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Abstract: Nowadays there are many social media sites with a very large number of users. Users of social media sites 
and relationships between them can be modelled as a graph. Such graphs can be analysed using methods 
from social network analysis (SNA). Many measures used in SNA rely on computation of shortest paths 
between nodes of a graph. There are many shortest path algorithms, but the majority of them suits only for 
small graphs, or work only with road network graphs that are fundamentally different from social graphs. 
This paper describes an efficient shortest path searching algorithm suitable for large social graphs. The 
described algorithm extends the Atlas algorithm. The proposed algorithm solves the shortest path problem 
in social graphs modelling sites with over 100 million users with acceptable response time (50 ms per 
query), memory usage (less than 15 GB of the primary memory) and applicable accuracy (higher than 90% 
of the queries return exact result). 

1 INTRODUCTION 

The emergence of online social networking sites is 
changing the way social scientists study the structure 
of human relationships. Social network analysis has 
gained a significant popularity in computer science, 
political science, communication studies and 
biology. Since individuals record many of their 
social relationships at online social networking sites, 
previously invisible social structures can be explored 
to determine social processes. The overall modeling 
framework we will apply in the sequel was 
presented in our previous research (Semenov et al., 
2013). Accordingly, social networks modelled and 
observable at the social media sites (1st level models, 
or site ontologies) can be further modeled as graphs 
(2nd level models); hence, the methods of graph 
theory can be applied for analysis of the original 
social networks. The methods can be used to 
investigate kinship patterns, community structures, 
information diffusion and many other problems 
(Marcus et al., 2007). 

Additionally, information left by users on social 
networking sites can be used, for instance, in 
predicting the results of elections (Wang et al., 2012; 
Tumasjan et al., 2010). Also, social networks 

analysis is used to identify money laundering and 
terrorists (Zhang et al., 2003). Moreover, social 
networks were broadly used in organizing mass riots 
and violence during the Arab Spring (Semenov, 
2013). The National Security Agency (NSA) has 
been performing analysis of call records since the 
September 11 attacks, and analysis of collected 
Internet communications since 2007, known as 
surveillance program PRISM (Greenwald et al., 
2013). 

Some of the problems which need to be solved 
during graph data aggregation and analysis require 
large numbers of shortest path computations 
between a pair of vertices in a graph. These 
problems involve calculations of such metrics as 
betweenness centrality, closeness centrality, 
harmonic centrality and others. The shortest path 
problem is defined as searching for such a path that 
the sum of weights of edges that belong to the path 
is minimized. Graphs that model social networking 
sites are usually unweighted, i.e. all edges in the 
graphs have weight one. Many shortest path 
calculation algorithms have been developed, 
however they do not perform well on large graphs 
that contain hundreds of millions of nodes and 
billions of edges – typical of graphs modeling major 
social media sites. 
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The current paper suggests an algorithm based 
on the Atlas algorithm (Cao et al., 2011) that solves 
the single-pair shortest path problem in large 
unweighted social graphs with acceptable accuracy 
(91%), performance (50 ms per a query) and 
memory usage. Also, if the Atlas+ algorithm makes 
a mistake, then the length of the found result is not 
longer than the length of a correct (shortest) path 
plus one. These kinds of mistakes lead to incorrect 
statistics if the algorithm is used in graph analysis. 
Furthermore, the algorithm does not make mistakes 
in the case of short paths (less than three edges). If a 
shortest path algorithm is deployed as a standalone 
service, its results can be easily checked by the users 
for short paths. Hence, if a user realizes that the 
algorithm returns wrong results, then it could lead to 
lowering the prestige of the social networking site. 

As for the Atlas algorithm, Atlas demonstrates 
excellent performance (0.5 ms per query) and 
performs well in such application as ranked social 
search (searching for top k closest vertices from a set 
of vertices) (Cao et al., 2011). Nevertheless, the 
accuracy of the algorithm is not acceptable (25-
30%). 

Social graphs are very dynamic (Wilson et al., 
2009). The proposed algorithm is also able to handle 
dynamic social graphs. 

2 DEFINITIONS 

A graph ܩ is an ordered pair ሺܸ,  ሻ comprising aܧ
finite nonempty set ܸof vertices (points) and 
together with a set	ܧ of edges (lines), which is a 
subset of Cartesian product of the set of vertices, i.e. 
ܧ ⊂ ܸ ൈ ܸ.  Each pair of vertices ݁ ൌ ሺݑ, ሻݒ ∈  is	ܧ
an edge and it is said that e connects ݑ and ݒ. Hence, 
vertices ݑ and ݒ are adjacent vertices. Vertex ݑ and 
edge ݁ are incident with each other; as well as v and 
e. Moreover, if two distinct edges ݁ and ݁′ are 
incident with a common vertex, then they are said to 
be adjacent edges. A directed graph or digraph is a 
graph which consists of a finite nonempty set V of 
vertices and a set of ordered pairs which are named 
directed edges or arcs. An undirected graph is a one 
where for each edge ሺݑ,  ሻ in E it holds that there isݒ
an edge ሺݒ,  .ሻ in Eݑ

A path (walk) in a graph can be defined as a 
finite sequence of vertices and edges ݒ݁ଵ   inݒ…
which each edge is incident with the preceding and 
following vertices, so ݁ ൌ ሺݒିଵ,  ሻ . The edges canݒ
be omitted in the notation, so the path between two 
vertices can be denoted as ݒݒଵ  . The edges areݒ…
evident by context. If the first and last vertices are 

the same, i.e. ݒ ൌ  , then the path is called aݒ
closed path in a directed graph. A closed path in a 
undirected graph is a path in which the first and last 
vertices are the same, and ݁ 	് 	 ݁ሺାଵሻ୫୭ୢ	. A cycle 
in a graph is an equivalence class of closed paths 
with such equivalence relation as, two paths is 
equivalent if and only if ∃݆∀݅ ∶ ݁	ௗ	 ൌ ݁ሺାሻௗ

ᇱ  
where ݁ are edges of the first path and ݁′ are edges 
of the second one. In other words, this definition 
means that there exists such a shift of indices that 
there is the same number of edges in both paths and 
the adjacent vertices are identically numbered.in 
both paths. 

The length of a path in an unweighted graph is 
the number of edges which comprise the path. In a 
weighted graph the length of a path is the sum of 
weights of edges which belongs to the path. In other 
words,	݈ሺሻ ൌ ∑ ሺ݁ሻݓ


ୀଵ . A shortest path between 

two vertices is a path where the length of path 
between these vertices is minimized. The diameter 
of a graph is the longest shortest path between any 
pair of vertices of the graph if the graph is 
connected. Otherwise it is infinite.  

If each pair of vertices of an undirected graph is 
connected by a path, then this graph is called 
connected. A connected component or simply a 
component is a connected subgraph of an undirected 
graph that is maximal with regards to inclusion. 
Thus, the connected components of an undirected 
graph are equivalence classes in which pair 
connectivity induces an equivalence relation. 

Relying on the definition of cycles and 
connected components the terms tree and forest can 
be defined. A graph is called acyclic if it does not 
have cycles. A tree is a connected acyclic undirected 
graph. Any graph without cycles is a forest. Thus, 
the connected components of a forest are trees. A 
subgraph ܩ′ of a graph ܩ is called a spanning tree if 
and only if ܩ is a tree and contains all vertices of the 
graph ܩ. 

The neighborhood graph of a vertex is a 
subgraph which is comprised of the adjacent vertices 
of the vertex and edges between them. The degree d 
of vertex v is the number of edges where v occurs.  
So local clustering coefficient lcc of vertex v is a 
metric that equals to the number of edges in the 
neighborhood graph divided by the degree d of 
vertex v. Thus, ݈ܿܿ ൌ ሺ݀݀/ݏ2#݁݀݃݁ െ 1ሻ. 

3 BACKGROUND 

The Atlas algorithm (Cao et al., 2011) is comprised 
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of two phases: building a search index (the pre-
computation step) and subsequent queries to the 
built search index. The search index consists of a set 
of spanning trees that are stored on the hard drive. 
The tree construction algorithm takes the number of 
spanning trees to be built as a parameter and builds 
the specified number of trees. The strategies of the 
selection of starting vertices and adding new edges 
to the tree are described below. 

To build a spanning tree, the strategy of selection 
of the starting vertex and the strategy of selection of 
the edges should be chosen. Cao et al. (2011) have 
evaluated the following strategies for the selection of 
the starting vertices: 
 The top k-centrality strategy in which k most 

popular vertices (k with the highest degree) are 
chosen as the starting vertices; 

 The scattered top k-centrality strategy in which 
k most popular vertices are chosen in such a 
way that distance between a pair of the chosen 
vertices is at least two edges; 

 The random selection strategy in which the 
starting vertices are chosen randomly. 

In Cao et al. (2011) the best characteristics had the 
top k-centrality strategy. 

At each step of the Atlas algorithm an edge is 
probed and decided whether it can be added to the 
spanning tree under construction. In the paper three 
strategies of edge selection has been evaluated: 
 Breadth-first search with random tie-break in 

which a random edge among the possible edges 
is added; 

 Breadth-first search with complementary tie-
break in which the least used edge among the 
possible edges is added; 

 The least covered edge first strategy in which 
the edge least used in the previous trees is 
added to the tree under construction. 

The best accuracy was demonstrated by the breadth-
first search with complementary tie-break. 

Overall, the starting vertices of the trees are 
chosen according to their popularity in a social 
graph, i.e. based on the degree of vertices. To cover 
as much edges as possible, at each step of the 
algorithm the least used edge is added to the 
building tree, but this strategy leads to use too much 
memory for storing counters for each edge. Also if 
trees are built concurrently, synchronization between 
threads are needed that decreases the performance of 
the tree construction. 

Handling of dynamic graphs is done as follows. 
Several old trees are replaced with new trees. Also, 
it was shown that changes in social graphs do not 
impact much the built spanning trees. 

To find the shortest path between vertices s and t, 
the Atlas algorithm finds the shortest path in each 
spanning tree and selects the shortest path among the 
found paths. 

The Atlas algorithm demonstrates excellent 
performance (0.5 ms per query). Nevertheless, the 
accuracy of the algorithm is not acceptable 
(25-30%) (Cao et al., 2011). Thus, it was decided to 
improve its accuracy with regards to its performance 
and memory usage. 

4 Atlas+ ALGORITHM 
DESCRIPTION 

The following section describes the changes in the 
Atlas algorithm that improve its accuracy. The 
improvement is based on the large value of the local 
clustering coefficient. After that, properties of the 
new algorithm, Atlas+, are analyzed, and according 
to them, two versions of Atlas+ are suggested. 

The tree construction phase of Atlas+ is taken 
from the Atlas algorithm as is. K most popular 
vertices are selected as starting vertices, but the 
breadth-first search with random tie-break is used as 
edge selection strategy. BFS with random tie-break 
has been selected because it allows isolated tree 
construction. 

4.1 The Proposed Algorithm 

The modifications of Atlas+ attempt to improve the 
efficiency of the second phase of Atlas. The local 
clustering coefficient describes the neighborhood 
graph of a vertex, the probability that a pair of 
adjacent vertices of a vertex is connected by an 
edge. The local clustering coefficient is large for 
social graphs, for example, Facebook – 0.15 
(Ugander, Karrer, Backstrom, & Marlow, 2011), a 
subgraph of LiveJournal – 0.13 (Stanford Network 
Analysis Project, 2015). It means that the probability 
that adjacent vertices of a vertex are connected by an 
edge was 15% for Facebook 5 years ago and 13% 
for the subgraph of LiveJournal. Thus, a path 
between a pair of vertices can be shortened. In Fig. 1 
a path between vertices u and v is shown. The 
dashed edge connects the adjacent vertices of vertex 
w. Thus, the path between vertices u and v can be 
shortened through the dashed edge. Hence, the result 
of the Atlas algorithm can be improved with help of 
some adjacent vertices of the vertices obtained by 
the Atlas algorithm. The proposed algorithm looks 
as in Listing 1. 
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Figure 1: Shortening a path by bypassing node w. 

Listing 1: Shortest path between s and t 
1 long[] path(long s, long t) 
2   paths = atlas(s, t) 
3   adjLists = getAdjLists(paths) 
4   graph = buildGraph(adjLists) 
5   return bfs(graph) 

The new algorithm, first, searches for the shortest 
paths in the spanning trees (the atlas method, line 2). 
Thereafter, the adjacent vertices of the vertices 
obtained by Atlas are requested (the getAdjLists 
method, line 3).  Based on that, a graph is built (the 
buildGraph method, line 4) in which BFS finds the 
shortest path between the source and the destination 
vertices (the bfs method, line 5). The found path is 
the result of the algorithm. The building graph is 
stored in a hash table in which keys are ids of 
vertices and values are lists of adjacent vertices. 

Let us call the vertices retrieved at the 4 line of 
the algorithm new vertices. To analyze Atlas+, the 
paths returned by the Atlas algorithm and the paths 
obtained by the proposed algorithm have been 
compared. From the comparison of the paths, it was 
observed that the shortened path may be comprised 
of pieces of the paths obtained by the Atlas 
algorithm and no more than one vertex was added to 
those returned by Atlas. Hence, the new algorithm 
only needs to store two edges on which the shortest 
distances to the source and the destination vertices 
are reached for each vertex. For the analysis, 148789 
pairs of vertices were selected randomly from the 
Odnoklassniki social graph. Shortest paths between 
each pair were calculated by BFS. 

Thus, the second version looks as in Listing 2. 

Listing 2: The enhanced algorithm 
  1 long[] path(long s, long t) 
 2   paths = atlas(s, t) 
 3   adjLists = getAdjLists(paths) 
 4   graph = buildGraph(paths, adjLists) 
 5   treeS = bfs(s, graph); 
 6   treeT = bfs(t, graph); 
 7   minV = findMinimum(s, t, tS, trT); 
 8   bfsPath = getPath(tS, t) 
 9   path = getPath(minV, tS, tT) 
10   return shortestOf(bfsPath, path) 

The new algorithm, first, searches for the shortest 
paths in the spanning trees (the atlas method, line 2). 
Thereafter, the adjacent vertices of the vertices 
obtained by Atlas are requested (the getAdjLists 
method, line 3), as in the first version. After that, a 

graph comprised of the vertices obtained by the 
Atlas algorithm and those edges obtained after the 
request where vertices are among those obtained by 
the Atlas algorithm (the buildGraph method, line 4). 
In 5-6 lines two trees of shortest paths rooted at 
vertex s and at vertex t are built by BFS. The 
findMinimum method finds a vertex on which 
minimum sum of distances from the vertex to s and t 
is reached. The findMinimum method stores all new 
vertices in a hash table in which keys are ids of the 
new vertices and values are objects of the Vertex 
type storing distances to vertices s and t. After that, 
the shortest path is selected from the paths counted 
by BFS (line 8) and the final path found on line 9. 
The bfs method returns a tree of shortest paths. A 
tree of shortest paths is comprised of a map in which 
keys are ids of vertices and values are ids of parent 
vertices; parents of root vertices are set to -1. Thus, 
to find the shortest path between vertex s and 
another vertex u, the algorithm iterates and queries 
parents of the current vertex starting from u until a 
root vertex (the getPath method, line 8). The Vertex 
type is a type comprised of id of the vertex and two 
other ids of adjacent vertices on which minimal 
distances to vertices s and t are reached. The second 
getPath method (line 9) is presented in Listing 3 and 
works as follows. First, paths in the both BFS trees 
are found. If one of them does not exist, then the 
algorithm returns null, otherwise, the algorithm 
returns the shortest path which goes through vertex 
v.id. 

Listing 3: Find the shortest path in the 
trees 
1 long[] getPath(Vertex v, Tree tS, Tree tT) 
2   toS = getPath(tS, v.idToS); 
3   toT = getPath(tT, v.idToT); 
4   if (toS == null || toT == null) 
5     return null; 
6   return toS + v.id + toT.reverse(); 

Table 1 contains the number of vertices and edges 
utilized in the first version of the Atlas+ algorithm 
and the number of vertices the degree of which 
equals to one among those vertices. According to 
Table 1, 339859 of the new vertices (67%) cannot be 
used in the improvement of paths, as their degree 
equals to one. 

Table 1: Analysis of the first version of the algorithm. 

Vertices Edges Vertices with degree equal 1 
501324 10524245 339859 

Thus, the number of stored edges has decreased to 
2N in the second version of Atlas+, where N is the 
number of vertices in the built graph. For example, 
in this case, N is 501324, the number of stored edges 
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is decreased in ten times (1002648 against 
10524245). 

The second version of Atlas+ is depicted in 
Fig. 2-Fig. 5. Let the proposed algorithm search for 
the shortest path between vertices ݒଵ and ݒଵଵ in the 
unweighted social graph shown in Fig. 2. 

First, the Atlas algorithm finds two paths 
between the vertices, path ݒଵݒଶݒଷݒݒସݒଵଵ is drawn 
by dashes and path ݒଵݒହݒݒݒ଼ݒଵଵ is drawn by dots. 
Fig. 3 shows the two paths found by the Atlas 
algorithm. Other vertices and edges of the original 
graph are marked by gray color. 

 

Figure 2: The original graph. 

Fig. 4 depicts the graph that consists of the 
previously obtained vertices and of the additional 
edges queried from the original graph that connect 
the vertices. 

In Fig. 5 the algorithm looks for a new adjacent 
vertex that is not in the built graph, on which the 
shortest path between ݒଵ and ݒଵଵ is reached. The 
shortest path, marked with gray vertices, between ݒଵ 
and ݒଵଵ is ݒଵݒݒଵݒଵଵ. 

 

Figure 3: The two paths found by the Atlas algorithm. 

 

Figure 4: The graph with adding edges queried from the 
original graph. 

According to the scale-freeness of social graphs, the 
shortest paths between vertices have tendency to go 
through popular vertices.  Hence,  the  algorithm can 

 

Figure 5: The found shortest path. 

be accelerated if only a small portion of the adjacent 
vertices are queried, not the whole adjacency list. It 
also decreases the number of vertices stored in the 
hash table. If a social graph is stored on another 
machine, as is done in social networking sites, the 
volume of data sent via a network decreases 
(querying adjacent vertices). Thus, the heuristic may 
improve performance of both the network query and 
the processing of the responses. 

Let a query “get at least k vertices or vertices 
with degree more than some bound d” be named as a 
query of the popular adjacent vertices. To find a 
reasonable value for the degree d, the following plot 
in Fig. 6 is utilized. The degrees of vertices queried 
in the original graph that shorten the shortest path 
obtained by the Atlas algorithm have been assessed. 
If the proposed algorithm in Listing 2 is able to find 
several shortest paths between a pair of vertices, the 
path in which the degree of such vertex is largest is 
selected. The plot in Fig. 6 shows the cumulative 
normalized number of vertices that shortens the 
paths with regards to their degree. According to the 
diagram, the shortest path is shortened through very 
popular vertices; only 2-3% of all paths are 
improved through vertices with degrees circa 
100 - 200 which are also rather popular vertices. 
According to the analysis of degree distribution in 
the Odnoklassniki social graph, only 7% of vertices 
of the social graph have degree more than 200. Thus,  

 

Figure 6: Cumulative share of vertices through which 
paths are shortened depending on the degree of the 
vertices. 
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if adjacent vertices the degree of which is more than 
some fixed threshold are requested, the volume of 
sent and processed data decreases essentially. As a 
trade off the accuracy of the algorithm decreases by 
1-2% which is still acceptable if the threshold is 200. 
Thus, by setting the threshold d at 200, only 7% of 
the vertices are returned to the query of the popular 
adjacent vertices above, by among them are all those 
that have up to 5000 adjacent vertices. 

4.2 Handling of Dynamic Graphs 

Social networking sites are very dynamic as 
concerns the addition of new users and additions and 
deletions of relationships between users. According 
to the study even 50% of actions of users of social 
networking site per day relates to changes in their 
friend lists (Wilson et al., 2009). An algorithm for 
searching the shortest path between two vertices 
should always return the relevant path. Thus, 
changes in the social graph have to be reflected the 
graph model, in this case, in the spanning trees 
impacted by them. Rebuilding all trees takes too 
much resources and too much time. We have 
observed that building a spanning tree takes for the 
Odnoklassniki social networking site with the 
current number of users 1 hour and 20 minutes on 
average (O(|E|), as the spanning trees are built by 
BFS). Hence, only a part of the built trees or a part 
of a tree should be rebuilt per day. The current paper 
utilizes the replacement strategy suggested in Cao et 
al. (2011) and suggests local modifications of the 
trees rather than complete rebuilding. 

The replacement of trees is assumed to be done 
once a day; and the task should take at most a couple 
of hours for the graph of the Odnoklassniki social 
networking site. Local modifications of a spanning 
tree should be done if it is not a tree of the breadth-
first search. The impacted tree is modified in such a 
way that it will become a breadth-first search tree 
again. The following changes can occur in a network 
at the site that are reflected into the modelling graph: 
 

 adding a new friend: add an edge; 
 adding a new user: add a vertex; 
 removing a friend: remove an edge; 
 removing a user: remove a vertex. 

 

Let uv be a new edge between existing vertices u 
and v. Adding a new edge does not impact the 
functionality of the spanning trees before the 
difference between the depth of the vertices is more 
than one. If the difference is more than one, then the 
highest vertex should become a child of the second 
vertex. The needed tree modification is shown in 

Fig. 7. In the picture vertex v is deeper than vertex u 
in the tree; vertex w is a descendant of vertex u and 
the shortest path between vertices u and v is of 
length 2 or more in the tree. The modification needs 
to calculate the depth of the vertices (from the root) 
and change the parent pointer of the lowest vertex; 
in the picture vertex u becomes the parent of vertex 
v. Thus, time complexity of the modification is O(L 
+ 1) = O(L) where L is the depth of the tree. In the 
implementation of Atlas+ only the pointer to the 
parent vertex of a vertex in a tree is needed. Thus, 
edges in the spanning trees are directed from a child 
to its parent. 

 
Figure 7: Modification when edge uv is added. 

Adding a new vertex does not impact built trees until 
an edge connecting the vertex and another 
component of the social graph is added. This can 
occur if, for instance, a new just registered user at a 
social networking site connects with another user. 

Removing an edge from the social graph may 
split a tree into two unconnected components. Let a 
vertex v be the parent of a vertex u in a spanning tree 
and the edge uv has been removed. Then such a 
vertex w should be found that vertex w should be an 
adjacent vertex of vertex u, vertex w should be 
connected in the modified tree, and after setting the 
parent of u to w the tree should become a breadth-
first search tree. Since the depth of a tree should be 
as small as possible, vertex w is sought in the 
following groups of the vertices. The adjacent 
vertices of vertex u are split into three groups: 
vertices the depth of which equals to the depth of 
vertex u minus one, the vertices the depth of which 
equals to the depth of vertex u and the vertices the 
depth of which equals to the depth of vertex u plus 
one. If such a vertex w cannot be found, then such a 
vertex y is found among the adjacent vertices of w 
for which vertex y is not an ancestor of vertex w. If 
such a vertex y exists, then vertex y becomes the 
parent of w and edge vw is inverted. If vertex y does 
not exist, then the algorithm is repeated recursively 
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for all adjacent vertices of vertex w until a suitable 
vertex is found. A suitable vertex may not be found 
if all vertices of the subtree rooted at vertex v do not 
have adjacent vertices in the original graph from 
another subtree of the spanning tree being modified. 
This means that edge uv is a bridge edge (cut-edge), 
an edge of a graph whose deletion from the graph 
increases its number of connected components 
(Harary, 1969). Thus, in this case, no modifications 
are needed. Nevertheless, this scenario very rarely 
occurs in practice, since the social networks tend not 
to have just one connection two subgroups of users. 

To perform the modification, calculating the 
depth of some vertices is needed. Since the 
modification algorithm has to process the whole 
subtree rooted at vertex v and query the adjacent 
vertices of all vertices of the subtree in the worst 
case, the time complexity of modification is O(|E|). 

The modification is depicted in Fig. 8-Fig. 9. In 
the pictures edge between vertices u and v is removed 
and the tree is modified as explained above. 

 
Figure 8: Modification when edge uv is removed. 

 
Figure 9: Modification for removing edge uv (worst case). 

Removing a vertex is similar to removing all edges 
incident to the vertex. Thus, this case is covered by 
the previous modification. It is implemented by 
repeating the procedure above for every removed 
edge the vertex. 

4.3 Time and Space Complexity 

To measure the time complexity of the Atlas+ 
algorithm, analysis of the each step is needed. 
Finding of the shortest path in a tree takes time 
linear with regards to the depth L of the tree O(L). 
Search of k shortest paths in k trees takes time 
O(kL). The number of edges queried by the Atlas+ 
algorithm is bounded by dkL, where d is the 
maximal degree of vertices in the original social 
graph. Thus, the breadth-first search algorithm 
works in O(dkL) in the worst case. Thus, the 
summarized time complexity of the proposed 
shortest path searching algorithm depends on the 
depth of trees, number of trees and the maximal 
degree of vertices in the social graph and equals to 
O(dkL). Also, some social networking sites limit the 
maximal number of friends. Therefore, d is assumed 
to be a constant. 

The time complexity of Atlas algorithm is O(kL), 
since the algorithm searches for shortest paths in k 
spanning trees. Thus, the time complexity of Atlas+ 
is worse than the one of Atlas. 

The number of edges queried by Atlas+ is 
O(dkL), therefore, its space complexity is O(dkL). 
While Atlas requires O(L) memory. Thus, Atlas+ 
requires more memory than Atlas. 

5 EVALUATION 

This section describes how the proposed algorithm 
Atlas+ is evaluated and the results of the evaluation. 
For the evaluation of Atlas+ LiveJournal and Orkut, 
obtained from SNAP (Stanford Network Analysis 
Project, 2015), and the real social graph of the 
Odnoklassniki social networking site have been 
utilized. Table 2 shows the size of the (social) 
graphs used in evaluation. 

Table 2: Graph data used in evaluation. 

Graph Vertices Edges 
Odnoklassniki 205M 25000M 

LiveJournal 3997962 34681189 
Orkut 3072441 117185083 

5.1 Implementation Details 

The algorithm has been implemented in the Java 
programming language. 

Spanning trees is stored as an array of integers 
on the hard drive. All vertices of the initial social 
graphs are fetched and are enumerated from 1 to N, 
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where N is the number of vertices in the graph. Let p 
be an array of integers in which a tree is stored and i 
be the id of a vertex. Thus, p[i] stores the id of the 
parent of  vertex i. Generated trees are too large to 
be stored in the heap, circa 14-16 GB in total for the 
graph of the Odnoklassniki social networking site. 
Additionally, mapping from social graph ids, unique 
8 bytes long integers, to tree ids should be stored in 
the primary memory. To overcome the memory 
problem, the files that contain the spanning trees, are 
mapped to the virtual memory. Also, to store the 
mapping of social graphs ids to tree ids in the 
primary memory, the one-nio library of the 
Odnoklassniki API is utilized  (One-NIO, 2015). 
The benefits of the suggested solution are (Bach, 
1986): 

 

 demand paging, i.e. files are loaded into 
physical memory by pages, and only when that 
page is referenced; 

 page cache, i.e. several processes can share 
memory mapped files between each other. 

Hash tables are utilized in the first version and in the 
second version of the algorithm. Standard Java 
collections may only store objects. This means that 
primitive types, like long, integer, have to be boxed 
to class wrappers, e.g the Long class is for long 
integer. Using the standard Java collections for 
primitive types leads to the following problems with 
performance and memory usage: 
 

 more heap memory than necessary is used, 
since the corresponding Java object contains 
headers and other meta information in addition 
to primitive types; 

 objects need to be garbage collected, while 
memory for primitive types can be allocated 
directly in the stack memory; 

 indirect access to primitive types which leads 
to slowing down program execution; 

 problems with caching: an array is supposed to 
be stored contiguously; thus, arrays are easy to 
be cached in order to decrease access time to 
elements of the array, but as concerns the 
boxed integers, the array is as an array of 
pointers to objects randomly spread around the 
heap. Thus, the data cannot be cached into a 
contiguous memory area.  
 

To eliminate the mentioned problems, 
implementation of the hash table provided by Trove 
is utilized (Trove, 2015). In the Trove library hash 
tables are implemented as open-addressing hash 
tables with double hashing. Nevertheless, the 
performance of Trove's hash table does not fit the 
requirements of the proposed algorithm. Thus, to 

speed up the algorithm an open-addressing lock-free 
hash table has been implemented. Since the 
proposed algorithm only adds or makes queries to 
the hash table, rehashings in the hash table can be 
optimized. Let k be a maximal number of probes 
done during insertion to the open-addressing hash 
table. If elements are not removed, then the 
searching element e cannot lie further than k 
iterations from the h(e) cell, where h(e) is the hash 
value of element e. Thus, the searching algorithm 
does not need to make more than k rehashings. For 
generation of probing sequences quadratic probing is 
utilized (Cormen, Leiserson, Rivest, & Stein, 2001). 
Moreover, the implementation of the hash is lock-
free. 

5.2 Evaluation of Accuracy 

To analyze the accuracy of the algorithm, pairs of 
vertices from the above-mentioned social graphs 
have been randomly selected. Table 3 shows the 
number of paths grouped by the length of the paths. 
Due to the properties of social networks, the shortest 
paths with length more than five edges in the 
modeling graphs are very rare. Thus, the selected 
sets of paths are representative for the algorithm 
evaluation. 

Table 3: Paths grouped by the length of the paths. 

Social graph 3 4 5 6 Total 

Odnoklassniki 
7439 
(5%) 

61004 
(41%) 

71419 
(48%) 

8927 
(6%) 

148789 

LiveJournal 
5151 
(10%) 

18484 
(37%) 

25061 
(50%) 

1304 
(3%) 

50000 

Orkut 
3121 
(6%) 

20531 
(41%) 

23482 
(47%) 

2866 
(6%) 

50000 

The suggested algorithm has calculated a path 
between each pair of the vertices; after that, the 
result of the algorithm has been compared with the 
actual shortest path. The correct shortest paths have 
been computed by BFS. In addition, the accuracy of 
the algorithm grouped by the length of paths has 
been calculated. Fig. 10-Fig. 13 show that the 
accuracy of the algorithm depending on the number 
of trees used in search. Hence, 25-30 spanning trees 
are enough to obtain the desirable accuracy, more 
than 90%, which is much better than the accuracy of 
the Atlas algorithm (30 %), and desirable 
performance (shown in Table 6). The accuracy is the 
rate of that the found path is not the shortest one 
normalized by the amount of the paths used in the 
evaluation. 
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Figure 10: The accuracy of the proposed algorithm with 
regards to the number of used spanning trees. 

 

Figure 11: The accuracy grouped by the length of the 
paths (Odnoklassniki). 

 

Figure 12: The accuracy grouped by the length of the 
paths (LiveJournal). 

Additionally, according to Fig. 10-Fig. 13, the 
accuracy of the algorithm for long paths (four-five 
edges) is better than for shorter paths (two-three 
edges), but the difference is insignificant. If the 
algorithm makes  a  mistake,  the  difference  in path 

 

Figure 13: The accuracy grouped by the length of the 
paths (Orkut). 

length is not more than one edge. Overall, the 
proposed algorithm has acceptable accuracy in the 
intended environments. 

Table 4 shows the comparison of the accuracy of 
the Atlas and Atlas+ algorithms. In the accuracy 
evaluation the same sets of paths were utilized. 
According to the table, the Atlas+ has much better 
accuracy. 

Table 4: The accuracy of Atlas and Atlas+. 

Algorithm Odnolassniki LiveJournal Orkut 
Atlas 30% 40% 56% 

Atlas+ 91% 90% 96% 

5.3 Evaluation of Performance 

This section is devoted to performance of the 
algorithm depending on parameters and 
modifications of the algorithm. Table 5 shows the 
time required to build spanning tree for the selected 
social media site data, as well as average query time 
for shortest path query between two random 
vertices. 

Table 5: Performance of the algorithm. 

Social graph Size of a 
tree 

Number 
of 

vertices 

Tree 
construction 

time 

Query 
time 

Odnoklassniki 572 MB 150M 80 minutes 51 ms 
LiveJournal 15 MB 3997962 20 seconds 17 ms 

Orkut 11 MB 3072441 83 seconds 21 ms 

Table 6 contains the average time needed for 
searching the shortest path between two vertices 
using 25 spanning trees on Odnoklassniki. The 
performance of each step of the algorithm has been 
measured, as well. The measurement has been 
performed on machine with Intel Core i7-4702MQ 
CPU 64 GB of the primary memory and Linux 
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(Ubuntu 14.04). Requests of adjacent vertices is 
done via a computer network, since the 
Odnoklassniki social graph is stored on a machine 
cluster. In the table row Tree query relates to Atlas. 
Thus, Atlas is 100 times faster than the proposed 
one. 

Table 6: Performance of the steps of Atlas+. 

Step of algorithm First 
version 

Second 
version 

Tree query (Atlas) 0.5 ms 0.5 ms 

Request of adjacent vertices 32 ms 32 ms 

Building of a hash table 61 ms 20 ms 

BFS 33 ms 9 ms 

Total 127 ms 51 ms 

According to the table, despite of the suggested 
modifications to improve the algorithm, the 
performance of the algorithm is observed to be 
unacceptable and can be improved. Indeed, the 
average number of the vertices for which adjacency 
lists are requested is circa 100. Since the spanning 
trees are built around popular vertices, the responses 
for the requests appear to be large (more than 2 
MB). Additionally, as is shown in Section 4.2 the 
most part of edges cannot be used in improving the 
paths. Moreover, most part of the time for one 
search is consumed by the network requests. Section 
4.2 shows that the number of requested vertices can 
be bounded without significant decreasing of the 
accuracy of the algorithm. 

Unfortunately, the API of the Odnoklassniki 
social network site does not support the query of 
popular adjacent vertices. That is why the 
performance of using only popular adjacent vertices 
has not been measured.  

5.4 Evaluation on Dynamic Graphs 

The current section analyzes accuracy of the 
algorithm on dynamic graphs. The section also 
analyzes the proposed modifications of the trees to 
handle changes in the social network. To analyze 
accuracy of the algorithm on dynamic graphs, a 
subgraph of the graph modeling Odnoklassniki is 
utilized. The subgraph consists of vertices for users 
who mention Latvia as their country of origin in 
their profile and ties between them induce the edges. 
The subgraph contains 515000 vertices and 25 
million edges. To emulate the dynamics of the 
subgraph, a log of relevant changes that occurred at 
the site during a week is utilized. The log only 
includes adding and removing ties. Hence, two 
versions of the graph are generated. The first is 

modeling the state of the above subgraph at the 
beginning of the week and the second at the end of 
the week, after the tie changes recorded into the log 
have been reflected into the edge set of the 
subgraph.  

As was mentioned above, spanning trees should 
be changed in case of adding an edge for which the 
difference in the depth of the vertices the edge 
connects is more than one and in case of removing 
an edge that occurs in the trees. Table 7 shows the 
number of added edges grouped by difference in 
depth. Thus, trees are impacted by adding of new 
edges only in 0.03% of the additions. Concerning 
dropping of edges, only 0.07% of removals of edges 
impact the built trees. Thus, the built trees still are 
able to approximate the modified graph rather well. 

Table 7: Difference of depth of the vertices of edges. 

Difference in depth Dist. Of adding an edge 
0 54.17% 
1 45.8% 
2 0.03% 
3 0% 

Local modifications of trees are evaluated as 
follows. First, 20000 of shortest paths have been 
calculated in both the subgraph of Latvia and the 
modified subgraph of Latvia. Thereafter, 30 
spanning trees have been built for the subgraph. 
Accuracy of the proposed algorithm has been 
measured on the initial graph (97%) and on the 
modified graph (95%). After that, the modifications 
suggested in Section 5.4 have been applied to the 
built spanning trees. Using the modified spanning 
trees accuracy of the algorithm is 96%. Thus, the 
local modifications increase accuracy of the 
algorithm slightly. 

The accuracy of the algorithm grouped by length 
of shortest paths is depicted in Fig. 14. According to 
the diagram, changes in the graph influence the 
accuracy of the algorithm on short paths (3 edges), 
while the accuracy on longer paths (more than 4 
edges) does not change considerably. Local 
modifications of trees increase accuracy of the 
algorithm on short paths. 

The replacement strategy is evaluated as follows. 
As well as for local modifications, 20000 of shortest 
paths have been calculated in the subgraph of Latvia 
and in the modified graph of Latvia. Thereafter, 
some number of old trees are replaced with new 
ones. Fig. 15 demonstrates accuracy of the algorithm 
depending on the number of replaced trees. 
According to the picture, replacement of 14 trees 
increases accuracy of the algorithm. 
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Figure 14: Accuracy of the algorithm (local modifications 
of spanning trees). 

 

Figure 15: Accuracy of the algorithm (replacement of 
spanning trees). 

6 RELATED RESEARCH 

This section is devoted to other existing algorithms 
using for solving the shortest path problem or for 
distance estimation in social graphs. 

Fu et al. (2013) suggest extracting the core-net 
which is a subgraph consisting of popular vertices, 
bridge vertices and edges that make it to form only 
one connected component. Thereafter, distances 
between all pairs of the core-net are calculated. The 
shortest distance between a pair of vertices is found 
as follows. First, the friend and friend-of-friends lists 
of the two vertices are calculated, thereafter, they are 
checked for intersection. If the lists have common 
vertices, then distance is found. Otherwise, the lists 
and the core-net are checked for intersection. If they 
intersect, the distance is calculated, according to the 
distance matrix. The time complexity of the 
algorithm is	ܱሺ| ௨ܰ

ଶ|  | ௩ܰ
ଶ|  ሻ, where ௨ܰ|ܥ|

ଶ and 
௩ܰ
ଶ are sets of friend-of-friends vertices and C is a 

core-net of the graph. Also, researchers widely use 
landmark-based approaches to estimate distances in 
large graphs. These approaches select a subset of 
nodes which are named landmark and pre-compute 
the distances from each landmark to all other nodes 
in the graph. The algorithm finds shortest paths 
through the landmarks and returns the shortest one 
as the answer to a query. Kleinberg et al. (2004) 
show that landmarks can be picked randomly with 
good theoretical results. Potamias et al. (2009) build 
landmarks according to the basic metrics with better 
result than in the previous work and also prove that 
selecting the optimal landmark set belongs to the 
class of NP-hard languages. All of the above 
mentioned landmark-based approaches estimates the 
lengths of the shortest path in ܱሺ|ܮ|ሻ, where L is a 
set of landmarks. Finally, the Orion system, offered 
in Zhao et al. (2010), embeds a graph into a 
Euclidean space and distance between two vertices 
is estimated according to Euclidean distance 
between them. The time complexity time of Orion is 
ܱሺ1ሻ, as calculation of the Euclidean distance 
between a pair of vertices is needed. The main 
disadvantage of the mentioned algorithms is that 
they are only able to estimate distance between 
vertices, not to calculate an actual path. Qi et al. 
(2013) combine a landmark-based approach and an 
embedding of vertices into a Euclidean space. Akiba 
et al. (2015) propose the method that quickly 
answers top k distance queries on large networks. 
The method has been evaluated on real-world social 
and web graphs. The Atlas algorithm (Cao et al., 
2011) reduces the shortest path problem in a graph 
to the one in a tree. 

According to the papers, it can be concluded that 
researches mostly invest in algorithms which only 
estimate the shortest distance between a pair of 
vertices, not in the development of the shortest path 
searching algorithm. For the most part of 
applications, like ranked social search (find top k 
closest vertices to a vertex from a set of vertices), 
distance estimations are enough. 

7 CONCLUSIONS 

The Atlas algorithm builds a set of spanning trees 
and reduces the shortest path problem to the least 
common ancestor problem. The accuracy of the 
Atlas algorithm is not acceptable for the envisioned 
environment. The current paper has proposed a new 
algorithm, Atlas+, based on the Atlas algorithm. The 
proposed algorithm adopts the precomputation step, 
i.e. the spanning tree construction of the Atlas 
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algorithm. The second part of Atlas, the path 
searching is improved by the query to the entire 
graph in order to find a vertex through which the 
paths found by the original Atlas can be shortened. 
Also, the paper has analysed several variations of the 
proposed algorithm, as its initial version did not fit 
the performance requirements. Some of the steps of 
Atlas+ have been parallelized and a new lock-free 
hash table has been suggested. The queries asking 
for adjacent vertices on found paths are often done 
via a communication network. Therefore, the paper 
has discussed how the network time could be 
reduced, but the suggested improvements would 
require changes of the API at the server side and 
they could not be tested. Finally, one has also 
evaluated the proposed algorithm on dynamic 
graphs.  It is plausible to argue that the proposed 
Atlas+ would exhibit high enough performance on a 
real social network, as the evaluation against the 
Odnoklassniki social network site demonstrated. 

In the future work, the time of the network 
queries can be investigated more precisely. In 
addition, the algorithm is needed to be shipped with 
the API of a social network site in order to 
investigate the impact of the dynamics of social 
networks on the algorithm. The proposed algorithm 
might also be extended to answer top k shortest 
paths between a pair of vertices. 
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