corresponding preprocessor di-
rectives1.
1 public class Graph {
2 public ContainmentList<Vertex> vertices;
3 public
4 #if startContainsEdge
5 ContainmentList<Edge>
6 #else
7 List<Edge>
8 #endif
9 edges;
10 }
11

12 #if labeledVertices or labeledEdges
13 public abstract class Labeled {
14 public String label;
15 }
16 #endif
17

18 public class Vertex
19 #if labeledVertices
20 extends Labeled
21 #endif
22 {
23 public Graph graph;
24 #if directedEdges
25 public
26 #if directedEdges and

startContainsEdge
27 ContainmentList<Edge>
28 #else
29 List<Edge>
30 #endif
31 outgoing;
32 public List<Edge> incoming;
33 #else ...
34 #endif
35 }
36

37 public class
38 #if weightedEdges
39 WeightedEdge
40 #else
41 Edge
42 #endif
43 #if labeledEdges

1Unlike C/C++, Java does not provide a built-in prepro-
cessor. For this example, without the loss of generality, we
assume that conditional compilation is performed by an ex-
ternal tool that understands preprocessor directives contain-
ing boolean combinations (and/or/not) of options.

44 extends Labeled
45 #endif
46 {
47 public Graph graph;
48 #if directedEdges
49 public Vertex start;
50 public Vertex end;
51 #else ...
52 #endif
53 #if weightedEdges
54 public double weight;
55 #endif
56 }

Listing 1: Expected output of the example MVMT
in a condensed Java syntax using preprocessor-like
directives for conditional elements.

2.3 Desired Properties

From the example provided above, we may infor-
mally derive three properties to be satisfied in a best
possible way by MVMT: reuse of transformation
specifications, orthogonality of transformed models
and traceability links, and commutativity of the trans-
formation and a filter operation.

P1: Reuse. Above, we have tacitly assumed that
the expected output has been produced based upon an
existing MOFM2T specification, which describes the
transformation of UML class diagrams into Java code.
Thus, we argue that every MT should be reusable as
a MVMT. Reuse does not refer to the specific trans-
formation engine, which is in general not aware of
variability, but only to the transformation specifica-
tion itself. Thus, to enable reuse, a variability-aware
transformation engine is desirable.

P2: Orthogonality. Furthermore, we assume that
there exists an additional M2T transformation to con-
vert traceability links of the source model into a form
understood by the target model, e.g. preprocessor-
like directives. This transformation is referred to as
tracelink transformation below. We assume that the
tracelink transformation is orthogonal to the source-
to-target transformation: Different modeling lan-
guages and variability languages can be mixed arbi-
trarily, without affecting each other.

P3: Commutativity. The third property is con-
cerned with the interaction of the MVMT itself and
a filter operation (which may be considered as and
realized by another model transformation). When as-
suming the special case of SPL using negative vari-
ability, the filter operation takes as input a multi-
variant model and a configuration, which binds each
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Figure 2: Commutativity of MVMT and product derivation.

option/feature to a boolean selection value, and pro-
duces a single-variant model where those elements
are filtered out whose tracelinks evaluate to a negative
value when applying the configuration. The property
of commutativity states that the order of application
of transformation and filter, always assuming an equal
configuration, is immaterial (cf. Figure 2). In SPLE,
it is preferable to filter the product as late as possible,
since filtering marks the transition from domain to ap-
plication engineering. The later the filter is applied,
the more reusable the applied refinement steps are.

3 REQUIREMENTS

Obviously, the example presented in Section 2 can-
not be conducted using state-of-the-art model trans-
formation languages and tools. In this section, we
discuss the missing pieces, i.e., requirements, which
must be addressed by future research in order to main-
tain the properties P1 until P3 listed above. These re-
quirements include a standard for the interchange of
multi-variant model instances (R1, see Section 3.1), a
standard for representation of variability information
(R2, Section 3.2), and MVMT execution specificaton
(R3, Section 3.3). This section details those require-
ments without aiming to propose a standard at this
early stage of understanding the problem of MVMT.

3.1 Interchange of Multi-variant Model
Instances (R1)

With XMI (OMG, 2011c), the OMG have issued an
XML-based standard for the serialization of MOF-
based model instances. XMI is understood by the
majority of modeling tools, allowing to interchange
model instances across them. Listing 2 shows a cut-
out of the XMI-serialization of the example class
Edge, excluding traceability links.

Listing 2 ignores one detail shown in Figure 1:
The alternative class name WeightedEdge. Basically,
when using XMI, we are constrained by the meta-
model. In our example, the UML2 metamodel as-
signs the upper bound 1 to the multiplicity of the
attribute name of uml:Class. We argue that single-
variant modeling restrictions such as cardinality or

1 <packagedElement xmi:type="uml:Class"
name="Edge">

2 <generalization general="Labeled"/>
3 <ownedAttribute name="graph"

type="Graph" association="has edges"/>
4 <ownedAttribute name="start" type="Edge"

association="starts at"/>
5 <ownedAttribute name="end" type="Edge"

association="ends at">
6 </ownedAttribute>
7 </packagedElement>

Listing 2: XMI serialization of class Edge using the
Eclipse UML2 metamodel.

1 <packagedElement xmi:type="uml:Class"
name="Edge,WeightedEdge">

2 ... </packagedElement>

Listing 3: Multiple alternative values for a class.

typing constraints must be weakened when serializ-
ing multi-variant model instances. In our example,
the assignment shown in Listing 3 should be allowed.

Generally, multi-variant models will comply only
with tools understanding the multi-variant format.
However, single-variant tools may transparently ac-
cess multi-version models through a filter.

3.2 Representation of Variability
Information (R2)

Let us assume that the problem of multi-variant XMI
serialization has been solved. Then, there is still no
variability defined in XMI documents. The problem
of representing variability information, i.e., traceabil-
ity links, must be treated as a separate requirement.

Different tools capable of variability management
handle traceability links in a non-uniform way, e.g.,
using UML comments (as in the example above),
UML profiles and/or distinct mapping models (see
literature review in Section 4). We argue that vari-
ability information must be serialized in a uniform
and standardized way, which should be independent
of the concrete modeling language used. In Listing 4,
we suggest a tentative solution based on a new meta-
attribute mvxmi:tracelink2. The range of this attribute
must be precisely defined in future research. Here, we
stick to the “least common denominator” of proposi-
tional logical expressions.

By intention, we have omitted the multi-variant at-
tribute name, which raises an additional challenge:
How to attach traceability links to attribute values,
which are considered as atomic strings in the low-
level XMI serialization? Among others, this technical
question must be answered by future research.

2mvxmi would stand for multi-variant XMI.
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Figure 3: Sketch of a multi-variant model transformation engine.

1 <generalization general="Labeled"
mvxmi:tracelink="labeledEdges"/>

2 <ownedAttribute name="graph" type="Graph"
association="has edges"/>

3 <ownedAttribute name="start" type="Edge"
association="starts at"
mvxmi:tracelink="directedEdges"/>

4 <ownedAttribute name="end" type="Edge"
association="ends at"
mvxmi:tracelink="directedEdges">

5 </ownedAttribute>
6 </packagedElement>

Listing 4: Multi-variant XMI serialization of class
Edge, including variability information as traceability
links.

3.3 MVMT Execution (R3)

Only after having found solutions for requirements
R1 and R2 may we ask the question of execution
semantics: How to produce the target model from
the source model while ensuring the desired proper-
ties P1 until P3 listed in Section 2.3? Obviously,
MVMT support may only be achieved by a (partial)
re-implementation of an existing MT execution en-
gine. The interface of such a hypothetical MVMT en-
gine is sketched in Figure 3.

The engine takes as input a multi-variant instance
of the input meta-model and produces a multi-variant
instance of the output metamodel. The relationship
<<multivariantinstanceof>> must be specified in ac-
cordance with Requirement R1. As in a single-variant
MT, the transformation engine processes the input us-
ing a transformation specification which refers to the
source and target metamodels. In addition, in the
multi-variant case, a transformation specification for
the traceability links is needed, e.g., in order to define
how traceability links originating from several source
elements are merged. Both transformation specifica-
tion are described by means of an existing MT lan-
guage specification, which need not be aware of its
instances being executed in a multi-variant context.

4 LITERATURE REVIEW

In this section, we outline state-of-the-art solutions to
parts of our problem statement, structured by the re-
quirements R1 until R3 identified in Section 3.

R1: Multi-Variant Model Interchange. Since
there exists no standard for the representation of
multi-variant model instances, different tools dealing
with MDSE and variability apply custom solutions.
An established compromise in the context of MDPLE
is that the multi-variant domain model must be in-
stance of the single-variant metamodel. This removes
the necessity of an explicit multi-variant interchange
format but constrains variability; for instance, alterna-
tive class names as shown in Figure 1 would be disal-
lowed. Nevertheless, this approach is realized in the
majority of MDPLE approaches, including (Gomaa,
2004; Heidenreich et al., 2008).

The approach presented in (Buchmann and
Schwägerl, 2015a) mitigates this restriction by mov-
ing alternative values into a distinct mapping model,
which also contains traceability links. However, this
solution is specific to the concrete tool.

Another category of MDPLE tools relying on pos-
itive variability (Zschaler et al., 2010; Völter and Gro-
her, 2007) describe multi-variant models as a set of
model transformations to be conditionally applied to
a core model, a valid single-variant model instance.
This approach lacks generality since specific transfor-
mation tools are needed.

The problem of multi-version model representa-
tion also arises in model versioning (Altmanninger
et al., 2009). In approaches relying on directed deltas,
different versions are described by means of condi-
tional graph modifications (Taentzer et al., 2014). In
(Schwägerl et al., 2015), versioned model graphs are
introduced as a form of representation for symmetric
deltas. These approaches, however, lack generality,
since they are restricted to version control and not de-
signed as interchange format, but merely for internal,
tool-specific representation.
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R2: Variability Representation. Many SPLE
tools, including (Buchmann and Schwägerl, 2015a;
Heidenreich et al., 2008), use their own, non-
standardized tools to represent variability and trace-
ability links. Variability itself is commonly repre-
sented by feature models (Kang et al., 1990), for
which many derivatives can be found in literature,
leading to a quite heterogeneous tool landscape. The
expressiveness of approaches trying to unify trace-
ability links ranges from simple conjunctions (Go-
maa, 2004) over propositional logic (Westfechtel and
Conradi, 2009) to feature logic, which has been sug-
gested as a foundation for SCM in (Zeller and Snelt-
ing, 1997).

With the Common Variability Language (CVL)
(OMG, 2012a), the OMG are working on a standard
for representing variability information within mod-
els. In contrast to multi-variant models as defined
here, CVL assumes that variation points are explic-
itly included in the model and expressed by specific
modeling constructs. This is in contradiction with the
desired property P2 (orthogonality). However, CVL’s
OCL3-based variability constraints provide a higher
expressiveness than all approaches mentioned above.

R3: MVMT Execution. Specialized forms of
MVMT have been realized within SPLE tools.
Though, we haven’t found a general solution having
the qualities of our proposed MVMT engine.

The solution presented in (Buchmann and
Schwägerl, 2015b) is specific to transformations from
Ecore models to Java source code. A MVMT is sim-
ulated by applying single-variant code generation to
the multi-variant model and then propagating back
generated code into the source model. This way,
lower-level source code elements such as object vari-
ables and accessor methods are provided with the
same variability information as their higher-level cor-
respondences, e.g., Ecore references. However, this
solution does not address applied occurrences of vari-
able parts in manually implemented method bodies.

(Salay et al., 2014) agree with our observation
that MDPLE is currently impeded by the lack of sup-
port for variability in model transformations. They
propose a lifting algorithm which interprets existing
model transformation rules, which are assumed to be
based on a graph rewriting formalism, on a model
that contains variability. Properties P1 (reuse) and P3
(commutativity) are guaranteed. The solution is fully
variability-aware; However, variability is constrained
by single-version metamodels, disallowing “uncon-
strained” input/output models (e.g., Figure 1).

3Object Constraint Language (OMG, 2014)

An approach combining the aforementioned CVL
with domain specific languages is presented in (Hau-
gen et al., 2008). As required by CVL, variation
points are contained in the abstract syntax tree of
model instances. However, the approach does not in-
clude a transfer of variability information to the target
model as requested by our problem statement.

5 CONCLUSION AND OUTLOOK

This position paper has asked initial questions refer-
ring to the problem of multi-variant model transfor-
mations, including a discussion of the requirements
of a standardization of (R1) multi-variant model in-
terchange, (R2) representation of variability infor-
mation and (R3) execution semantics. The long-
term research goal is to develop a variability-aware
model transformation engine that (P1) reuses existing
single-variant transformation specification, (P2) sepa-
rates the core transformation from the transformation
of variability information, and (P3) maintains as well
as possible the intuitively desirable property of com-
mutativity with a filter operation. Furthermore, we
have provided a simple yet challenging example for
MVMT, which may serve as a starting point for the
evaluation of an eventual MVMT engine.

From a literature review, we have learned that all
of the three requirements defined here have already
been addressed by existing tools and approaches, but
not to a satisfactory extent. Most solutions lack gen-
erality and do not identify MVMTs as an explicit re-
search problem. However, we are convinced that a
general solution for MVMTs may raise the accep-
tance of disciplines such as Model-Driven Product
Line Engineering, which explicitly defines the goal
of organized reuse. An MVMT engine would lift the
goal of organized reuse up to the tooling level, allow-
ing to more easily adapt single-variant tool chains to
multi-variant scenarios. Especially when combined
with reverse or round-trip engineering, new chal-
lenges will soon arise for MVMT, e.g., support for
bidirectional or incremental model transformations.
Furthermore, the requirement of being “variability-
aware” is not restricted to model transformations, but
will gain importance in, e.g., model validation or ver-
sion control.
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