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A critical task in data cleaning and integration is the identification of duplicate records representing the same

real-world entity. A popular approach to duplicate identification employs similarity join to find pairs of similar
records followed by a clustering algorithm to group together records that refer to the same entity. However,
the clustering algorithm is strictly used as a post-processing step, which slows down the overall performance
and only produces results at the end of the whole process. In this paper, we propose SjClust, a framework to
integrate similarity join and clustering into a single operation. Our approach allows to smoothly accommo-
dating a variety of cluster representation and merging strategies into set similarity join algorithms, while fully
leveraging state-of-the-art optimization techniques.

1 INTRODUCTION

The presence of multiple records representing the
same real-world entity plagues practically every large
database. Such records are often referred to as fuzzy
duplicates (duplicates, for short), because they might
not be exact copies of one another. Duplicates arise
due to a variety of reasons, such as typographical er-
rors and misspellings during data entry, different nam-
ing conventions, and as a result of the integration of
data sources storing overlapping information.

Duplicates degrade the quality of the data deliv-
ered to application programs, thereby leading to a
myriad of problems. Some examples are mislead-
ing data mining models owing to erroneously inflated
statistics, inability of correlating information related
to a same entity, and unnecessarily repeated opera-
tions, e.g., mailing, billing, and leasing of equipment.
Duplicate identification is thus of crucial importance
in data cleaning and integration.

Duplicate identification is computationally very
expensive and, therefore, typically done offline. How-
ever, there exist important application scenarios that
demand (near) real-time identification of duplicates.
Prominent examples are data exploration (Idreos
et al., 2015), where new knowledge has to be effi-
ciently extracted from databases without a clear def-
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inition of the information need, and virtual data inte-
gration (Doan et al., 2012), where the integrated data
is not materialized and duplicates in the query result
assembled from multiple data sources have to be iden-
tified — and eliminated — on-the-fly. Such scenarios
have fueled the desire to integrate duplicate identifi-
cation with processing of complex queries (Altwaijry
etal., 2015) or even as a general-purpose physical op-
erator within a DBMS (Chaudhuri et al., 2006).

An approach to realize the above endeavor is to
employ similarity join in concert with a clustering al-
gorithm (Hassanzadeh et al., 2009). Specifically, sim-
ilarity join is used to find all pairs of records whose
similarity is not less than a specified threshold; the
similarity between two records is determined by a
similarity function. In a post-processing step, the
clustering algorithm groups together records using the
similarity join results as input.

For data of string type, set similarity join is an ap-
pealing choice for composing a duplicate identifica-
tion operator. Set similarity join views its operands as
sets — strings can be easily mapped to sets. The cor-
responding similarity function assesses the similarity
between two sets in terms of their overlap and a rich
variety of similarity notions can be expressed in this
way (Chaudhuri et al., 2006). Furthermore, a num-
ber of optimization techniques have been proposed
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over the years (Sarawagi and Kirpal, 2004; Chaud-
huri et al., 2006; Bayardo et al., 2007; Xiao et al.,
2008; Ribeiro and Hérder, 2011) yielding highly effi-
cient and scalable algorithms.

The strategy of using a clustering algorithm
strictly for post-processing the results of set similar-
ity join has two serious drawbacks, however. First,
given a group of n, sufficiently similar, duplicates, the
set similarity join performs (;) similarity calculations
to return the same number of set pairs. While this
is the expected behavior considering a similarity join
in isolation, it also means that repeated computations
are being performed over identical subsets. Even
worse, we may have to perform much more additional
similarity calculations between non-duplicates: low
threshold values are typically required for clustering
algorithms to produce accurate results (Hassanzadeh
et al., 2009). Unfortunately, existing filtering tech-
niques are not effective at low threshold values and,
thus, there is an explosion of the number of the com-
parison at such values. Second, the clustering is a
blocking operator in our context, i.e., it has to con-
sume all the similarity join output before producing
any cluster of duplicates as result element. This fact is
particularly undesirable when duplicate identification
is part of more complex data processing logic, possi-
bly even with human interaction, because it prevents
pipelined execution.

In this paper, we present SJClust, a framework
to integrate set similarity join and clustering into a
single operation, which addresses the above issues.
The main idea behind our framework is to repre-
sent groups of similar sets by a cluster representative,
which is incrementally updated during the set simi-
larity join processing. Besides effectively reducing
the number similarity calculations needed to produce
a cluster of n sets to O (n), we are able to fully lever-
age state-of-the-art optimization techniques at high
threshold values, while still performing well at low
threshold values where such techniques are less ef-
fective. Moreover, we exploit set size information to
identify when no new set can be added to a cluster;
therefore, we can then immediately output this clus-
ter and, thus, avoid the blocking behavior. On the
other hand, improving performance of clustering al-
gorithms is critical for next-generation big data man-
agement and analytics applications (e.g., (Cuzzocrea
et al., 2013b; Cuzzocrea, 2013; Cuzzocrea et al.,
2013a)).

Furthermore, there exists a plethora of clustering
algorithms suitable for duplicate identification and no
single algorithm is overall the best across all scenar-
ios (Hassanzadeh et al., 2009). Thus, versatility in
supporting a variety of clustering methods is essen-
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tial. Our framework smoothly accommodates various
cluster representation and merging strategies, thereby
yielding different clustering methods for each combi-
nation thereof.

2 BASIC CONCEPTS AND
DEFINITIONS

In this section, we present important concepts and
definitions related to set similarity joins before
present important optmization techniques.

We map strings to sets of fokens using the popular
concept of g-grams, i.e., sub-strings of length g ob-
tained by “sliding” a window over the characters of
an input string v. We (conceptually) extend v by pre-
fixing and suffixing it with ¢ — 1 occurrences of a spe-
cial character “$” not appearing in any string. Thus,
all characters of v participate in exact g g-grams. For
example, the string “foken” can be mapped to the set
of 2-gram tokens {$t, to, ok, ke, en, n$}. As the re-
sult can be a multi-set, we simply append the symbol
of a sequential ordinal number to each occurrence of
a token to convert multi-sets into sets, e.g, the multi-
set {a,b,b} is converted to {acl, bol, bo2}. In the
following, we assume that all strings in the database
have already been mapped to sets.

We associate a weight with each token to obtain
weighted sets. A widely adopted weighting scheme
is the Inverse Document Frequency (IDF), which as-
sociates a weight idf (tk) to a token tk as follows:
idf (tk)=In(1+N/df (tk)), where df (tk) is the doc-
ument frequency, i.e., the number of strings a token
tk appears in a database of N strings. The intuition
behind using IDF is that rare tokens are more dis-
criminative and thus more important for similarity as-
sessment. We obtain unweighted sets by associating
the value 1 to each token. The weight of a set r, de-
noted by w(r), is given by the weight summation of
its tokens, i.e., w(r) = Y 1c, w(tk); note that we have
w (r) = |r| for unweighted sets.

We consider the general class of set similarity
functions. Given two sets r and s, a set similarity
function sim (r, s) returns a value in [0, 1] to represent
their similarity; larger value indicates that r and s have
higher similarity. Popular set similarity functions are
defined as follows.

Definition 1 (Set Similarity Functions). Let r and s
be two sets. We have:

o Jaccard similarity: J (r,s) = ::E:Si;
e Dice similarity: D (r,s) = %
w(rNs)

e Cosine similarity: C(r,s) =

—~

w

r)-w(s)



SJClust: Towards a Framework for Integrating Similarity Join Algorithms and Clustering

We now formally define the set similarity join op-
eration.

Definition 2 (Set Similarity Join). Given two set col-
lections R_and S, a set similarity function sim, and
a threshold 7, the set similarity join between R _and
S returns all scored set pairs ((r,s),v!) s.t. (r,s) €
R x S and sim (r,s) =1/ > 1.

In this paper, we focus on self-join, i.e., R = S;
we discuss the extension for binary inputs in Section
4. For brevity, we use henceforth the term similarity
function (join) to mean set similarity function (join).
Further, we focus on the Jaccard similarity and the
IDF weighting scheme, i.e., unless stated otherwise,
sim(r,s) and w(tk) denotes J (r,s) and idf (tk), re-
spectively.

Example 1. Consider the sets r and s below

x={A,B,C,D,E}
y=1{A,B,D,E,F}

and the following token-IDF association table:

tk A B C D E F
df (tk)| 1.5 2.5 2 35 05 2

We have w (r) =w (s) = 10 and w (rNs) = 8; thus
sim (r,s) = 15779—5 ~ 0.66.

3 OPTIMIZATION TECHNIQUES

In this section, we describe a general set similar-
ity join algorithm, which provides the basis for our
framework.

Similarity functions can be equivalently repre-
sented in terms of an overlap bound (Chaudhuri et al.,
2006). Formally, the overlap bound between two sets
r and s, denoted by O(r,s), is a function that maps
a threshold 7T and the set weights to a real value, s.t.
sim(r,s) > T iff w(rns) > O(r,s)'. The similarity
join can then be reduced to the problem of identify-
ing all pairs » and s whose overlap is not less than
O(r,s). For the Jaccard similarity, we have O (r,s) =
() +w(s)).

Further, similar sets have, in general, roughly sim-
ilar weights. We can derive bounds for immedi-
ate pruning of candidate pairs whose weights dif-
fer enough. Formally, the weight bounds of r, de-
noted by min (r) and max (r), are functions that map
T and w(r) to a real value s.t. Vs, if sim(r,s) > 1,
then min (r) < w(s) < max(r) (Sarawagi and Kirpal,
2004). Thus, given a set r, we can safely ignore all

IFor ease of notation, the parameter T is omitted.

other sets whose weights do not fall within the in-
terval [min (r),max(r)]. For the Jaccard similarity,

T
reader to (Schneider et al., 2015) for definitions of
overlap and weight bounds of several other similarity
functions, including Dice and Cosine.

We can prune a large share of the compari-
son space by exploiting the prefix filtering principle
(Sarawagi and Kirpal, 2004; Chaudhuri et al., 2006).
Prefixes allow selecting or discarding candidate pairs
by examining only a fraction of the original sets. We
first fix a global order O on the universe U from
which all tokens in the sets considered are drawn. A
set ' C ris a prefix of r if /' contains the first || to-
kens of r. Further, prefg (r) is the shortest prefix of r,
the weights of whose tokens add up to more than .
The prefix filtering principle is defined as follows.

Definition 3 (Prefix Filtering Principle (Chaudhuri
etal., 2006)). Let r and s be two sets. If w(rNs) > a,

then prefg (r) Nprefg (r) # @, where B, =w(r) —a
and Bs = w (s) — o, respectively.

we [min (r) ,max (r)] = |:’I: w(r), w(r)] . We refer the

We can identify all candidate matches of a given
set r using the prefix prefg(r), where B = w(r) —
min (r). We denote this prefix simply by pref (r). It
is possible to derive smaller prefixes for r, and thus
obtain more pruning power, when we have informa-
tion about the set weight of the candidate sets, i.e., if
w(s) > w(r) (Bayardo et al., 2007) or w(s) > w(r)
(Ribeiro and Harder, 2011). Note that prefix overlap
is a condition necessary, but not sufficient to satisfy
the original overlap constraint: an additional verifica-
tion must be performed on the candidate pairs.

Further, the number of candidates can be signif-
icantly reduced by using the inverse document fre-
quency ordering, Oy, as global token order to obtain
sets ordered by decreasing IDF weight 2. The idea is
to minimize the number of sets agreeing on prefix el-
ements and, in turn, candidate pairs by shifting lower
frequency tokens to the prefix positions.

Example 2. Consider the sets r and s in Example 1
and T =0.6. We have O (r,s) =1.5; [min(r) ,max (r))
and [min (s) ,max (s)] are both [6,16.7]. By ordering
r and s according to Ojqy and the IDF weights in Ex-
ample 1, we obtain:

x=[D,B,C,A,E]
y=[D,B,F,A,E].
We have pref (r) = pref (s) = D).

2 A secondary ordering is used to break ties consistently
(e.g., the lexicographic ordering). Also, note that an equiv-
alent ordering is the document frequency ordering, which
can be used to obtain unweighted sets ordered by increas-
ing token frequency in the collection.
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4 THE SIMILARITY JOIN
ALGORITHM

In this section, we provide the details on the similarity
join algorithm.

Similarity join algorithms based on inverted lists
are effective in exploiting the previous optimizations
(Sarawagi and Kirpal, 2004; Bayardo et al., 2007;
Xiao et al., 2008; Ribeiro and Héirder, 2011). Most
of such algorithms have a common high-level struc-
ture following a filter-and-refine approach.

Algorithm 1 formalizes the steps of a similarity
join algorith. The algorithm receives as input a set
collection sorted in increasing order of set weights,
where each set is sorted according to O;z¢. An in-
verted list /; stores all sets containing a token ¢ in their
prefix. The input collection R is scanned and, for each
probe set r, its prefix tokens are used to find candidate
sets in the corresponding inverted lists (lines 4-10);
this is the candidate generation phase, where the map
M is used to associate candidates to its accumulated
overlap score os (line 3). Each candidate s is dynam-
ically removed from the inverted list if its weight is
less than min (r) (lines 6-7). Further filters, e.g., filter
based on overlap bound, are used to check whether s
can be a true match for r, and then the overlap score
is accumulated, or not, and s can be safely ignored in
the following processing (lines 8—10). In the verifica-
tion phase, r and its matching candidates are checked
against the similarity predicate and those pairs sat-
isfying the predicate are added to the result set. To
this end, the Verify procedure (not shown) employs
a merge-join-based algorithm exploiting token order
and the overlap bound to define break conditions (line
11). Finally, in the indexing phase, a pointer to set r
is appended to each inverted list /; associated with its
prefix tokens (lines 12 and 13).

Algorithm 1 is actually a self-join. Its extension
to binary joins is trivial: we first index the smaller
collection and then go through the larger collection
to identify matching pairs. For simplicity, several fil-
tering strategies such positional filtering (Xiao et al.,
2008) and min-prefixes (Ribeiro and Hérder, 2011),
as well as inverted list reduction techniques (Bayardo
et al., 2007; Ribeiro and Hirder, 2011) were omit-
ted. Nevertheless, these optimizations are based on
bounds and prefixes and, therefore, our discussion in
the following remains valid.

S THE SJClust FRAMEWORK

We now present SJClust, a general framework to in-
tegrate clustering methods into similarity joins algo-
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Algorithm 1: Similarity join algorithm.

Input: A set collection & sorted in increasing order
of the set weight; each set is sorted according
to Oy4r; a threshold ©

Output: A set S containing all pairs (r,s) s.t.

Sim(r,s) > 7

1 1I1,D,. ..Ilul ez Rl ]

2 foreach r € R do

3 M <+ empty map from set id to overlap score (0s)

4 | foreacht € pref(r)do // can. gen. phase

5 foreach s € I, do

6 if w(s) <min(r)

7 Remove s from

8 if filter (r,s,M (s))

9

M (s) .08 ¢ —o0 // invalidate s

10 else M (s).os = M (s).os +w(t)
11 S < SU Verify (M, ) // verif. phase
12 foreach ¢ € pref (r) do // index. phase

13 LI[(*I[U{V}

14 return S

] % aux. data
.>D'|:| struct.

7

. /
N .
N .

complete representation

[ list of set ids

/
B
/
/

cluster representative

Figure 1: Cluster representation.

rithms. The goals of our framework are threefold: 1)
flexibility and extensibility to accommodate different
clustering methods; 2) efficiency by fully leveraging
existing optimization techniques and by reducing the
number of similarity computations to form clusters;
3) non-blocking behavior by producing results before
having consumed all the input.

The backbone of SJClust is the similarity join al-
gorithm presented in the previous section. In partic-
ular, SJClust operates over the same input of sorted
sets, without requiring any pre-processing, and has
the three execution phases present in Algorithm 1,
namely, candidate generation, verification, and index-
ing phases. Nevertheless, there are, of course, major
differences.

First and foremost, the main objects are now clus-
ter of sets, or simply clusters. Figure 1 illustrates
strategy adopted for cluster representation. The inter-
nal representation contains a list of its set element’s
ids, an (optional) auxiliary structure, and the cluster’s
complete representation, a set containing all tokens
from all set elements. The cluster export its external
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Figure 2: SJClust framemork components.

representation as the so-called cluster representative
(or simply representative), which is fully comparable
to input sets. Similarity evaluations are always per-
formed on the representatives, either between a probe
set and a cluster or between two clusters. In the fol-
lowing, we use the term cluster and representative
interchangeably whenever the distinction is unimpor-
tant for the discussion.

Figure 2 depicts more details on the SJClust
framework. In the candidate generation phase, prefix
tokens of the current probe set are used to find clus-
ter candidates in the inverted lists (Figure 2(a)). Also,
there is a merging phase between verification and in-
dexing phases (Figure 2(b)). The verification phase
reduces the number of candidates by removing false
positives, i.e., clusters whose similarity to the probe
set is less than the specified threshold. In the merging
phase, a new cluster is generated from the probing
set and the clusters that passed through the verifica-
tion are considered for merging with it according to a
merging strategy. In the indexing phase, references to
the newly generated cluster are stored in the inverted
lists associated with its prefix tokens. Finally, there
is the so-called Output Manager, which is responsi-
ble for maintaining references to all clusters —a ref-
erence to a cluster is added to the Output Manager
right after its generation in the merging phase (Figure
2(b)). Further, the Output Manager sends a cluster to
the output as soon as it is identified that no new prob-
ing set can be similar to this cluster. Clusters in such
situation can be found in the inverted lists during the
candidate generation (Figure 2(a)) as well as identi-
fied using the weight of the probe set (not shown in
Figure 2).

The aforementioned goals of SJClust are met as
follows: flexibility and extensibility are provided by
different combinations of cluster representation and
merging strategies, which can be independently and
transparently plugged into the main algorithm; effi-
ciency is obtained by the general strategy to cluster
representation and indexing; and non-blocking behav-
ior is ensured by the Output Manager.

6 RELATED WORK

The duplicate identification problem has a long his-
tory of investigation conducted by several research
communities spanning databases, machine learning,
and statistics, frequently under different names, in-
cluding record linkage, deduplication, and near-
duplicate identification (Koudas et al., 2006; Elma-
garmid et al., 2007). Over the last years, there is
growing interest in realizing duplicate identification
on-the-fly. In (Altwaijry et al., 2013), a query-driven
approach is proposed to reduce the number of clean-
ing steps in simple selections queries over dirty data.
The same authors presented a framework to answer
complex Select-Project-Join queries (Altwaijry et al.,
2015). Our work is complementary to these proposals
as our framework can be encapsulated into physical
operators to compose query evaluation plans.

There is long line of research on (exact) set sim-
ilarity joins (Sarawagi and Kirpal, 2004; Chaudhuri
et al., 2006; Bayardo et al., 2007; Xiao et al., 2008;
Ribeiro and Harder, 2009; Ribeiro and Hirder, 2011;
Wang et al., 2012). Aspects most relevant to our work
have already been discussed at length in Section 2.
To the best of our knowledge, integration of cluster-
ing into set similarity joins has not been investigated
in previous work.

In (Mazeika and Bohlen, 2006), the authors em-
ploy the concept of proximity graph to cluster strings
without requiring a predefined threshold value. The
algorithm to automatically detected cluster borders
was improved later in (Kazimianec and Augsten,
2011). However, it is not clear how to leverage state-
of-the-art set similarity joins in these approaches to
improve efficiency and deal with large datasets.

In (Hassanzadeh et al., 2009), a large number of
clustering algorithms are evaluated in the context of
duplicate identification. These algorithms use simi-
larity join to produce their input, but can start only
after the execution of the similarity join.
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7 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented SJClust, a framework to
integrate clustering into set similarity join algorithms.
Our framework provides flexibility and extensibility
to accommodate different clustering methods, while
fully leveraging existing optimization techniques and
avoiding undesirable blocking behavior.

Future work is mainly oriented towards enriching
our framework with advanced features such as un-
certain data management (e.g., (Leung et al., 2013)),
adaptiveness (e.g., (Cannataro et al., 2002)), and exe-
cution time prediction (e.g, (Sidney et al., 2015)).
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