
Refining a Reference Architecture for Model-Driven Business Apps

Jan Ernsting1, Christoph Rieger1, Fabian Wrede1 and Tim A. Majchrzak2

1University of Münster, Münster, Germany
2University of Agder, Kristiansand, Norway

Keywords: Reference Architecture, MDSD, App, Mobile, Mobile App, Business App, Architecture.

Abstract: Despite much progress, cross-platform app development frameworks remain a topic of active research. While
frameworks that yield native apps are particularly attractive, their spread is very limited. It is apparent that
(theoretical) technological superiority needs to be accompanied with profound support for developers and
adequate capabilities for maintaining the framework itself. We deem so called reference architectures to be
a major step for building better cross-platform app development frameworks, particularly if they are based
on techniques of model-driven software development (MDSD). In this paper, we describe a refinement of a
reference architecture for business apps. We employ the model-driven cross-platform development framework
MD2 for this purpose. Its general design has been described extensively in the literature. The framework
has a sound foundation in MDSD, yet lacks a generator support that fulfils the above sketched goals. After
describing the required background, we argue in detail for a suitable reference architecture. While it will
be a valuable addition to the MD2 framework, the discussion of our findings also makes a contribution for
generative app development in general.

1 MOTIVATION

Cross-platform development frameworks for apps
have gained much popularity (Ohrt and Turau, 2012;
Holzinger et al., 2012). However, most of them
employ Web technology and yield inferior results
when striving for a native look and feel (Joorabchi
et al., 2013; Heitkötter et al., 2013a). Creating
cross-platform frameworks is a profound technolog-
ical challenge (cf. (Heitkötter et al., 2013b)). At the
same time, a framework needs to be comprehensible
for developers. Moreover, it should provide adequate
development support. The latter is particularly true
when a framework seeks to improve the app develop-
ment process in general (cf. (Heitkötter et al., 2015)).

In this paper, we build on previous work on MD2,
a cross-platform development framework that pro-
vides fully native apps for the supported target plat-
forms. It employs techniques from model-driven soft-
ware development (MDSD). Apps are rather mod-
elled than programmed; for this purpose, a domain-
specific language (DSL) is used, which has been tai-
lored to business app development (Heitkötter et al.,
2013c).

Despite its undoubted technological soundness,
MD2 has not yet found widespread adoption. This
without question can be attributed to a missing com-

munity and user base (i.e. economies of scale). We
believe that part of the reason lies in the complexity of
generation (Evers et al., 2016), though. Code gener-
ation might seem negligible from an app developer’s
point of view since capabilities are taken for granted
when developing a specific app. However, improve-
ments in the generation step are also reflected in de-
velopment in form of extended capabilities and the
possibility to benefit from improvements to the DSL.
We have, therefore, argued to overcome the existing
challenges with profound work on the app generation
step (Evers et al., 2016).

With a more detailed look at the problem, addi-
tional questions need to be asked:

• Can a design pattern such as Model-View-
Controller (MVC) or Model-View-ViewModel
(MVVM) (Smith, 2009) be implemented through-
out the development process?

• How can the fragmentation of devices and the het-
erogeneity of software be overcome?

• How can frequent releases of platforms (such
as Android and iOS), changes to the underlying
programming languages (such as Apple’s transi-
tioning from Objective-C to Swift (Swift Blog,
2015)), and modifications to the ecosystems be ef-
fectively reflected in the generators?

Ernsting, J., Rieger, C., Wrede, F. and Majchrzak, T.
Refining a Reference Architecture for Model-Driven Business Apps.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 2, pages 307-316
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

307

• How can redundancy in a typical MVC descrip-
tion of apps be avoided?

Even though generators are seldom implemented
from scratch and only updated occasionally, their de-
velopment demands great skill. Code generators fa-
cilitate the embedding and have to account for two
driving forces: a model instance on the one side and
the target platform on the other. With this paper, we
refine our previous work (Evers et al., 2016). This
refinement builds on two shortcomings that we per-
ceived:

• Currently, MD2 focuses on object structure and
behaviour, and not on interaction.

• The employed top-down approach (from model
to reference architecture to platform-specificity)
does not take into consideration platform-specific
features in an effective fashion.

Therefore, this paper presents a more effective ref-
erence architecture that advanced from the feedback
to realising a previously proposed reference architec-
ture with two distinct platforms. Thereby, it greatly
helped to fix the ecosystem under test except for the
code generation stage. We were thus enabled in as-
sessing and revising the reference architecture accord-
ingly.

The main contributions of this paper are twofold.
Firstly, we propose a detailed, sophisticated reference
architecture for the model-driven creation of business
apps. While it has been tailored to use in MD2, it
is applicable to MDSD for apps (as well as in Web
technology-based frameworks) in general. Secondly,
we discuss our findings. This further increases the
generalizability of our work.

This paper is structured as follows. Section 2
draws the background of related work on MDSD for
business app development and the corresponding use
of reference architectures. Section 3 then presents
an evaluation of the existing reference architecture to
provide the foundation for the new proposal. This is
presented as a detailed refinement in Section 4. Our
findings are then discussion in Section 5. Finally, we
draw a conclusion in Section 6.

2 RELATED WORK

Apart from business apps and related work in the area
of cross-platform development approaches, this sec-
tion specifically highlights a concrete approach for
business apps, namely MD2. In addition, the general
area of reference architectures is considered to base
the refinements on.

2.1 Business Apps and App
Development

Besides common apps for purposes such as social net-
working or entertainment, business apps encompass
those that are directed at interacting with businesses’
backend information systems. In addition, they can be
categorised by their form-based and data-driven na-
ture (Majchrzak et al., 2015).

For apps, in general, to overcome the heterogene-
ity of mobile platforms, various approaches exist.
Their spectrum ranges from Web apps to native apps
(Majchrzak et al., 2015). While the former rely on
Web technologies such as HTML5, Cascading Style
Sheets (CSS), and JavaScript, the latter requires suf-
ficient proficiency of the respective platforms, the ap-
plicable programming languages, and the respective
software development kits (SDKs). Generative ap-
proaches aim at providing a native look and feel as
well as native performance while striving to be as con-
venient to use as Web-based frameworks (Heitkötter
et al., 2013a). There are two kinds of generative
cross-platform frameworks: transpilers and MDSD-
based approaches.

Transpilers allow compiling source, intermediate,
or binary code for one platform to another. However,
current transpilers such as J2ObjC (J2ObjC, 2015)
deliberately focus on non-UI code. Therefore, they
do not support a complete transformation and require
at least some finishing touches to let apps run on
targeted platforms. Consequently, they are neither
widely used nor can be considered to be particularly
mature.

Model-driven generative approaches employ the
techniques of MDSD (Stahl and Völter, 2006). Typi-
cal examples for approaches encompass commercial
products such as WebRatio (WebRatio, 2015). It
utilises graphical models that are expressed in the In-
teraction Flow Modeling Language (IFML), which
the backing company pushed to standardisation by
the Object Management Group (OMG). Though re-
stricted to displaying data, applause (applause, 2015)
features a textual domain-specific language (DSL) to
express models in. While applause’s development
was discontinued for more than a year and Xmob
(Le Goaer and Waltham, 2013) has yet to present con-
crete modelling facilities, development on MD2 pro-
gressed.

2.2 Creating Business Apps with MD2

MD2 is based on a textual DSL that is structured
along the model-view-controller (MVC) design pat-
tern (Gamma et al., 1995; Buschmann et al., 1996).

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

308

MD² Archetype (in MD²-DSL)

Preprocessor

map.apps
Generator

Backend
Generator

X
Generator

Sources for
map.apps

map.apps
Platform

Java EE
Server

Java sources Sources for
Platform X

Platform X

Figure 1: MD2 Modelling Process.

To overcome platform heterogeneity, its syntax fo-
cuses on describing business apps. Thus, consolidated
abstractions are used to express archetypes in MD2-
DSL (Heitkötter et al., 2013b). This has obvious lim-
itations, as featured elements correspond to the low-
est common denominator of platform features. This
is particularly true for view related aspects (cf. Sec-
tion 4). On the other hand, users benefit from business
apps automatically derived from archetypes without
needing in-depth knowledge of target platforms. In
consequence, users have to weigh the pros and cons
of using a model-driven approach.

To mince matters, approaches can boost their use-
fulness by increasing the number of supported plat-
forms. This is achieved by adding code generation
facilities for desired platforms. An archetype passes
through a preprocessor as shown in Figure 1. That
stage augments the input archetype with concrete el-
ements to reduce generation effort (Majchrzak and
Ernsting, 2015). Next, the augmented archetype is
handed over to code generators. Currently, these out-
put sources for the commercial map.apps platform
(map.apps product description, 2015) and a Java EE
based backend. Nevertheless, the modelling process
incorporates provisions for adding generators such
that these dispense applications for arbitrary plat-
forms such as Windows Phone or Symbian.

Developing a code generator requires its engi-
neers to comprehend the archetype’s structure (i.e. the
metamodel and its instances) as well as the targeted
platform ecosystem (i.e. the programming environ-
ment, common libraries, etc.). Thus, engineers have
to account for these two forces that drive generator
development. In the following, assistive means that
reduce the overall development effort are illustrated.

2.3 Reference Architectures

To understand the relevance of developing and fur-
ther improving a reference architecture for MD2 apps,

knowledge of the potential benefits of reference archi-
tectures is advisable. This question was already sub-
ject of academic research; however, it was discussed
in a broader context and not specifically tailored to
model-driven software development and mobile apps
in particular (cf. (Cloutier et al., 2010; Angelov et al.,
2009)). Nonetheless, the findings can be transferred
to this area.

First of all, as any other form of architectures,
a reference architecture helps to control complexity
(Cloutier et al., 2010). The design of software is ex-
pressed in a standardized form such that it is easily un-
derstandable for developers. However, in the context
of MD2, a reference architecture main benefit consists
in the preserved knowledge and guarantees a com-
mon understanding. The reference architecture is sup-
posed to build a common ground on which the devel-
opment of generators for new platforms takes place.
Consequently, it has to embrace the knowledge and
insights which were gained during the implementa-
tion of other generators and applications in order to
provide these to its consuming developers.

A common understanding of MD2 application
components is necessary to keep the effort for devel-
opment and maintenance of existing generators man-
ageable. The architecture of the generators and ap-
plications should be similar to a certain degree. This
facilitates a quick understanding of the concrete archi-
tecture on different platforms. Thus, developers who
implemented a generator for a certain platform could
perform maintenance tasks on other platform genera-
tors, as the underlying concepts are the same.

3 EVALUATION OF A
REFERENCE ARCHITECTURE
FOR MODEL-DRIVEN
BUSINESS APPS

Various best practices and established patterns for
mobile platforms exist. Unsurprisingly, these typi-
cally neglect code generation as they do not distin-
guish between model-specific elements and compo-
nents concerned with the general application execu-
tion.

However, in the context of model-driven ap-
proaches, the aforementioned code generation stage
creates a tie between the model and its targeted plat-
forms. Thus, the generation stage forms a crucial
component of these approaches.

When considering MD2’s use of the MVC pat-
tern in its DSL model, sufficient guidance with re-
gard to engineering apt code generators could be ex-

Refining a Reference Architecture for Model-Driven Business Apps

309

pected. Yet, previous efforts showed that redundant
or recurring ideas could not be removed by the MVC
pattern itself nor did the tool’s underlying metamodel
offer substantial guidance in developing code genera-
tors. MD2’s constitutional development had focused
on Android and iOS as target platforms. At that stage,
its engineers noticed to some degree that numerous
architectural choices arose for both platforms (Evers
et al., 2016).

Prior to targeting a third, previously unconsidered
commercial platform, (Evers et al., 2016) compiled
a reference architecture for model-driven business
apps. Establishing support for map.apps (map.apps
product description, 2015) not only illustrated the ref-
erence architecture’s applicability, but also showed
that MD2’s scope could surpass the limits of mobile
platforms.

The reference architecture explicates dependen-
cies between and usages of MD2-DSL’s metamodel
elements. On a coarse level, the MVC pattern alone
did not facilitate development of code generators in an
intuitive fashion. Nevertheless, architectural elements
can easily be partitioned to accentuate MD2’s MVC
provenance as shown in Figure 2. To provide guid-
ance for generator development, (Evers et al., 2016)
described architectural key elements with regard to
their instantiation and runtime behaviour.

For example, concrete EventHandler account for
different event types that exist in MD2. These ar-
chitectural elements assist in orchestrating an app’s
runtime behaviour. They determine which associated
Action has to be executed in response to triggered
events. Here, the architecture’s explication guides
code generators to provide facilities to handle global
(e.g. context related) events such as connection lost,
view related (i.e. widget) events, and data persistence
(i.e. content provider) events in their respective gen-
erates (i.e. apps).

Of course, (Evers et al., 2016) elaborated on the
other elements in Figure 2. For now, we highlight
their discussion in which they point out that little
backing empiricism exists and that their architecture
may require minor changes to be universally appli-
cable to other platforms. Put straight, we strove to
evaluate the architecture’s suitability by targeting the
two platforms currently dominating the mobile mar-
ket: iOS and Android (Gartner, 2015).

The implementation was conducted as a greenfield
approach, respecting the development process pro-
posed by (Stahl and Völter, 2006, p. 27). Two inde-
pendent developers, who were not involved in the de-
velopment of the original reference architecture, im-
plemented the reference apps and generators for the
corresponding platforms, leveraging the original ref-

erence architecture as a guideline for the respective
concrete architectures.

The evaluation of the reference architecture re-
vealed that it was already quite well suited to provide
guidance regarding the structural composition of re-
quired components. However, overall it was difficult
to instantiate the reference architecture because of
two main shortcomings: first, the reference architec-
ture lacks to provide an overview of the runtime be-
haviour and the interaction between components and
second, it chooses a misleading level of abstraction
at some points, thus slackening the platform-specific
development progression. Therefore, the reference ar-
chitecture was revised and applied as presented in the
following.

4 REVISING THE REFERENCE
ARCHITECTURE

Because of the aforementioned shortcomings, struc-
tural aspects of the original reference architecture
were improved and developers relieved with in-
creased flexibility regarding the implementation in
programming code as well as increased clarity to-
wards interaction patterns.

4.1 Reference Architecture Structure

The revised reference architecture improves the struc-
ture three-fold: first, the progression of the MD2 lan-
guage introduced a process layer extension that is re-
flected in the current architecture version. Further-
more, the previously unspecified view layer of the
application is substantiated and a mobile-centric task
queue component is added.

4.1.1 Workflow Layer

Since the initial development of the reference archi-
tecture, the MD2 language further evolved. Most
prominently, an additional layer of so-called work-
flow elements was added to its specification, enabling
development of cross-app workflows and app prod-
uct lines (Dageförde et al., 2016). This process-
oriented layer is now also considered in the revised
reference architecture. For a seamless integration,
the current building blocks of events and actions
were reused. To trigger a workflow event, an action
called SetWorkflowElementAction extends the ex-
isting architecture. Newly added WorkflowElement
objects represent self-contained process steps. Every
workflow element is supplied with a workflow event

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

310

Controller

Model View

ContentProvider

DataStore
Factory DataStore Type

DataType Enum Entity

ContentProvider
Registry

EventHandler

GlobalEvent
Handler

ContentProvider
EventHandler

WidgetEvent
Handler

ViewManager

Validator

WidgetRegistry

Mapping
Widget

Layout

Action
CustomAction

SimpleAction

Widget
Wrapper

DataMapper

<<create>>

SingleWidget

Figure 2: Original Reference Architecture (Evers et al., 2016).

to identify transition points within the overall pro-
cess. Also, a workflow action indicates whether to
start or end the specified workflow. Together, condi-
tional workflow paths can be modelled.

The actual processing of the workflow elements is
performed by the WorkflowManager component. For
local workflow elements, this includes finalizing the
currently active workflow element, deciding upon the
further workflow path, and starting the next element.
In case the workflow element has to be continued in
another app, the intermediate state of the workflow
and its associated entities is additionally sent to the
backend server. The WorkflowManager component
of the subsequent app is then notified about a newly
available workflow instance and app users can even-
tually continue its execution.

4.1.2 View Specification

The original version of the reference architecture did
not consider the implementation of the view as a part
of the architecture itself. It was claimed that the im-
plementation of the view was too platform-specific
and, therefore, could not be included. However, our
evaluation of the reference architecture on iOS and
Android showed that there are similarities regarding
the structure of views. That is on both platforms, the
view is defined as a hierarchy of layouts and widgets
that can be arbitrarily nested. This pattern is also com-
mon on other platforms. Therefore, objects represent-
ing the structure of the view were included in the ref-
erence architecture. In case that a platform handles
the view differently, this part could easily be adapted
when transforming the reference architecture into a
platform-specific one.

The WidgetWrapper object was removed in the
revised reference architecture. At this point, the
original reference architecture stated that a widget
should provide a certain set of methods. However,
this was already done by applying a specific design
pattern, which is not necessarily the best choice for
the concrete implementation. On Android, for exam-
ple, it turned out to be more convenient to use Cus-
tom Views instead of wrapper objects. Therefore, we
claim that the application of concrete design patterns
should be avoided in order not to push developers in
a direction that might not be the best choice. Rather,
the reference architecture should be more general and
show options on how to develop the concrete imple-
mentation.

4.1.3 Tasks

In MD2, custom actions consist of atomic tasks.
These tasks perform operations such as binding the
value of a widget to an entity. Tasks were not a part
of the original reference architecture as they were sup-
posed to be directly transformed into plain code by
app generators. However, the evaluation showed that
tasks can still be further generalized. Consequently,
it is beneficial to add classes for the different tasks
in the platform-specific libraries and to instantiate
them with required parameters in the generated code.
Tasks differ from actions in a way such that actions
perform high-level, control flow-oriented operations,
such as switching to another view, whereas tasks per-
form low-level, view-oriented operations, such as en-
abling data binding to a widget.

Refining a Reference Architecture for Model-Driven Business Apps

311

4.1.4 TaskQueue

In general, mobile applications should be designed in
a resource efficient way as mobile devices typically
provide limited resources compared to personal com-
puters. The Android platform, for example, provides
a built-in memory management that is enabled to free
up memory allocated to paused activities so that it
can be used by activities with a higher priority, e.g.
active ones. Consequently, it is not guaranteed that
widget objects exists all the time an app is running.
However, for certain tasks, such as data binding, it
is necessary to have access to a widget, e.g. to regis-
ter event listeners. The first version of the reference
architecture suggested overcoming that issue by cre-
ating WidgetWrappers on start-up of the application.
As these WidgetWrappers keep a reference to the ac-
tual widget, the Android memory management does
not destroy the objects so that they can be accessed
if required during the execution of the app. However,
this approach leads to memory leaks, i.e. objects that
blocked memory and could not be deleted, because
they were referenced by a running app. To avoid these
leaks and to facilitate a more dynamic handling of ap-
plication resources, the concept of the TaskQueue is
introduced in the revised version of the reference ar-
chitecture.

The TaskQueue provides functionality to store
tasks that cannot be executed because of required ob-
jects missing. As soon as the required objects are cre-
ated, the execution is triggered again. An example
from the Android platform is the transition between
activities. When a new activity is started, all wid-
get objects that belong to the activity’s view are cre-
ated. Therefore, it might be possible to execute tasks
that could not be executed before. Thus, the transi-
tion between activities is one point in the flow of an
Android app where the execution of formerly stored
tasks should be triggered again.

4.2 Platform-specific Implementation
Variability

Possible alternatives for the implementation of the ar-
chitecture in object-oriented programming languages
include the approaches that are discussed in the fol-
lowing.

4.2.1 Status Quo

The original reference architecture was developed
with a top-down approach starting from the MD2 lan-
guage definition. As a consequence, platform-specific
characteristics were mainly treated as limitations that

needed to be bypassed by additional generalised com-
ponents. For example, the event handling mechanism
is designed as explicit component because platforms
not necessarily provide the possibility to extend their
native event system.

As further contribution, the revised architec-
ture incorporates the implementation learning in a
bottom-up manner. Particularly, the main pain
point of over-generalisation, resulting in tedious re-
implementations of existing platform features, should
be avoided. Mapping the reference architecture to ap-
propriate platform implementations is a problem to
be solved by generator developers with knowledge
of the target platform’s characteristics and advanced
language constructs. This choice of implementation
allows for the necessary variability to avoid imple-
mentation overhead and benefit from available lan-
guage features. (Fazal-e-Amin et al., 2011) discuss
several techniques for object-oriented programming
languages that are applicable for the MD2 reference
architecture.

4.2.2 Delegation

Glue interfaces bridge potentially incompatible code
parts by specifying an interface towards the rest of the
application (France and Rumpe, 2007). As a basis,
all components of the revised reference architecture
can be regarded as such interfaces instead of explicit
class requirements. Components that cannot easily
be specified as one object on the target platform can
use available aggregation or delegation mechanisms
to perform the desired action as long as the interface
towards the remaining objects is fulfilled. Developers
can therefore benefit from unique platform features
to reduce development time, increase runtime perfor-
mance, or improve maintainability and readability of
the resulting code.

For example, the implementation of data map-
pings depends on available platform features. Where
possible, an efficient bidirectional map of model en-
tity and view element is a good solution. Other im-
plementations are likely suitable as long as the data
mapper can be queried to look up the respective wid-
get to an entity attribute, and vice versa.

4.2.3 Inheritance

Extending classes of the platform is a viable solution
to reuse existing functionality contained in the plat-
form libraries. Using class inheritance mechanisms,
provided classes only need to be enriched with miss-
ing operations in order to comply with the reference
architecture specification, again reducing implemen-
tation efforts.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

312

Controller

Model View

ContentProvider

DataStore
Factory DataStore Type

DataType Enum Entity

ContentProvider
Registry

EventHandler

GlobalEvent
Handler

ContentProvider
EventHandler

WidgetEvent
Handler

ViewManager

Validator

WidgetRegistry

Mapping Widget

Layout

Action
CustomAction

SimpleAction

DataMapper

<<create>>

Workflow
WorkflowEvent

Handler
Workflow
Manager

WorkflowEvent
Workflow
Element

WorkflowAction

Task

TaskQueue

SingleWidget

Figure 3: Revised Reference Architecture.

Native widget extensions are a possible applica-
tion of this approach: Platforms such as Android sup-
port the creation of custom widgets by sub-classing a
generic widget class. Consequently, only additional
functionalities for validation and value access need to
be implemented manually. Alternatively, wrapper ob-
jects can be used that refer to native widget elements
as fallbacks. As a second option, the native platform
event system can be extended with custom events on
some platforms; thus limiting implementation over-
head. Where this is not possible, for instance on iOS,
all event-related components of the reference archi-
tecture need to be implemented.

4.2.4 Overloading

Overloading methods or using generic classes is a
further technique to flexibly implement the required
methods of the reference architecture’s component
specifications. By choosing appropriate parameters,
the desired functionality can be provided while lever-
aging the potential of the respective programming
language concepts.

For instance, dynamically typed languages such
as JavaScript might look up view element references
using String objects. However, statically typed lan-
guages may benefit from enumeration types by pro-
viding additional compile-time security with regard
to the existence of such references.

4.2.5 Decentralized Processing

Several components of the reference architecture
manage other components. However, it is deliberately
unspecified whether a single object should perform
all management activities or whether responsibilities
can be shared by a distributed set of instances. For
example, event handlers can be implemented as sin-
gleton objects that handle specific events on a global
application level. On the other hand, the Android im-
plementation initializes individual event handlers that
use the observer pattern to directly capture changes
of the widgets and content providers (Gamma et al.,
1995, p. 293).

As a result, the revised reference architecture
combines the previous model-driven top-down ap-
proach with a platform-driven bottom-up perspective
while at the same time encouraging implementation
choices by generator developers.

4.3 Reference Architecture Interactions

To assist developers with respect to their implemen-
tation choices and expatiate on desired component in-
teractions in the respective implementations, further
behavioural aspects require clarification complement-
ing the revised structure of the reference architec-
ture. Particularly, three main interactions are essen-
tial for the application execution: basic widget con-
trol flows, process-oriented workflow control flows,
and data flows.

Refining a Reference Architecture for Model-Driven Business Apps

313

WidgetEvent
Handler Widget

Action

CustomAction

SimpleAction Task

TaskQueue

4b) Perfom tasks
when widgets are
(re-)created1) Trigger update,

e.g. tap button

2) Event
handler
executes
registered
action

On startup:
Initialize
actions

On startup:
Register
interactions

Initializer 3a) Perform
view updates
on active
widgets

3b) Queue tasks for
inactive widgets

Figure 4: Interaction diagram for widget control flows.

4.3.1 Widget Control Flow

In MD2, apps’ business logic is modelled using MD2

actions which, amongst others, can trigger view up-
dates. Events and actions are created and mutually
registered by the Initializer component which sets
up all interacting objects on application launch and
triggers the first event. From this point onwards, the
event-action loop is the backbone of the application
runtime. As depicted in Figure 4, widget changes are
observed through respective gesture or value change
events. Event handlers then execute the respective ac-
tions registered on start-up of the application. De-
pending on the state of the targeted view element,
updates such as widget state changes or view transi-
tions can directly be applied on visible elements. Up-
date tasks on currently inactive elements, for instance
data binding changes, are temporarily queued in the
TaskQueue as described in Subsubsection 4.1.4.

4.3.2 Workflow Control Flow

In addition to this app-internal view update mecha-
nism, the overall business process modelled as multi-
ple workflow elements (Dageförde et al., 2016) also
leverages the event-action loop concept. Instead of
updating a view element, the widget event handler
executes a FireEventAction that further triggers a
workflow event (cf. Figure 5). The respective event
is handled by the WorkflowEventHandler that no-
tifies the WorkflowManager component to process
the event as described in Subsubsection 4.1.1. When
starting the next workflow element, its start-up action
is executed which may contain model-specific initial-
ization tasks. It also switches to the respective view
and updates widget contents according to the regular
widget control flow description.

4.3.3 Data Flow

As MD2 apps are data-driven, data flows within the
application are a major element of interest. Start-

WidgetEvent
Handler

Widget

FireEventAction

WorkflowEvent
Handler

Workflow
Manager

CustomAction

1) Trigger update,
e.g. tap button

2) Event handler fires
registered workflow event

On startup:
Register
workflow
elements

On startup:
Register
interactions

Initializer
3) Action triggers event for a
specific workflow element

4) Event handler passes
workflow update to
workflow manager

Server

5) Workflow state
sent to server for
cross-app workflows

6) Execute startup
action of next
workflow element

7) Change
view and
update
content

Figure 5: Interaction diagram for workflow control flows.

UpdateContent
ProviderAction

ContentProvider

DataStore

ContentProvider
EventHandler

WidgetEvent
Handler

Widget

Server

3) Execute registered
action

4) Synchronize
content
provider

6) Observe
content provider
change

7) Execute
registered action

5) Save entity

Optional: Send data
to remote server

Validator

1) Observe
widget change

2) Validate input

UpdateWidget
Action 8) Synchronize widget state

Figure 6: Interaction diagram for data flows.

ing from observed widget changes again, first in-
put validation is applied to avoid unnecessary data
flows. Next, event handlers execute the registered ac-
tion which notifies the content provider of an update.
This content provider manages the underlying entity
and saves the field to either local storage or a remote
location accessed by a data store. Finally, the con-
tent provider also emits an update event such that the
respective event handler executes update actions for
(potentially multiple) associated widgets. This loop,
depicted in Figure 6, can also be started when an ex-
ternal data source changes and the data store notifies
the content provider of updated content.

These interaction loops additionally guide the be-
havioural implementation of the reference architec-
ture on new platforms without enforcing any technical
implementation approach with regard to the event and
synchronization techniques.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

314

5 DISCUSSION AND OUTLOOK

The revised reference architecture incorporates in-
sights gained from the application of the original ar-
chitecture in three distinct generator implementations.
However, the focus on the MD2 language still lim-
its the empirical validation of the approach. On the
one hand, the balance of component generalisation
and flexibility of implementation derived from the
evaluated generator implementations needs to be val-
idated. On the other hand, the described interac-
tion illustrations are also based on the currently avail-
able generator implementations. In retrospect, this in-
formation would have provided important guidance
for the understanding of the reference architecture.
Still, for both aspects empirical validation can only
be achieved by applying the refined reference archi-
tecture to another platform without prior knowledge
of the subject matter.

While the interaction patterns do not impose any
restrictions on the actual implementation, there might
also be platforms for which the basic event-action
loop is not well applicable. With additional commu-
nication emerging from cross-app workflow coordina-
tion, it should be considered to further specify the be-
haviour of the existing external interfaces as guidance
for generator developers. For instance, data exchange
formats on mobile platforms should be assessed to
provide further standardisation. Also, different com-
munication mechanisms such as asynchronous back-
end requests or servers pushing messages to apps may
be considered with regard to user experience improve-
ments. Incorporating such changes into the reference
architecture may result in changes to the interaction
mechanisms that were presented in this paper.

Finally, the derived best practices need to be reap-
plied to the generator implementations fostering a
maintainable code base following common architec-
tural design decisions. The revised reference architec-
ture already incorporates changes resulting from the
MD2 language evolution as for instance the workflow
layer extension integrates nicely into the existing ar-
chitecture. Yet, it has to be shown whether the current
reference architecture is flexible enough to adapt to
future DSL language changes.

Despite some minor drawbacks, the evaluation
showed that reference architectures can serve as sup-
portive means for extending model-driven approaches
such as MD2. In addition, these limitations were
leveraged to assist in revisiting and applying these
newly gained insights as presented in Section 4.

6 CONCLUSION

In this paper, we have presented work on the re-
finement of a reference architecture for MD2. It
extends the model-driven cross-platform framework
with means to provide unified, maintainable, and scal-
able code generation. Thereby, it ultimately also con-
tributes to the framework’s ease-of-development.

Based on the study of related work and the first
suggestion by (Evers et al., 2016), we proposed steps
for the refinement. Despite some minor drawbacks,
the evaluation showed that reference architectures
can serve as supportive means for extending model-
driven approaches such as MD2. These limitations
were leveraged to assist in revisiting and applying the
newly gained insights. The actual work consists of de-
tailed suggestions for the structure of the reference ar-
chitecture, ways to address platform-specificity while
keeping an abstract interface, and suggested guide-
lines for component interactions.

There is a fine line between being too specific and
too general (or, rather, abstract) with regard to ref-
erence architectures. We are confident that we have
found a balanced approach with the proposals made
in this paper. However, the feasibility of our ideas
will need to be proven empirically – first qualitatively
and ultimately quantitatively. In the meantime, we
will keep up our work and also seek to contribute to
the core of the MD2 framework including its domain-
specific language. Currently, an alternative, graphical
modelling front-end that utilises the revised reference
architecture and generators is being designed to assess
its accessibility to modellers; thus, making a case in
favour of reusable and maintainable generation facili-
ties. We hope that MD2 will get more attention by in-
dustrial users in the future, probably even stimulating
work on complementary or competing approaches.

REFERENCES

Angelov, S., Grefen, P., and Greefhorst, D. (2009). A clas-
sification of software reference architectures: Analyz-
ing their success and effectiveness. In European Conf.
on Software Architecture (ECSA), pages 141–150. doi:
10.1109/WICSA.2009.5290800

applause (2015). https://github.com/applause/.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,

and Stal, M. (1996). Pattern-Oriented Software Ar-
chitecture. Wiley.

Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole,
E., and Bone, M. (2010). The concept of reference
architectures. Systems Engineering, 13(1):14–27.

Dageförde, J. C., Reischmann, T., Majchrzak, T. A., and
Ernsting, J. (2016). Generating app product lines in
a model-driven cross-platform development approach.

Refining a Reference Architecture for Model-Driven Business Apps

315

In 49th Hawaii International Conference on System
Sciences (HICSS).

Evers, S., Ernsting, J., and Majchrzak, T. A. (2016). To-
wards a reference architecture for model-driven busi-
ness apps. In 49th Hawaii International Conference
on System Sciences (HICSS).

Fazal-e-Amin, Mahmood, A. K., and Oxley, A. (2011). An
analysis of object oriented variability implementation
mechanisms. ACM SIGSOFT Software Engineering
Notes, 36(1):1.

France, R. and Rumpe, B. (2007). Model-driven develop-
ment of complex software: A research roadmap. In
Future of Software Engineering, pages 37–54. IEEE
Computer Society.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design patterns: Elements of reusable object-oriented
software. Addison-Wesley professional computing se-
ries. Addison-Wesley.

Gartner Press Release (2015). http://www.gartner.com/
newsroom/id/3169417.

Heitkötter, H., Hanschke, S., and Majchrzak, T. A. (2013a).
Evaluating Cross-Platform Development Approaches
for Mobile Applications. In Revised Selected Papers
WEBIST 2012, volume 140 of LNBIP, pages 120–138.
Springer.

Heitkötter, H., Majchrzak, T. A., and Kuchen, H. (2013b).
Cross-Platform Model-Driven Development of Mo-
bile Applications with MD2. In Proc. of the 28th An-
nual ACM Symposium on Applied Computing (SAC),
pages 526–533. ACM.

Heitkötter, H., Majchrzak, T. A., and Kuchen, H.
(2013c). MD2-DSL - eine domänenspezifische
Sprache zur Beschreibung und Generierung mobiler
Anwendungen. In 6. Arbeitstagung Programmier-
sprachen (ATPS), volume 215 of LNI, pages 91–106.
Gesellschaft für Informatik e.V. (GI).

Heitkötter, H., Kuchen, H., and Majchrzak, T. A. (2015).
Extending a Model-Driven Cross-Platform Develop-
ment Approach for Business Apps. Science of Com-
puter Programming (SCP), 97(1):31–36.

Holzinger, A., Treitler, P., and Slany, W. (2012). Making
apps useable on multiple different mobile platforms:
On interoperability for business application develop-
ment on smartphones. In Multidisciplinary Research
and Practice for Information Systems, volume 7465 of
Lecture Notes in Computer Science, pages 176–189.
Springer.

J2ObjC (2015). http://j2objc.org/.
Joorabchi, M. E., Mesbah, A., and Kruchten, P. (2013). Real

challenges in mobile app development. In 2013 ACM /
IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 15–24.

Le Goaer, O. and Waltham, S. (2013). Yet another DSL
for cross-platforms mobile development. In Proc. of
the First Workshop on the Globalization of Domain
Specific Languages, pages 28–33. ACM.

Majchrzak, T. A. and Ernsting, J. (2015). Reengineering
an approach to model-driven development of business
apps. In 8th SIGSAND/PLAIS EuroSymposium, pages
15–31.

Majchrzak, T. A., Ernsting, J., and Kuchen, H. (2015).
Achieving business practicability of model-driven
cross-platform apps. Open Journal of Information
Systems (OJIS), 2(2):3–14.

map.apps product description (2015). http://conterra.de/
en/produkte/con-terra-solutionplatform/mapapps/
beschreibung.aspx.

Ohrt, J. and Turau, V. (2012). Cross-platform development
tools for smartphone applications. IEEE Computer,
45(9):72–79.

Smith, J. (2009). Patterns – WPF Apps With The Model-
View-ViewModel Design Pattern. https://msdn.
microsoft.com/en-us/magazine/dd419663.aspx.

Stahl, T. and Völter, M. (2006). Model-Driven Software De-
velopment: Technology, Engineering, Management.
Wiley.

Swift Blog (2015). Swift blog - apple developer. https://
developer.apple.com/swift/blog/.

WebRatio (2015). http://www.webratio.com/.

WEBIST 2016 - 12th International Conference on Web Information Systems and Technologies

316

