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Abstract: Currently, There Is a Convergence of Systems for Smart Environments and Uncertainty Reasoning. Context 
Models Are Being Proposed to Support the Detection of Situations in These Environments. However, 
Reasoning to Detect Situations Taking into Account Uncertainty Presents a Great Challenge. This Paper 
Describes a Contextual Model based on Semantic Web Technologies That Can Deal with Uncertainty. This 
Framework May Be Used to Detect Unwanted Situations with a Certain Grade of Contextual Uncertainty. 
the Model Was Evaluated in a Scenario Reasoning over Uncertain Data to Predict Unwanted or Perhaps 
Dangerous Situations. 

1 INTRODUCTION 

Homes are becoming Intelligent Environments, able 
to assist people who live into it. These systems are 
planned to act according to the user profile, and with 
complex physical environment, where objects are 
added, updated or changed of location. The user 
profile also changes over time. For instance, users 
may suffer from different diseases during their lives, 
and these can affect the interaction with the objects 
of their residence. Cognitive problems, such as 
forgetfulness, can sometimes put the user into an 
unwanted or perhaps dangerous situation; for 
instance, forgetting the stove on after preparing a 
meal. 

Systems for Ambient Assisted Living need to 
interpret the context in which the user lives to be 
able to act in advance. Using ontologies to represent 
the contextual model is the most complete and 
expressive way to support reasoning about the user 
context for intelligent systems (Strang and Linnhoff-
Popien, 2004) (Bettini et al., 2010). The ontologies 
have some constructors that give support the 
reasoning about the model domain. Some studies 
show contextual models for different domains 
(Sixsmith et al., 2009) (Tazari et al., 2010). These 
efforts search to model the user's context and 
support systems for decision making on situations of 

interest. Some works try to support systems in 
reasoning about uncertainty (Coronato, 2012) 
(Coronato and De Pietro 2013) (Rasch et al., 2011) 
(Forkan et al., 2015). These works present 
contextual models using ontologies that are 
implemented in Ontology Web Language – 
Description Logic (OWL-DL).  

The main limitation for reasoning about 
uncertainty in OWL-DL is the conceptual 
foundation of DL, a subset of First Order Logic 
(FOL). FOL defines sentences, axioms, that are 
always true logical statements about the domain to 
which they are representing (Costa et al., 2011) 
(Laskey, 2008). However, for systems that seek to 
detect situations and make decisions in real 
environments, where data may have an error rate, 
low but present, it becomes imperative to support 
detection of situations and decision-making on 
uncertain data. Also the information obtained from 
the sensors must be interpreted and this 
interpretation normally is surrounded with 
uncertainty.  

To manage these challenges, some research 
efforts try to manipulate information modelled in 
ontologies and submit this information to prediction 
algorithms using fuzzy logic, neural networks, or 
Bayesian networks (Coronato and De Pietro 2013). 
These strategies have purely statistical results as the 
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prediction is made without the semantic information 
contained in the ontological representation. 
Consequently, it is necessary that the ontological 
contextual models represent the context uncertainty.  

Also, it is necessary to have a native support for 
reasoning about uncertainty within the context 
model. This approach gives more possibility to the 
detection of situations and decision making made 
with incomplete information. 

This paper presents a context model using for 
reasoning over uncertainty in smart environments. 
More specifically, we employed a Multi-Entity 
Bayesian Network (MEBN) for the developing of 
semantic model to support the prediction of 
unwanted situations in smart environments. The 
model is evaluated through empirical experiments 
using a case study where an unwanted situation is 
simulated. In the case study is presented the use of 
the context model which supports reasoning about 
uncertainty. It is shown as the model supports the 
automatic generation of Bayesian Networks in a 
specific situation depending on the available 
evidence within the ontology. 

This paper is organized as follows. Section 2 
discusses the background and related work. Section 
3 presents the model for developing the context of 
AAL with reasoning with uncertainty in smart 
environments. Section 4 describes the developed 
case study. Finally, Section 5 discusses our 
conclusions and future work. 

2 BACKGROUND AND RELATED 
WORK 

The user interaction with devices in a real-world 
environment is uncertain by nature. This 
communication is influenced by several factors, such 
as the knowledge that the user has about using a 
device, the cognitive ability, and the humour of the 
user, among others.  

There are big challenges for the design of AAL 
systems. Currently, the context aware area is 
consolidating systems for smart environments. 
Context can be understood as “the environment in 
which the system operates” (Ye et al., 2011). Dey 
and Abowd (1999) characterize context as the 
situation of an entity in an environment. The concept 
of situation is utilized to characterize the state of the 
user environment.  

Ye, Stevenson and Dobson (2011) define 
situation as the abstraction of the events occurring in 
the real world that are derived from the context and 

hypotheses about how the observed context relates 
to factors of interest. Systems that manipulate the 
context detecting situations of interest through 
events generated by user’s interaction must handle 
uncertainty to assist correctly users in their living 
environment. 

2.1 Reasoning on Uncertainty 

Reasoning for detection of situation and decision 
making with uncertain data comprises some 
shortcomings related to modeling with regard to the 
modeler conception of the world. The modeling 
process may have misconceptions and possibly will 
be addressed through consistency checks of the 
ontologies. Hence, this fact must be taken into 
consideration and can be treated through 
probabilistic reasoning. 

Probabilistic reasoning might support the 
processing of uncertainty. It is possible to make 
predictions of future situations taking uncertainty 
into account. Many works that focuses on the 
prediction phase has been published and they present 
algorithms to identify the future with an acceptable 
accuracy (Paganello and Giuli, 2011). 

Ontologies provide a range of features that 
search for represent the environmental context in a 
broad and expressive form. Context modeling using 
ontologies is currently done through the use of the 
Ontology Web Language (OWL). Among its 
variations (Lite, DL and Full), the most widely used 
by the possibility of decidability is the Description 
Logics (DL). The interpretation of a theory 
determines the definition of each constant, predicate 
and symbolic function in relation to the area. Each 
symbolic constant denotes a specific entity; each 
predicate denotes a group containing entities that the 
predicate holds, and each symbolic function is a 
function defined in the domain. The logical 
sequences of a set of axioms consist of sentences 
that are always true in all interpretations, also called 
true sentences. Due to sentences be always 
interpreted as logical assertions, DL is not suitable 
for areas where there are uncertainties in relations 
among the concepts (Laskey, 2008). 

One way to model uncertainty is the use of 
probability, and a suitable model for existing 
domains is the Bayesian Networks (BN). These are 
Directed Acyclic Graphs representing a distribution 
function of joint probabilities of variables in a 
domain of interest. Each Bayesian network consists 
of nodes (random variables) and edges connecting 
these nodes. These links represent the influence 
from one node (ancestor) in relation to another node 
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(descendent) generating a directed arc. Each node 
has a Conditional Probability Table (CPT) to 
calculate the influence of a parent node "x" in 
relation to its influenced node "y", and the joint 
probability distribution is measured by the influence 
of every parent in relation to a leaf node (Friedman 
et al., 1997). 

For Semantic Web applications, BNs have the 
potential to provide a powerful, compact structure 
for probabilistic inference mechanisms. However, 
BNs have some key limitations. The first is that the 
number of variables must be known in advance (i.e. 
number of nodes is fixed). However, many domains 
require reasoning about numbers and types of related 
entities, where the relationships among entities 
cannot be specified in advance or are uncertain. The 
second limitation is that the language used to specify 
BNs is not powerfull enough to express significant 
problems with repeated structure. The third one is 
that a BN is a directed acyclic graph, and hence no 
native support for recursion is provided (Costa et al., 
2011). 

2.2 Probabilistic Ontologies 

The area of probabilistic ontologies appeared with 
the objective of using the expressive power of the 
First-Order Logic and the treatment of uncertainty 
supported by Bayesian Networks. In general, there 
are two approaches to the generation of probabilistic 
ontologies. The first consists in representing 
uncertainty by probability values described as 
annotations, such as (Yang and Calmet, 2005). 
However, annotate ontology with numerical 
probability is not enough, and some information is 
lost with the lack of representation capturing the 
structural constraints and dependencies between 
nodes (Laskey, 2008). The second alternative 
consists of using a First-Order Probabilistic 
Language, which combines aspects of probabilistic 
representation with first-order logic (Howard and 
Stumptner, 2014).  

According to Costa (2005), a probabilistic 
ontology must be able to properly represent: the (i) 
types of entities that exist in the field; the (ii) 
properties of these entities; the (iii) relationships 
between entities; the (iv) processes and events 
happening with these entities; the (v) statistical 
regularities that characterize the domain; the (vi) 
inconclusive knowledge, ambiguous, incomplete, 
unreliable related to domain entities; and (vii) 
uncertainty over all previous forms of knowledge. It 
should be noted that the term entity refers to any 
concept that can be described and reasoned in an 

application domain. Probabilistic ontologies are used 
to describe comprehensively the knowledge of a 
domain and associated uncertainty, structured and 
shareable, preferably in a format that can be read 
and processed by the computer (Fenz, 2012). 

Howard & Stumpter (2014) compare those 
languages (First-Order Probabilistic Languages) in 
relation to (i) aspects for handling uncertainty, (ii) 
structural support related to types of inheritance (iii) 
types of fields on which the language may represent 
and (iv) reasoning techniques on a group of entities 
and relationships. An overview of this comparison is 
presented in Table 1. 

In Table 1, attribute means uncertainty about the 
attributes of entities and relationships. Numeric 
indicates the uncertainty of numerical data entities in 
a domain. Reference means uncertainty about the 
relationship between domain entities. Existence 
means uncertainty about the existence (or not) of 
entities and their relationships in the area. Types 
mean when an entity of interest is identified, but it 
can be one or more of possible subtypes. Analyzing 
data present in Table 1, the languages Probabilistic 
Relational Models (PRMs), Object-Oriented 
Probabilistic Relational Modeling Language 
(OPRML) e Multi-Entity Bayesian Networks 
(MEBNs) are compared, and in this paper we choose 
to use the MEBNs language to represent uncertainty. 

Table 1: Languages for Uncertainty Representation. 

  PRMs MEBNs OPRML 

Uncertainty Attribute X X X 

Numeric X X X 

Reference X X X 

Identity X X  

Existence X X X 

Type  X  

Inheritance Simple X  X 

Multiple  X  

Domain Static X X X 

Recursive X X X 

Dynamic  X X 

Adapted from Horward & Stumpter (2014). 
 

To make possible the use of MEBN in Semantic 
Web an OWL extension was created through an 
upper ontology called Probabilistic Ontology Web 
Language (PR-OWL). That extension expresses a 
probability distribution on interpretations of any 
first-order theory. PR-OWL was built to be 
interoperable with non-probabilistic ontologies. 
However, the probabilistic definitions of an ontology 
have to form a theory about the fragments of the 
complete or partial valid world (Carvalho et al., 
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2013). 
In Figure 1, the concepts of the upper ontology 

are presented, where ellipses represent general 
classes while arrows represent the main relations 
between these classes. A probabilistic ontology must 
have at least an individual's MTheory class, which is 
formed by a group of MFrags that collectively form 
a valid MTheory. In the next section, we discuss the 
Multi-Entity Bayesian Network theory (Carvalho et 
al., 2013). 

 

Figure 1: PR-OWL Adapted from Costa (2005). 

2.3 Multi-Entity Bayesian Network 

Multi-Entity Bayesian Network (MEBN) represents 
the world as composed of entities that have 
attributes and which are associated with other 
entities. Knowledge about the attributes of the 
entities and their relationships are represented as a 
collection of MEBN fragments (MFrags) organized 
in MEBN theories (MTheories). An MFrag 
represents a distribution of conditional probability 
for instances of random variables about their parents 
(parent node) in the same MFrag. An MEBN theory 
is a set of MFrags that collectively satisfy 
consistency constraints, ensuring the existence of a 
single joint probability distribution on instances of 
the random variables represented in each MFrag. 
MEBN integrates the semantics of the standard 
theoretical model of first-order logic with random 
variables, as formalized in Bayesian Networks 
(Howard; Stumptner, 2014). 

Such as in a BN, one MFrag contains nodes that 
represent random variables arranged in a directed 
graph whose edges represent relations of direct 
dependence. An isolated MFrag can be compared 
with a standard BN with known values to their root 
nodes and local distributions of its nodes that are not 
root. A node in an MFrag may have a list of 
arguments in parentheses. These arguments are 
placeholders for the authorities in the field (Costa, 
2005). 

According to Laskey (2008), an MFrag consists 
of three types of nodes: (i) the residing nodes (object 
property in OWL-DL) have local distributions that 
define how their probabilities depend on the values 
of their parents in the graph. In a complete MEBN 
theory, each resident node has exactly one MFrag 

where their local distribution is set; (ii) the input and 
context nodes can influence the distribution of the 
resident nodes, but their distributions are set in their 
own MFrags. Finally, (iii) context nodes represent 
conditions that must be satisfied for the influences, 
and local distributions of an MFrag can be applied. 
These conditions are boolean values, which may 
have true, false or absurd values. 

An MEBN does not specify a standard for 
Conditional Probability Table (CPT). However, as in 
a default BN, a CPT summarizes statistical 
regularities that characterize a domain. These 
regularities are captured and coded in a knowledge 
base using a combination of expert opinions and/or 
learning from observation. For more information 
about MEBN and PR-OWL, we suggest reading the 
following works (Laskey, 2008) (Costa, 2005) 
(Carvalho et al., 2013). 

Most projects focused on Ambient Assisted 
Living or, more specifically in Smart Homes (SH) 
are interested in proposing models to provide 
services. A reactive requirement drives the execution 
of services, always after a fact has occurred. 
Therefore, they do not show proactive behaviour to 
adapt to the user environment. Related works are the 
ones shown in Table 2: Soprano (Sixsmith et al., 
2009), Persona (Tazari et al., 2010), SM4ALL 
(Rasch et al., 2011), Uranus (Coronato, 2012), 
CoCaMAAL (Forkan et al., 2015). 

Table 2: Related Work. 

 Per Sop SM4 Ura CoC 

AAL X X X X X 

SH X X X   

Sensor X X X X X 

Event X X   X 

Situation X X  X X 

Action X X X  X 

Activity     X 

Uncertainty      
 

These works show a semantic context model, but it 
is observed that these models have a reduced 
expressiveness. Those who address the uncertainty 
show a hybrid model to generate probability using 
techniques without using Semantic Web 
technologies. Therefore, it is important to develop a 
model to support reasoning about uncertainty in the 
AAL domain because none of the related work 
addresses these characteristics, fully supported by 
Semantic Web technologies, to sensitive systems on 
the Situation-Awareness in Smart Environments. 
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3 DEALING WITH 
UNCERTAINTY IN SMART 
ENVIRONMENTS 

Systems for smart environments need to know the 
user environment, and where necessary, implement 
assistance actions. Currently, the main source for 
real-time data collection is data obtained from 
sensors. They collect raw data without semantic 
characterization and with error rates adding 
uncertainty in the collected data. Therefore, it 
becomes necessary to consider this data associated 
with data from other entities such as people, rooms’ 
characteristics, and electrical networks state, among 
others. It is possible to group data to generate useful 
information from a higher level, i.e., detecting of an 
environmental or user situation, as cold or 
emergency. In this paper, the vision of the 
environment perceived by the system is obtained 
from the data captured by the sensors; these inputs 
are aggregated with environmental contextual 
entities generating useful information. The actions 
triggered by the system for the environment are 
realized by Web services, which are associated with 
objects like smart phones, televisions, microwaves 
ovens, and others in the living environment. In 
Figure 2, is presented the information and decision 
flow. 

 

Figure 2: Adapted from Machado et. al, 2013. 

The system starts collecting raw data from sensors 
and aggregates the information associated with those 
entities to generate higher-level information that is 
used to characterize the state (situation) of the 
environment. With this characterization, the system 
can do a decision to act in the environment using the 
capabilities (services) provided by the available web 
services automating the environment according to 
the situations of interest and user preferences. 

3.1 Ontology Network for AAL 

Other works on situation-awareness for smart 
environments are directed to modeling concepts that 
relate to the situation itself, paying little or no 
attention to the modeling of other concepts of an 
intelligent environment. In this article, we try to 
approximate the home automation model (essentially 
describes semantic relations between the structure of 
the physical environment) with the user model and 
higher-level information such as events, situations 
and actions. 

The ontology network for AAL was described 
using Web Ontology Language using the Protégé 
software. The probabilistic fragments that make up 
the Reference Model for Systems to Predictive 
Situations-awareness in AAL was developed using 
UnBBayes software. Intra networks relations were 
established with OWL-DL owl:subclass and 
owl:import resource and other relationships were 
implemented using DOOR ontology (Allocca; 
D'Aquin, 2009). 

A simplified form of each modelled network is 
presented in Figure 3; however, for easy viewing 
some entities and their relationships were omitted. 
This structure may be modified to incorporate new 
concepts, allowing the inclusion of new entities in 
different domains. The objective is to construct a 
model that describes an automated home 
environment, fully controlled by a middleware to 
support a home care environment. 

Analysing Figure 3, the user performs Actions 
(Human Action). These result in External Events 
collected by the system. Events start and finish the 
Current Situation involving the user in the current 
time. The same events influence a Predictive 
situation that may involve the User in the future. 

Using the information about Current and 
Predictive Situation, the system can select 
Automated Actions to handle situations of interest. 
For example, if is necessary to handle the situation 
including the interaction with a User, the system 
should choose an Automated Action Type Regarding 
Person. 

This action will be performed by a functionality 
provided by a device of the type Interaction with 
Person. This functionality must be sensitive to the 
disability presented by the User. The Automated 
Actions produce Internal Events and analysing these, 
the system can detect if the Current and Future 
Situation change or will change in relation to a User. 
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Figure 3: Ontology Network for AAL Environments. 

3.2 Reference Model for Predictive 
Situations in Smart Environments 

Represent uncertainty in ontologies is not the same 
as to build a probabilistic system. In this particular 
case, the probabilistic part refers to the semantic 
relationships modelled using the PR-OWL settings 
that collectively form a MEBN theory. There is no 
need for all the relations of an ontology to be 
probabilistic, however the parts modelled with PR-
OWL extension should form a valid MEBN theory. 
The semantic relationships that extend PR-OWL 
resources are shown in Figure 4. 

TASK USER
hasTask(us,tar)

EVENT

PREDICTIVE 
SITUATION

influence(ps, t)

willBeSituationOf(ps, t, us)

AUTOMATED 
ACTION

hasReactiveAction(ps,aa)

OWL‐TIME

influence(ps, tPrev)

runningTask(tas)

automatedAction
Perfomed(ps)

 

Figure 4: Probabilistic Ontology for proactive domain. 

In this figure the probabilistic ontology for 
predictive situations is represented graphically. In 
this probabilistic ontology, the semantic relationship 
contains parameters derived from entity instances of 
ontology. The definition of the semantic relationship 
with parameters is inherited from the PR-OWL 
model. In this case, the instances of entities are 
random variables that will feed the reference model 
to Predictive Situation and form a valid theory. In 
this probabilistic ontology, events are affected when 

the user is involved by some Task running 
(runningTask(tar)) and/or Automated Actions taken 
in relation to Predictive situation 
(AutomatedActionPerformed (ps)). 

The recursion for the model is promoted by the 
Temporal Entity defined in OWL-TIME ontology 
(Hobbs et al., 2004). This concept can be used as a 
discrete concept, so representing subsequent steps 
orderable of "T0" to "Tn" rather than continuous 
scales. Therefore, an event can influence a predictive 
situation at an earlier time by the relationship 
influence(ps, tPrev) and influence a predictive 
situation at time t. The willBeSituationOf(ps, t, us) 
gives the probability of a Predictive situation ps on a 
time t involving user us. Therefore, it can perform 
prediction of a situation over time. 

So the question that the probability part of the 
ontology must answer is: “what is the probability of 
a situation at a specific time, involving the User in 
his living environment?”  

In the Figure 4 is show the MBEN theory of 
reference for predictive situation-aware systems. 
The systems using this model can answer the 
question by resident node willBeSituationOf(ps, t, 
us). This reference model is a repeatable structure 
(template) that generates Bayesian Networks 
according to user situation. The Specific Situation 
Bayesian Networks are generated according to the 
semantic relationships that are linked to the user's 
instance within the ontology. Therefore, at runtime, 
when exists a need to generate a Bayesian network, 
the structure of the network is dynamically 
generated according to the reference model and the 
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user context that are represented in the ontology. 
The model is composed of fragments, described 
below, and the random variables related to the 
context nodes are: "tar" to task, "us" to User, "aa" 
for Automated Action, "ev" for Event, "ps" for 
Predictive Situation and "tPrev" and "t" for 
orderable Discrete Times (instances of OWL-
TIME), the resident nodes will be described as 
<resident node name> = {states}. 

The Task MFrag present the probability of a 
specific task to be in execution in the environment, 
and this fact is represented by runningTask(tas) = 
{True, False} resident node. The Automated Action 
MFrag presents the probability of an automated 
action to be executed in relation to a predictive 
situation, and this fact is represented by 
automatedActionPerformed(ps) = {Automated 
Action} resident node. The TaskUser MFrag 
describes, through the resident node 
hasTask(us,tas)={True, False}, the probability of a 
user be involved by a task. The Predictive Situation 
MFrag generates the local probability distribution of 
a particular predictive situation involving a user at a 
specific time by the resident node 
willBeSituationOf(ps, t, us) = {True, False}. Such 
distribution is calculated through of the influence of 
the resident node influence (ps, t)={events}, whereas 
the states of resident node influence must be 
instances of events. So this way is possible to 
calculate the probability of a particular event 
happens when being influenced by task and 
automated action. This context node applies the 
probability distribution that an Event influences a 
predictive situation in time t, when affected after by 
the input nodes runningTask(tas), 
automatedActionPerformed(ps) and its own 
distribution in a previous time influence(ps, tPrev). 

This reference model is a repeatable structure 
that instantiates specific Bayesian Network 
according to existing evidence. The reasoning 
process on the Reference Model for Predictive 
situations is intended to the generation (queries) of 
Specific Situation Bayesian Network (SSBN). 
Determining the values (probability) of a set of 
queries the systems can query the probability of a 
situation will be situation of a User at a specific time 
in the future. Thus, the system has the possibility to 
choose what proactive actions to be triggered in 
relation to the probability values generated by virtue 
of a query generated of the Specific Situation 
Bayesian Network. 

4 CASE STUDY 

A scenario is the complete description of a 
contextualized user’s routine. This case study is 
based in a scenario that demonstrates how the 
probabilistic model developed in this article is 
applied in smart environments. To analyze the 
model, it was used a Pervasive Application and a 
prototype of Situation as a Service (SIaaS) 
middleware described in Machado et, al. 2014. 

Thus, the scenario described is typical of an 
Ambient Assisted Living environment, consisting of 
an unwanted situation. Different aspects of user’s 
interaction with the object’s residence are identified 
to generate events that can determine the beginning, 
the end or influence the rise of unwanted situations. 
These features result in the execution of proactive 
actions to handle this situation. The scenario is 
intended to generate data for the detection of 
unwanted situations and actions performed to deal 
with these situations, and the events generated 
(effects of these actions). 

Imagine John’s, a 75 years old citizen who has 
some aging associated diseases such as diabetes, 
hypertension and lightweight dementia. John's 
residence consists of a living room and kitchen, 
among other space. This type of patient tends to 
forget in what activity is immersed, it is common to 
start an activity and forget that he was doing 
another, for example, cooking and watching 
television, or even confuse the time of day and go to 
sleep. Therefore, the family of John buys a 
Pervasive Application to assist John in daily 
activities. The focus of this scenario is the activity of 
cooking, where John interacts with the stove device 
(task use stove). According Blasco et al. (2014) 
older people are a group with highest vulnerability 
to accidents, especially in their homes. The vast 
majority of domestic accidents are related to 
activities in the kitchen: kitchen utensils, cutlery and 
appliances are the most dangerous utensils. As a 
result of these accidents, older people lose 
confidence in their abilities, lowering their self-
esteem and, consequently, in many cases, deciding 
to live in a nursing home. 

Therefore, to avoid such features, in John's 
kitchen was installed a smart stove with the 
following features: (i) identify which user used / are 
using the stove, by detection of digital; only after 
this step the stove frees up resources, e.g. turning on 
the stove; and (ii) which was the last time (time) in 
which a person neared the stove, or even (iii) the 
functionality to automatically turn off the stove. 

Therefore, imagine that John is watching 
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television in the living room, but moves to the 
kitchen and decide to cook. John organizes the 
preparations, he turns on and put a pot on the stove 
and, after it, he listen news on TV that is of his 
interest. So, he comes out of the kitchen and back 
into the living room, sitting on sofa in front of the 
television. An application that seeks to assist users 
affected by the state of Senile in their daily activities 
should interfere in everyday life as little as possible. 

Therefore, in this scenario, the application has 
interest in being notified if John forgot the stove 
turned on, so putting him and his family in an 
unwanted situation as a dangerous situation in 
cooking when using the stove. So, the application 
can make decision for trigger proactive actions and 
to manipulate the unwanted situations. Table 3 
presents the actions and events produced by the 
scenario. 

Table 3: Actions of appPervCook. 

Actions 

ac1: Warn User; ac2: Notify Caregiver that stove is turned on; 
ac3: Turn off the stove automatically 

Events 

ev1: User forgot stove on; ev2: Stove off; 
ev2.1: Sensor detected presence near to the stove 

 

The ev1 event starts the unwanted situation, and the 
ev2 and ev2.1 events finish the situation. The actions 
can be used with a reactive or a proactive way. To 
handle this situation, a reactive behaviour of the 
application could be making decision to turn off the 
stove automatically or alert the caregiver to perform 
this action or wait more time. For a proactive 
behaviour, the application could have the ability to 
predict whether John, when turn on the stove, he will 
forget this on. This characteristic is promoted by the 
Reference Model for Predictive situation-aware 
system. The local probabilistic distribution for each 
MEBN fragment must be generated with the help of 
an expert in Senile (in a real scenario), or by 
machine learning. This model can be started with 
historical data of people affected by this disease, or 
even after John turned on the stove a few times. 
Thus, making it possible to identify a behavioral 
pattern and identify the probability of John forget 
the stove on while using it. In the fictitious scenario, 
if John turn on the stove, there is possibility of forget 
it on.  In Table 4, is presented the distribution for 
each fragment MEBN. 

The resident node runningTask(tas), describes 
the probability that there is a running task in the 
environment. For this node, the article used values 
that do not affect other nodes residents (50% true 

and 50% false). The node hasTask(us, tas) 
establishes that 92% of the time there running task 
the user is involved. The resident node 
automatedActionPerformed(ps) shows that directly 
warn John (ac1) was executed 15% of the time. 
Notify the caregiver (ac2) by 50% and automatically 
turn off the stove (ac3) by 35%. 

Table 4: Local probability distribution for resident nodes 
of appPervCook. 

Resident: automatedActionPerformed(ps) 
[ac1=0.15, ac2=0.5, ac3=0.35] 

Resident: 
runningTask(tas)
[true=0.5, 
false=0.5] 

Resident: willBeSituationOf (ps,t) 
If any ps has (influence = ev1)  [true=0.99, 
false=0.01] else If any ps has (influence = ev2) 
[true=0.01, false=0.99] If any ps has (influence 
=ev21) 
[true=0.45,false=0.55]else[true=0.5,false=0.5] 

Resident: 
hasTask (us,tas) 
[true=0.92, 
false=0.08] 

Resident: influence (ps,t) 
If any ps has (automatedActionPerformed = ac1)  If any tas has 
(runningTask = false) [ev1=0.05, ev2=0.35, ev21=0.6] else  
[ev1=0.75, ev2=0.05, ev21=0.2] ]else If any ps has 
(automatedActionPerformed = ac2)   If any tas has (runningTask 
= false) [ev1=0.02, ev2=0.38, ev21=0.6] else  [ev1=0.45, 
ev2=0.05, ev21=0.5] ]else If any ps has 
(automatedActionPerformed = ac3)  If any tas has (runningTask 
= false) [ev1=0, ev2=1, ev21=0] else  [ev1=0, ev2=1, ev21=0] 
]else [ev1=0.34, ev2=0.33 ev21=0.33] 

 

The local distribution to the resident node 
influence(ps, t) describes how Automatically 
Executed Actions and Running Task influenced the 
establishment (arise) of the Events “forgot stove 
turned on (ev1)", "Stove turned off (v2)" and " 
Sensor detected presence near to the stove (ev2.1) ". 

Therefore, if: (a) John is warned (ac1) and the 
task is not running, John forgets the stove turned in 
5% of cases, do not forget 35% and there is presence 
near to the stove 60%. If the task is running, John 
forgets stove turned in 75%, does not forget 5% and 
there is presence near to the stove 20%; (b) 
Caregiver notified (ac2) and there is no running task, 
John forgets the stove turned on 2% of time, do not 
forget 38% and there is presence near to the stove 
60%; If running task, he forgets in 45% of time, do 
not forget to 5% and presence by 50%; (c) Stove 
turned off automatically (ac3), in 100% of cases, the 
stove turned off (v2) and, for a default distribution, 
are distributed on average 33.33% for all events. 

The resident node influence(ps, t) applies your 
local distribution probability into 
willBeSituationOf(ps, t, us) node at time t, so if John 
forgot the stove (ev1), then 99% cases the dangerous 
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situation  is valid and only 1% false. If John turned 
off the stove (v2), then there is 99% chance of 
dangerous situations does not exist and, if it was 
detected presence near stove (ev2.1), then there is a 
dangerous situation in 45% of time. Thus 
demonstrating that even if someone neared the stove 
(checking or not the cooking activity), there is a 
probability of danger. 

Using the structure of the reference model 
defined in Section 3.1 and local probability 
distributions given in Table 4, the system can 
generates the Specific Situation Bayesian Network 
for the scenario as following. Figure 5 presents the 
SSBN not recursive (only T0 time). It was adding 
the evidences that John is using the smart stove and 
the dangerous situations will be situation of John at 
T0 on 46,39% of chance. 

 

Figure 5: SSBN at T0 and John using Stove. 

In Figure 6, it was added the T1 time (ontology 
instance). Therefore, it was possible to determinate 
that John will be involved by Dangerous Situation at 
T1 with 46,4%. 

 

Figure 6: SSBN from T0 to T1 and John using Stove. 

The difference between the last net and it was 
0.01%, but if it is relevant, depends on the 
interpretation of an expert on the detected situation. 

In Figure 7 is presented that there is an evidence 
that John, at T0, forgot the stove turned off (ev1), so 
in T1 there is a probability of 72,5% of chance that a 
Dangerous Situation will be the situation of John in 
T1.  

In Figure 8 it was used more evidences. Thus, 
the network was used to answer the following query: 
"What is the probability that John to be in a 
dangerous situation in T2?". In the Figure, is 
presented the SSBN with the evidences (axioms 
when applied in SSBN result in gray nodes) 
provided by the scenario. Therefore, the current time 
is T1, John is involved by tasks watching tv and use 
stove, these tasks comprise the cooking activity. 

 

Figure 7: SSBN from T0 to T1, John using Stove and Ev1 
detected at T0. 

The local probability distribution of the Table 4 
describe that John is involved by some task, it is a 
positive influence to dangerous situation. There is 
evidence that John at T0 (previous time) forgot the 
stove on (ev1 = 100%) and the current time (T1) 
already was detected presence of some people near 
the stove (ev21 = 100%).  With these evidences, the 
system has the intention to know if in T2 John will 
be involved by a Dangerous Situation. According to 
figure 8, there is 69,8% of chance that John is in 
Dangerous Situation in T2. 

 

Figure 8: SSBN with the evidences. 

5 CONCLUSIONS 

Systems for intelligent environments may become 
proactive when technologies support the reasoning 
over uncertainty in runtime. Multi-Entity Bayesian 
Network made these characteristics possible through 
of the generation of Specific Situation Bayesian 
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Network. This paper presented the Reference Model 
for Predictive Situation-Awareness for give dynamic 
support in relation to reasoning over uncertainty for 
detection unwanted situation with Multi-Entity 
Bayesian Network Theory. This model provides 
essential support for the prediction of situations in 
real environments. The reference model enables the 
Bayesian network structures as well as the 
probability values for predictions are generated at 
runtime. Therefore, the SSBN are generates on the 
moment that the user is living in their residence. 
Ordinary Bayesian Network are not dynamic this 
way, because need of an expert to model their 
structures. 

The contributions of this paper include the use 
of Semantic Web Technologies for reasoning about 
uncertainty, as well as the reference model for 
predicting unwanted situations. Further work is the 
identification of a top ontology to increase the 
coverage context model and using the reference 
model for different scenarios. 
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