
A Metadata-based Architecture for Identification and Discovery of
Services in SOA

Aluizio Haendchen Filho1, Hercules Antonio do Prado2 and Edilson Ferneda2
1University College of Brusque - UNIFEBE, Brusque, Brazil

2Catholic University of Brasília, Brasília, Brazil

Keywords: Resource-Oriented Model, SOA, Service Discovery, Metadata, Case-based Reasoning.

Abstract: An approach for resource identification, management, and service discovery in SOA is presented. The
approach emphasizes an architectural model that allows representation, description, and identification of
services, and is explored as a metadata repository. It is focused not only on Web Services, but also in all
services existing in big companies’ applications, including currently developed services and legacy system
services, highlighting the importance of reusing fine granularity services. The model includes discovery
procedures to find and retrieve candidates for services composition and reuse. These procedures adopt a
Case-Based Reasoning approach, in which the services are considered as cases kept and indexed in a reposi-
tory. Case matching is carried out by means of text mining techniques that allow finding the most appropri-
ate service candidate with the desired requirements for a particular task.

1 INTRODUCTION

Service-Oriented Architecture (SOA) remains as the
best option available for system integration and
leverage of legacy systems (Lewis et al., 2010).
Technologies to implement SOA will certainly
evolve to address emerging needs, but its basic con-
cepts will remain.

The ability to compose applications and process-
es, as well as to assemble new functionalities from
existing services is regarded as one of the most im-
portant benefits of SOA. Large and medium sized
organizations can eventually have hundreds and
even thousands of fine-grained procedures distribut-
ed across business applications.

Web Services and SOA are part of the solution
for services composition and reuse, but applicability
has been marked by difficulties in applying technical
solutions. A large scale dissemination of SOA
strongly depends on the coarse-grained services that
are constructed and exposed to specific interfaces.
Web services usually provide coarse-grained func-
tionality such as customer lookup, as opposed to
finer grained functionality such as customer address
lookup (Lewis & Smith, 2007). Finer-grained opera-
tions result in large number of calls and increased
network traffic, whereas coarse-grained operations
may need to transmit unnecessary information (Fu-

jita & Mejri, 2006). In order to design effective
coarse-grained services, the fine-grained services
and all other services need to be better described,
represented and exposed to modelers, developers,
and business technical analysts.

A metadata repository is vital to a company’s
ability to prosper in a service-oriented environment,
but it must be built having specific business needs in
mind to support business and technical users. More-
over, it must be built on a technologically sound
architecture that will support future growth as appli-
cations evolve into business intelligence solutions.
Additionally, mechanisms to facilitate the discovery
of services are essential to enable the reuse and
composition of new services (Marco, 2000).

A structural model and an infrastructure com-
posed by a metadata repository for resource man-
agement and services discovering in SOA are pre-
sented, including techniques and tools for the identi-
fication and specification of services. The structural
model is composed by a set of meta-classes that
allow the representation and description of services
and service components from different types and
granularities for composition and reuse. The archi-
tecture and infrastructure model can be employed
during various stages of the software development
lifecycle. This allows designing and building of new
tasks by a choreography of fine-grained services into

298
Filho, A., Prado, H. and Ferneda, E.
A Metadata-based Architecture for Identification and Discovery of Services in SOA.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 2, pages 298-305
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

composite business services. Discovery mechanisms
use data mining techniques to allow finding the most
appropriate service candidate with the desired re-
quirements for a particular task or composition. The
proposal was built over MIDAS (Haendchen Filho
& Vasconcelos, 2015), a platform that uses SOA for
development of distributed applications. This work
extends the contribution of Haendchen Filho et al.
(2015) by introducing the service discovery using
tf×idf technique (Leskovec et al., 2014).

2 SERVICES CLASSIFICATION

Classification helps to determine composition and
layering, as well as to coordinate the construction of
interdependent services based on hierarchy. The
identification of business functions to be provided as
services is a basic precondition for a detailed speci-
fication and implementation of services in SOA. For
an effective SOA realization it is important that the
service portfolio takes into account the correct ser-
vice granularity. It helps not only in easing main-
tainability, but also in effective governance of the
service portfolios (Saroh & Sahu, 2014).

Services are offered at different layers with a de-
finitive granularity degree. Service granularity refers
to service size and the scope of functionality that a
service exposes. The service granularity can be
quantified as a combination of the number of com-
ponents/services composed by means of a given
operation. The service should have the right granu-
larity to accomplish a business work unit in a single
interaction. Usually three categories of granularities
are referred: services of coarse, medium, or fine
granularity. The problem of determining the optimal
service granularity is relevant since an increasingly
number of applications has been built by assembling
internal and external services (Manouvrier, 2008).
Since most organizations have overlaping and re-
dundancy both in business functionality and in data
(e.g., Accounts Management) across different Lines
of Business, it is essential to have a portfolio of
business services which could be reused across mul-
tiple places.

A service would be regarded as coarse-grain if
the size of exchanged messages grows and some-
times might carry more than needed data. On the
other hand, if the service is fine-grained, then it can
be excessively invoked, which introduces quality
concerns and services outflow. A balance is hence
required between level of abstraction, likelihood of
change, complexity of the service, and the desired
level of cohesion and coupling. High level business

process functionality is externalized for large-
grained services. Smaller-grained services help to
realize the higher level of services. They are identi-
fied by examining the existing legacy functionality
and deciding how to create adaptors and wrappers.
(Arsanjani et al., 2014).

Four different kinds of services are considered in
the proposed platform: (i) services developed in the
containers that use the internal service-oriented
interfaces; (ii) legacy application services encapsu-
lated in wrapper components; (iii) external web
services of interest also encapsulated in wrapper
components; and (iv) internal web services available
for external applications or stakeholders such as
customers and suppliers. The first three are de-
scribed and shown in the internal structure of plat-
form services, while the latter is represented in the
internal UDDI registry.

3 THE RESOURCE-ORIENTED
ARCHITECTURE

MIDAS architecture is composed by a Front-End
Server (FES) and interconnected containers. Both
FES and containers includes the Resource-Oriented
Model (ROM) that is implemented by Catalog agent.
A resource description is a metadata representation
that makes possible for a human or software agent to
discover service and provider entities (Bhuvaneswari
& Sujatha, 2011). An important aspect of SOA is the
extensive use of metadata (W3C, 2004). Resources
are represented by meta-classes along with methods
to manipulate and retrieve information about them.
The proposed model provides meta-classes for de-
fining different types of resources that may be found
in an infrastructure environment.

Figure 1: ROM and the metadata repository architecture.

Figure 1 shows the internal structure of Catalog
agent placed in a container. It is composed by cata-
log and metainfo packages. In order to ease the ap-
plication of the proposed infrastructure, the meta-

A Metadata-based Architecture for Identification and Discovery of Services in SOA

299

classes in the metainfo package are categorized in
six major high-level classes: ACInfo, ApplicationIn-
fo, EntityInfo, ServiceInfo, ParameterInfo, and
DataSource info. These classes encapsulate infor-
mation about elements of the structure and have a set
of methods in order to obtain information about any
element. The most important concerns that have
been addressed in this model are the infrastructure
management of resources, their internal organiza-
tion, structure, classification and identification.

The resources representation and description are
stored in two XML files: structure.xml and ser-
vices.xml. In the structure.xml file, elements are
arranged in a hierarchical parent/child entity set. In
the services.xml file, the services are stored by name.
These files enable two access modes: via the root
structure or by direct access to the service. The first
mode may be used in service discovery tasks. The
second ensures efficiency, since service information
can be quickly obtained using the service name as
index, without traversing the structure.

Resources management and handling are per-
formed by Catalog and Parser classes. The Catalog
class receives requests which may be: (i) a message
for resource structure updating; (ii) a resource struc-
ture loading is received when an AC is initialized;
and (iii) a service location message is received to
check if the service requested is available or not.
The Parser class performs procedures for handling
XML files, according to the Document Object Mod-
el (W3C, n.d.), in order to store and retrieve infor-
mation.

3.1 Metadata Repository

SOA demands for a systematic identification of the
information system functions to be implemented as
services. Metadata publishing consists of making
data element definitions and structures available to
people and other systems. Metadata registries are
frequently large and complex structures and require
navigation, visualization, and searching tools.

The metadata is relevant because it fosters in-
teroperability by requiring increased precision in the
documentation of services. It also provides the se-
mantic layer between the technical specification and
the business analysts and developers. In simple
terms, metadata translates the technical terminology
used in IT systems in comprehensive terms for busi-
ness analysts and modelers can understand (Marco,
2000).

The resource structure is described in the metain-
fo package, where each element is represented by a
meta-class implemented as an entity. Each entity

encapsulates information about the elements of the
resource structure and provides a set of methods to
retrieve information about the entity.

The ACInfo metaclass is the root of an aggregat-
ed class hierarchy representing the container re-
source structure. It keeps information about the
container, such as its IP address, registration date,
and data gathering statistics and metrics for QoS
report. ApplicationInfo metaclass encapsulates in-
formation about each application hosted in AC, such
as agents, components, and services. The EntityInfo
metaclass includes information about entities de-
ployed in applications, such as business definition
about the purpose of this entity, list of attributes, and
operations, especially for reading and writing data
meaningful to the company.

ServiceInfo metaclass provides detailed infor-
mation of service, and its attributes compose the
service descriptors that are used for services discov-
ery. The services descriptors are: (i) Name, contain-
ing a representative name of the service, (ii) Type,
referring to service classification, (iii) Return, which
describes the data returning after the service execu-
tion, (iv) Description, that presents a summarized
description on what the service does, (v) Keywords,
containing significant words or expressions regard-
ing the service functionality, (vi) Implementation,
specifying how the service is available (ex. Java
service, Web service, wrapper component), and (vii)
Classification, described in the sub-topic Services
Classification.

Information about services interfaces and the re-
quired parameters are provided by the ParameterInfo
metaclass, which specifies the name, data type and
additional parameters information. Input and output
parameters of services must be specified and trans-
ferred into a formal interface definition. During this
process a complete signature of operations (includ-
ing e. g., data types, input and output parameters of
service invocations) and the SOA standards ex-
pected to be used must be selected and defined.

DataSourceInfo metaclass provides information
on the database tables. This description allows con-
figuration of database drivers, as well as generic and
specific services that can be used for manipulating
data in database tables. One way to promote the
reuse of legacy application functionality is to encap-
sulate their procedures in wrapper components.
Databases, libraries, services, and other content
sources can be wrapped in components (Sletten,
2009). In a shared information environment, it is
highly relevant to allow access to metadata that
describe a data source, regardless of the device and
format in which it is stored.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

300

3.2 Consolidate Resources
Representation

FES Catalog agent performs the procedures for
management and handling of the global resource
structure. The responsibilities of Catalog agent in
FES are different from the ones in the container. For
example, since FES does not manipulate resources,
there is no need to have the XML description of the
resource structure. On the server, it only consoli-
dates the representations of the resources allocated
in containers, keeping them in cache memory and
serialized files. The representation maintained in
FES is a description of the consolidated hierarchy of
resources that reflects the representation of all plat-
form elements in a given moment.

Figure 2: The FES Catalog agent.

Figure 2 shows its internal structure, which con-
sists of three packages: catalog, metainfo, discoverer
and serializer. All service requests are received by
the Catalog agent through a single gateway. Re-
quests for services visualization and discovery are
forwarded from Manager to the Catalog. The Cata-
log class receives three message types: (i) a new
container register or update is received when an AC
wants to self-register on the platform or update its
resource structure. In this case it sends all the ele-
ments of the resources structure encapsulated as
parameters; (ii) for remote services location, re-
quests are directed to the FES; Catalog agent is re-
sponsible for informing if the service is available or
not; and (iii) services discovering requests.

The features of the consolidated structure are
kept in cache memory and maintained in a serialized

file. This procedure is carried out with the collabora-
tion of a Serializer class, which is part of the Catalog
internal structure. It performs all procedures related
to the persistence of the resource structure. The data
structures are consolidated and stored in serialized
files and the representations are kept in cache
memory. This increases efficiency, since quick ser-
vice information can be obtained using the service
name as an index, without traversing the structure.

The representation structure and content of me-
tainfo package is completely similar to that de-
scribed in the AC Catalog. The only difference is
that FES meta-classes contain information about the
overall structure of resources available in all con-
tainers. The discoverer package contains the classes
responsible for services discovery. These procedures
are performed by means of GUIs wizards available
in the Manager agent. The Local_Search class per-
forms procedures related to internal service discov-
ery; it has a set of intra-classes which perform dif-
ferent discovery tasks. Internal service discovery is
the process in which a user or application developer
queries the central registry to learn about services
location and specifications. The Web_Search class
performs tasks related to the discovery of external
web services in UDDI repositories.

4 SERVICES IDENTIFICATION

Services identification is a key component of most
distributed systems and service oriented architec-
tures. It is used to search services descriptions meet-
ing certain functional or semantic criteria. There are
two main user groups: business users and technical
users. The first group typically has a business back-
ground and it gets needed information from metada-
ta that enables them to identify and locate infor-
mation about entities, services, databases tables, and
attributes. Technical users may play many roles
within an organization. They may be programmers,
developers, system modelers, or senior analysts.
Services identification procedures are primarily
intended for developers’ support, to facilitate the
process of finding an appropriate service for a par-
ticular task.

The service identification process consists of a
combination of top-down and bottom-up techniques
of domain decomposition and existing asset analysis.
In the top-down view, a blueprint of business use
cases provides the specification for business ser-
vices. This top-down process consists of decomposi-
tion of the business domain into its functional areas
and subsystems, including the entities (Arsanjani et

A Metadata-based Architecture for Identification and Discovery of Services in SOA

301

al., 2014). In the bottom-up approach, the analyst
departs from a service identifying the provider enti-
ty, where application and container it are located.
The idea is to reach a context view from a service.

In order to reuse a service, clients need to know
much more than a simple service name or the ad-
dress of the service provider. Developers need to see
a service as an interface, including methods that they
will invoke in order to execute the service and their
necessary parameters. The lookup service can be
seen as a directory service, where services are found
and viewed. There are two main reuse possibilities:
(i) the service meets 100% of the requested specifi-
cation or (ii) it is possible to reuse the ready imple-
mentation performing the necessary adjustments.
Figure 3 shows a GUI wizard for service identifica-
tion.

Figure 3: GUI wizard and the View perspective.

In the right side of the window, the Services
View panel shows the resources organized by struc-
ture. The hierarchy is navigable and shows an agent-
based application called Expert Committee for man-
agement of submissions and article reviews in a
conference or workshop. Software agents have been
introduced to assist the organizing committee in
their responsibilities, which can be automated. The
metadata contained in the repository can be viewed
in the navigable hierarchy. In the left side of the
window, the Details panel shows specifications of
the selected service. The example presents the speci-
fication of the submitArticle service. The descriptors
specifications include: (i) the service name (the
entity type that provides the service); (ii) the path
(URL) where the service is allocated; (iii) the scope
informing if the service is local (in the container) or

remote; (iv) name and type of the parameters; (v) a
brief description of the service functionality; (vi) a
return informing if any data type returns to the caller
service; (vii) the keywords related to the service; and
(viii) implementation, informing if the service is:
implemented in Java, a Web service, or a legacy
service encapsulated as a service in a component.

The service identification or discovery presents
an important limitation when the amount of services
increases. It is common to have hundreds or even
thousands of services in an organization catalog.

5 SERVICES DISCOVERY

The increasing amount of web services currently
available in the web has been targeted by a huge
research effort aiming at reuse. Usually, they apply
some Artificial Intelligent techniques like Case-
Based Reasoning (CBR) and Ontologies. For exam-
ple, Limthanmaphon and Zhang (2013) propose a
solution to deal with coarse-grained services in
which the composition is part of the service repre-
sentation. Osman et al. (2006) present cases in a
frame structure that is mapped to ontologies in order
to enable a semantic retrieval of cases. Henni and
Atmani (2012) apply CBR approach for service
representation and retrieval. The grouping of ser-
vices sharing similar functional requirements led
ElBitar et al. (2014) to the notion of ‘services com-
munity’, in which the communities are identified
and then a local search is performed to find a more
adequate case. Each proposal has its merit in finding
services by matching some requirement description
in a web repository.

5.1 Proposed Approach

A CBR model is usually applied to solve problems
by reusing solutions already defined for similar
situations (Kolodner, 1993). For this, problems are
represented as contextualized cases, keeping the
information related to the circumstances in which
the problem situation was considered partial or total-
ly solved. A case is characterized by a set of de-
scriptors for a problem situation associated with the
respective solution.

In our approach, we argue that keeping local ex-
perience of services already used may largely enrich
the information conveyed by the standard represen-
tation of service in WSDL format. For example,
instead of searching in the open web repository we
propose the creation of a local repository in which
services already known by the developers can be

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

302

kept along with the information over its previous
use. For this, the services must be represented by the
standard information brought by WSDL representa-
tion plus a description related to the specific use of
this service. This approach brings the need for eval-
uating similarity among the textual descriptions
related to the narrative on the experience of the ser-
vice use. Therefore, our proposal is a two-level re-
cover. Firstly, CBR techniques are applied in order
to recover the set of cases similar to the require-
ments description. Secondly, the cases are searched
on the basis of their description, by applying a text
mining procedure to find the nearest-neighbor case.

The process starts with a description of a service
required by a developer. This description includes a
functional account of the service representing the
developer experience, beyond the usual descriptors
like name and parameters. The system searches for a
service in CB, guided by a given description, and
then it retrieves a list of the best matching services.
If a service satisfies the developer necessity, than it
is applied. Otherwise, the alternatives are: (i) to
search in the Web, (ii) to adapt a case from the re-
trieved case list, or (iii) to develop a new solution. In
any case, the case base must be updated.

The CB structure includes the following de-
scriptors: Name, Modifier, Parameters, Return, Ser-
vice Description, and Keywords. However, for pur-
pose of recovery cases, Modifier is not considered
since it does not reflect a property that might be of
interest in a specific search.

For similarity computation, we applied the ag-
gregate degree of match from the CBR shell ReMind
(Cognitive Systems, 1992). Considering that there
are different types of descriptors (eg, free text for
Description and a word for Return), the similarity
function had to be adapted. Similarity for Name
similarity is calculated by the Levenshtein distance.
For Parameters, Return, and Keywords, Hamming
distance was adopted. For Description similarity,
two options were implemented: (i) a combination of
co-occurrence of words and Hamming distance and
(ii) tf×idf (Leskovec et al., 2014) technique.

The Levenshtein distance between two features f1
and f2 is defined as the minimum number of inser-
tions, deletions, and substitutions required to make
f1=f2. The distance based on tf×idf for Description is
calculated by means of a word matrix in which each
service takes one row and each word from the De-
scription argument takes one column. Each cell for a
service/word receives the corresponding tf×idf calcu-
lated as the frequency for each word (here called
term) in the argument of the service relative to its
occurrences in the complete set of services. The

Hamming distance between two features f1 and f2 is
0 for f1=f2 or 1, otherwise. Each distance is normal-
ized for the interval [0,1].

5.2 Example of Application using
Levenshtein Distance

Consider the case base shown in Table 1. Over this
case base, a developer is looking for a service de-
fined by the arguments Arg = {Address, String,
String, “Recover address from Postal Office”, “ZIP,
Address”}. The Name, Return, Description, Key-
words and Implementation descriptors are stored in
the ServiceInfo meta-class, while the Parameter
descriptor is stored in the ParameterInfo meta-class.

The results of similarity computation are shown
in Table 2. The better adjusted case for the require-
ments specified in Arg is case 4. However, it is pos-
sible to have other cases that can be close to the
requirements. So, the developer can ask to receive
the cases until the kth position in the matching rank-
ing. In the example, for k=3, cases 4 and 7 would be
submitted to the developer scrutiny in order to
choose the most adequate case.

5.3 Example of Application using
Tf×Idf

An example is the option Arg = {ControlledVocabu-
lary, String, Boolean, “Need a controlled vocabulary
for consistent communication for users natives in the
English vocabulary”, “Controlled Vocabulary, Eng-
lish Language”}. Table 3 shows that service 8 is the
most similar to the specification given by the user.
The distances from each vector to Arg are highlight-
ed in black.

6 RELATED WORKS

This work is based on four main pillars: (i) SOA, (ii)
a SOA-based middleware, (iii) the concept of ROM,
and (iv) the intelligent services discovery encapsu-
lated in the resource model. There are studies ad-
dressing each of the topics presented, none of them
bringing together all of them into a single architec-
ture.

WSA (W3C, 2004) includes the ROM in its ref-
erence architecture as part of a wider architecture.
The resource model focuses on the features relevant
to the concept of resource, disregarding the resource
role in the context of web services. It takes the view
that resources are a concept that underpins much of

A Metadata-based Architecture for Identification and Discovery of Services in SOA

303

Table 1: Case Base of Services.

Name Parameter Return Description Keywords
1 validate

Password String Boolean Checks a password for security issues Password, Security,
Method1, Method2

2 calculateCD Integer Integer Applies an 10-Module algorithm to generate
a check digit

Check digit, mod 10,
Luhn Algorithm

3 calculateCD Integer Integer Applies an 11-Module algorithm to generate
a check digit

Check digit, mod 11,
Verhoeff Algorithm

4 Retrieve
Address String String Retrieves the address for a given ZIP code ZIP, Address

retrieval
5 Currency

Converter
[Real, String,
String] Real Convert values between two currencies Converter,

Currencies
6 Metric

Converter
[Real, String,
String] Real Convert values between two metrics Converter, Metrics

7 getAuthor
Data Integer Hashmap Retrieves data from a table using the

ResultSet object of Java library ResultSet

8 Activate
Controlled
Vocabularies

String Boolean

Activate a controlled vocabulary according
the language specified. A controlled
vocabulary helps in keeping a consistent
corporative communication

Controlled
vocabulary,
Corporative terms

Table 2: Distances/normalized distances from Arg features (using Levenshtein distance).

Name Parameters Return Description Keywords

∑ d Nd d Nd d Nd d Nd d Nd
1 24 0,63 1 0,33 1 1 8 0,47 6 0,86 3,29
2 18 0,47 1 0,33 1 1 10 0,59 7 1,00 3,40
3 18 0,47 1 0,33 1 1 10 0,59 7 1,00 3,40
4 8 0,21 1 0,33 0 0 7 0,41 1 0,14 1,10
5 24 0,63 3 1,00 1 1 9 0,53 4 0,57 3,73
6 22 0,58 3 1,00 1 1 9 0,53 4 0,57 3,68
7 20 0,53 1 0,33 1 1 12 0,71 3 0,43 2,99
8 38 1,00 0 0,00 1 1 17 1,00 6 0,86 3,86

Table 3: Distances/normalized distances from Arg features (using tf×idf distance).

Name Parameters Return Description Keywords ∑ d Nd d Nd d Nd d Nd d Nd
1 36 0,97 0 0 0 0 4,14 0,82 6 1 2,79
2 31 0,84 1 1 1 1 4,79 0,94 5 0,83 4,62
3 31 0,84 1 1 1 1 5,07 1,00 5 0,83 4,67
4 34 0,92 0 0 1 1 3,95 0,78 5 0,83 3,53
5 37 1,00 1 1 1 1 3,84 0,76 4 0,67 4,42
6 35 0,95 1 1 1 1 3,84 0,76 4 0,67 4,37
7 33 0,89 1 1 1 1 4,39 0,87 3 0,50 4,26
8 8 0,22 0 0 0 0 3,76 0,74 2 0,33 1,29

the web and much of web services. A discovery
service enables agents to retrieve web service-
related resource descriptions, and is used to publish
and search for descriptions meeting certain function-
al or semantic criteria.

The main difference between our and WSA
models is that the latter considers Web service as the
most important resource for its purposes and UDDI
registry as the target for the discovery service. For
composition and reuse, we consider other finer-

grained services as well as atomic services using
service-oriented interfaces. Our main motivation is
the difficulty of WSDL to describe complex busi-
ness services typically formed by fine-grained ser-
vices composition. The structural model enables all
the resource types to be defined and exposed in the
architecture for composition and reusing.

Our resource model is part of a wider architec-
ture and has been validated and used to demonstrate
case studies. In these prototypes the applicability of

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

304

the presented mode has been confirmed. Regarding
the intelligent service discovery, Limthanmaphon
and Zhang (2013) proposed a service discovery
process that adopts fine-grained services as cases,
including the relations of dependency between them.
Osman et al. (2006) also present a CBR proposal for
services discovery using ontology to structure the
cases representation. ElBitar et al. (2014) discuss the
semantic-based approaches, focusing on CBR mod-
els. They propose the concept of “community ser-
vice” to represent the group of Web services func-
tionally similar. These approaches use Web as an
information source. They try to overcome the limita-
tion of the syntactic discovery based on UDDIs. No
concern with respect to the local experience in ap-
plying the services is emphasized.

7 CONCLUSIONS

It is presented two contributions: (i) an architectural
model for a metadata repository for SOA, that ena-
bles the discovery of different types of services for
composition and reuse; (ii) a CBR system in which
case matching is carried out by means of text mining
techniques, allowing one to find the most appropri-
ate service candidate with the desired requirements
for a particular task or composition. There are only a
few papers exploring architectural models for
metadata repository in the context of services identi-
fication and discovery in SOA. CBR has been al-
ready used in some approaches to services discov-
ery, but we have no knowledge of adoption of text
mining techniques as a support for case matching,
such as is presented in this paper.

REFERENCES

Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., Channa-
basavaiah, K., 2014. Design an SOA solution using a
reference architecture. Improve your development
process using the SOA solution stack. IBM Develop-
perWorks.

Bhuvaneswari, N. S., Sujatha, S., 2011. Integrating SOA
and Web Services. River Publishers.

Cognitive Systems, 1992. ReMind Developer´s Reference
Manual, Cognitive Systems.

ElBitar, I., Belouadha, F.-Z., Roudies, O., 2014. A CBR
based approach for web service automatic discovery.
Journal of Theoretical and Applied Information Tech-
nology, 62(1):237-247.

Fujita, H., Mejri, M. (Eds.), 2006. New trends in software
methodologies, Tools and Techniques. Proceedings of

the Fifth SoMeT_06. Frontiers in Artificial Intelligence
and Applications, 147.

Haendchen Filho, A., Vasconcelos, C., 2015. Develop-
ment Of Intelligent Enterprise Applications Using
Multi-Agent Systems. Australian Journal of Basic and
Applied Sciences, 9(11):444-450.

Haendchen Filho, A., Prado, H. A., Ferneda, E., 2015. A
Resource-Oriented Model for Services Management
and Discovering in SOA. IEEE International Confer-
ence on Services Computing (SCC).

Henni, F., Atmani, B., 2012. Dynamic Web Service Com-
position: Use of Case Based Reasoning and AI Plan-
ning. 4th International Conference on Web and Infor-
mation, p. 22-29.

Kolodner, J. L., 1993. Case-Based Reasoning. San Fran-
cisco, CA: Morgan Kaufmann.

Leskovec, J., Rajaraman, A., Ullman, J., 2014. Mining of
massive datasets. 2nd ed, Cambridge University Press.

Lewis, G. A., Smith, D. B., 2007. Four pillars of Service-
Oriented Architecture. CrossTalk: The Journal of De-
fense Software Engineering, p. 10-13.

Lewis, G. A., Smith, D. B., Kontogiannis, K., 2010. A
Research Agenda for Service-Oriented Architecture
(SOA): Maintenance and Evolution of Service-
Oriented Systems. Technical Note, CMU/SEI-2010-
TN-003. Carnegie Mellon University.

Limthanmaphon, B., Zhang, Y., 2013. Web Service com-
position with Case-Based Reasoning. 14th Australian
Database Conference, 17:201-208.

Manouvrier, B., 2008. Integration applicative EAI, B2B,
BPM et SOA. ISTE Ltd / John Wiley & Sons, Inc.

Marco, D., 2000. Building and Managing the Meta Data
Repository: A Full Lifecycle Guide. John Wiley and
Soons Inc.

Osman, T., Thakker, D., Al-Dabass, D., 2006. Semantic-
driven matchmaking of Web Services using Case-
Based Reasoning. IEEE Int. Conf. on Web Services.

Saroh, M., Sahu, S., 2014. Review on “Service Granulari-
ty In Service Oriented Architecture”. International
Journal of Research in Engineering and Technology.
3(7):449-455.

Sletten, B., 2009. Resource-Oriented Architecture: The
Rest of REST. InfoQ. Retrieved January 2015 from
http://www.infoq.com/articles/roa-rest-of-rest.

World Wide Web Consortium [W3C], 2004. Web Services
Architecture, W3C Working Group Note 11.

World Wide Web Consortium [W3C], n.d. W3C Docu-
ment Object Model (DOM). XML DOM Tutorial.

A Metadata-based Architecture for Identification and Discovery of Services in SOA

305

