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Abstract: Sometimes, data belonging to Relational databases need to be transferred to NoSQL ones. However, the 
data conversion process between Relational to NoSQL databases is considered as not trivial, since it is 
necessary to have considerable knowledge about the data models at hand. Regarding the structural 
heterogeneity underlying this problem, we propose an approach, named as R2NoSQL, which defines 
conceptual mappings to enhance the data conversion process. In this paper, we present our approach and 
some implementation and experimental results, which show that, by using the defined conceptual mappings, 
we obtain a consistent target NoSQL database with respect to a source Relational one. 

1 INTRODUCTION 

Due to the increasing amount of data generated by 
user interactions on the Web or by big data 
requirements, some companies are focusing on using 
non-relational databases, usually referred to as 
NoSQL systems, standing for ’Not only SQL’ (Han 
et al., 2011). This term has been used to categorize 
databases characterized by horizontal scalability, 
less constrained structure or schema-less, and faster 
access compared to traditional relational databases 
(RDBMS) (McMurtry et al., 2013). 

Experts comment that despite the rise of NoSQL 
databases during the past years, NoSQL is not 
necessarily a replacement for relational databases 
(McMurtry et al., 2013). Instead, NoSQL databases 
comply with big or social data demands or specific 
projects which strain Relational ones. Nevertheless, 
sometimes, data belonging to Relational databases 
need to be transferred to NoSQL ones in order to be 
used in specific projects. However, the data 
conversion process is not trivial, since it is necessary 
to have considerable knowledge about the data 
models at hand.  

In this scenario of structural heterogeneity, we 
define our research problem as follows: 

Let RDB be a Relational database and NSDB = 
{NSDB1, ..., NSDBn} a set of databases belonging  
to NoSQL models, where each NSDBi uses one 
of the following NoSQL approaches A = {Key-
value, Column, Document, Graph}. We need to 

establish conceptual mappings between RDB 
elements and the different data structures 
underlying NSDBi in such a way that RDB can be 
converted to NSDBi. 
With this in mind, and considering the structural 

heterogeneity between Relational and NoSQL 
models, this paper presents the R2NoSQL approach 
for converting data between the referred models. To 
this end, it compares the data structures belonging to 
the Relational model with the four main NoSQL 
approaches (key-value, columns, documents and 
graphs), identifying a set of possible conceptual 
mappings between RDB and a NSDBi. Also, it 
provides a tool prototype, which implements a case 
study with a Relational database and a Document 
based NoSQL system. Experiments have been done 
to evaluate the consistency of the generated 
mappings by analysing the results obtained from the 
same set of queries executed on both systems. 

This paper is organized as follows: Section 2 
introduces some concepts; Section 3 presents the 
approach; Section 4 describes some obtained results. 
Related work is discussed in Section 5. Section 6 
draws our conclusions and points out future work. 

2 NoSQL MODELS   

NoSQL systems are a category of databases that do 
not follow principles of the Relational Model (Han 
et al., 2011). The term “NoSQL” does not relate to a 
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specific data model, but to a group of data models 
that differ from the relational approach and may 
have in common some features such as: they are 
usually open-source, distributed and horizontally 
scalable, and they present schema flexibility or even 
no schema (Han et al., 2011).  NoSQL systems are 
classified in some categories in which the four main 
are: Key-value, Columns, Documents, and Graph. 
Indeed, their implementations may differ from each 
other, even when the systems belong to a similar 
category. In order to base our descriptions, we have 
chosen one example of each NoSQL category. They 
are briefly discussed in the following. 

2.1 Key-value Model 

The Key-value Model is the one with the simplest 
representation. Its structure consists of a list of pairs 
composed by a key and a value (Istvan et al., 2013). 

Usually, Key-value NoSQL implemented 
systems allow, besides simple data types (e.g., 
numerals and strings), the use of lists and sets of 
values of simple types. This is what happens, for 
instance, in Redis (Redis, 2015), our example of 
Key-value system. A Key-value system such as 
Redis tends to support large volumes of data. Since 
it does not present data schemas, the developer may, 
by hand, introduce some metadata by naming the 
keys. On the other hand, it does not support queries 
to be performed on the data, but only on the search 
keys. Thus, all access is done through the search 
keys and only with the key it is possible to access 
the value. This access usually is accomplished with 
lower response times, one of its main benefits. This 
model does not support relationships in terms of 
reference keys and no referential integrity constraint. 

2.2 Column Model 

At a first sight, this model may be considered as 
similar to the Relational one, since it is also 
organized in terms of rows and columns. However, 
this approach deals with data in a non normalized 
way, i.e., by allowing nesting of tables inside tables 
(Lakshman and Malik, 2010). In this approach, rows 
do not store a tuple, but a set of attributes of the 
same type, while the set of attributes of a column 
contains the information from a given instance. Such 
feature allows queries to be performed more 
efficiently, although when recovering a complete 
instance it may become more costly.  

Another important concept regards a “family of 
columns”, which means a set of instances of a given 
entity. In this structure, it is possible to have non-

atomic attributes through the representation of value 
lists. Instances may have a different number of 
attributes, since there is no need to book storage 
space for null values. Also, there is no need to use 
join operations in order to query diverse entities.  

2.3 Document Model 

In Document Model, the data entities are grouped in 
documents as objects, which are composed by keys 
(properties) and values. These documents are usually 
serialized in JSON syntax (McMurtry et al., 2013).  

A document is a collection of objects that are 
related to a data instance. The various documents 
belonging to the same data domain are stored in a 
collection of documents.Considering the MongoDB 
document system (Mongo, 2015), an instance key 
(called as an “objectId”) can be set at persistence 
time, or may have its value generated randomly by 
the database.  It can provide uniqueness values for 
other fields by the specification of an index. 

This model allows more complex queries 
involving different collections of documents. To this 
end, it is necessary that a document has a DBRef 
(Database Reference) to another related document or 
establish a reference. Despite allowing references, 
DBRef does not guarantee referential integrity 
constraint. A query may consider these references or 
use data embedded within the same document. 

2.4 Graph Model 

The Graph model is mainly concerned with 
representation and access, where data items are 
connected by relationships by means of a graph 
structure (McMurtry et al., 2013). The elements 
underlying a graph are, namely (McMurtry et al., 
2013): nodes, edges and properties. Nodes 
correspond to data instances, edges refer to 
maintained relationships among node instances, and 
properties relate to data values. Some systems of 
such category allow the definition of their properties 
with the guarantee of unique values. One example 
regards the Neo4j system (Neo4j, 2015).  

Nodes and edges can contain labels (terms which 
indicate a category) that classify them into more 
specific groups. For the nodes, these labels can be 
used to differentiate instances. On edges, labels may 
also be used to determine the type of relationship 
that is occurring.  

An edge has an input node and an output node 
linking them. This feature, besides supporting 
references, also guarantees referential integrity by 
ensuring that the input node always makes reference 
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to the output node. The access keys to the nodes are 
automatically set by the system. However, it is 
possible to establish unique constraints for other 
node properties.   

3 THE R2NoSQL APPROACH 

In this section, we present some definitions along 
with the proposed approach.  

3.1 Some Definitions 

At first, we provide some definitions regarding the 
concepts underlying E-R and Relational models that 
we consider in our approach.   Since we need to 
think about mappings between concepts, we define 
what we consider by “Concept” in each one of the 
working data models. Regarding the E-R Model, we 
may summarize a Concept as follows.  

Definition 1 – E-R Concept. The set of 
concepts of an E-R conceptual model we are dealing 
with are CE = {Entity, Simple Attribute, Multi-valued 
Attribute, Composed Attribute, Relationship, 
Specialization}.  

In the light of the Relational Model, we define a 
Concept as follows.  

Definition 2 – Relational Concept. Concepts of 
a relational structure are CR = {Table, Simple 
Attribute, Primary Key (PK), Foreign Key (FK)}. 

As discussed in Section 2, we observe that each 
NoSQL database model has specific data structures. 
Thereby, we provide the definition of the main 
Concepts of the four categories of NoSQL systems 
described previously.  

Definition 3 – Key-value NoSQL Concept. A 
concept in a Key-value Model may be CK = {Search 
Key, Value, Value List, Value Set}.  

Definition 4 – Column NoSQL Concept. In a 
Column Model, a concept may be CC = {Column 
Family, Line, Column, Value Set, Value List, 
Primary Key (PK)}.   

Definition 5 – Document NoSQL Concept. In a 
Document Model, a concept may be CD = 
{Document Collection, Document, Field, Embedded 
Field, Field List, ObjectId, DBRef}.  

Definition 6 – Graph NoSQL Concept. A 
Graph model concept CG = {Label, Data Node, 
Property, Property Set, Id, Edge, Value Set, Value 
List}. 

Data indeed are instantiated differently in each 
one of the referred databases. Nevertheless, we can 
think about a data item or a data instance, in a 
general way, as follows.  

Definition 7 - Data Item. A data item is an 
instance or an individual of a real entity in the data 
set at hand.  

In the Relational Model, a data item is a tuple. In 
NoSQL approaches, it can be a data node, a data 
document, a column of a column family or simply a 
value from the key value model. 

3.2 Our Proposal 

As discussed in the previous sections, each database 
model has specific data structures and concepts, 
what provides structural heterogeneity conflicts 
among them. These conflicts occur because different 
choices of construct representation or integrity 
constraints are adopted in accordance with the 
options underlying each data model. Thereby, in this 
work, the task we are dealing with is concerned with 
what is necessary to convert concepts of a given 
RDB (a Relational database) to a NSDBi (a NoSQL 
one). Thus, it becomes necessary to specify 
conceptual mappings between concepts Cr ∈ RDB 
and concepts Cn ∈ NSDBi. 

Our proposal, named as R2NoSQL approach, is 
based on three aspects: (i) defining conceptual 
mappings between RDB and NSDBi; (ii) using these 
conceptual mappings to allow metadata and data 
conversion between the referred databases, and (iii) 
classifying source tables to help understanding their 
meaning in the database design. In the following, we 
provide the definitions underlying these issues.  

3.2.1 Conceptual Mappings 

Our approach deals with the structural heterogeneity 
of the data models and some aspects of database 
design.  In order to cope with these issues, our 
mapping language handles the different existing 
concepts, which belong to the data models, but as a 
design reference, we consider some concepts not 
only from the Relational model but also from the E-
R conceptual model. Thereby, we consider concepts 
from the Conceptual E-R model, which are not 
directly implemented in a Relational database, but 
they are close to real world and can be implemented 
in NoSQL systems. This conceptual mapping is the 
base for our conversion solution and without it, the 
process could not happen. These concepts regard 
particularly the composed and multi-valued 
attributes, and also specializations. By establishing 
that, we deal with a source model and a target model 
and we define the set of possible source Concepts, to 
be considered in a Mapping, as the following: 
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Definition 8 – Source Concept. A source concept 
Cs is the set of possible E-R or Relational concepts 
which may be used to compose a Mapping. Thus, CS 
= CE U CR. Proceeding with the union operation, the 
final set results in CS = {Entity, Simple Attribute, 
Multi-valued Attribute, Composed Attribute, 
Relationships, Specialization, Table, Primary key 
(PK), Foreign key (FK)}. Since a conceptual Entity 
always results in a relational Table, we abstract both 
ones only in the concept Table.  

In the same way, we establish a target Concept, 
as the following. 

Definition 9 – Target Concept. A target concept 
CT is the set of possible NoSQL concepts which may 
be used to compose a Mapping. CT = CK | CC | CD | 
CG. 

Thus, the set of target concepts is composed by 
the possible concepts which belong to one of the 
NoSQL systems instantiated by a specific model. 

With these definitions in mind, we define, firstly, 
in a general way, a Conceptual Mapping, as follows.  

Definition 10 – Conceptual Mapping. A 
conceptual mapping M represents an association 
between a concept CS and a concept CT of a given 
NSDSi, where NSDSi ∈ A, and A = {Key-value, 
Column, Document, Graph}.  M defines a level of 
similarity between CS and CT.  

A conceptual mapping M may be understood as a 
way of converting a given CS into a CT. Depending 
on the target NSDSi, to a given CS, there may be no 
corresponding CT, i.e., there may be no concept in 
the target model that can be used for data 
conversion. When this fact happens, we point it as 
an empty or non existing target concept (∄).  

Based on the previous definitions, we establish 
specific conceptual mappings between CS and CT, 
according to the NSDSi at hand. To this end, we 
consider the possibility of employing a table 
denormalization technique, which is the process of 
adding redundant data or grouping data, previously 
fragmented in a number of relational tables. 
Thereby, we may have nested tables or multi-valued 
attributes in one or more target structures, which 
may be sets, lists, documents or other ones, 
depending on the data model.  

Let RDB be a source database composed by CS 
and NSDBK, a Key-value NoSQL system, composed 
by CK. Specific structural conceptual mappings 
between CS and CK may be defined, as follows. 

RDB:Table ≡ NSDBK: ∄ 
RDB:SimpleAttribute ≡ NSDBK:Value 
RDB:ComposedAttribute ≡ NSDBK:ValueList  
RDB:Multi-valuedAttribute ≡  NSDBK:ValueList 
RDB:PK ≡ NSDBK:SearchKey 

RDB:FK ≡ NSDBK: ∄ RDB:Specialization ≡ NSDBK:ValueSet 
Regarding data items, we may establish a 

mapping in the following way: 
RDB:DataItem ≡ NSDBK:Value | 

NSDBK:ValueList 
Although there is no corresponding concept to a 

Table, it is possible to simulate such concept by 
using composed search keys. In this case, keys are 
composed by a prefix together with the name of a 
given property, in such a way that we may identify 
to which entity it is associated. Indeed, it is not a 
defined standard, but one of our proposals.   

The representation of relationships occurs with the 
storage of the search key values of a given data item 
inside another one. In many-to-many relationships, 
this happens in both sides of the data items at hand.  

Now let RDB be a source database composed by 
CS and NSDBC, a Column NoSQL system, composed 
by CC. Specific structural conceptual mappings 
between CS and CC are defined, as follows. RDB:Table ≡ NSDBC:ColumnFamily 

RDB:SimpleAttribute ≡ NSDBC:Column 
RDB:ComposedAttribute ≡ NSDBC:ValueSet 
RDB:Multi-valuedAttribute ≡ NSDBC:ValueList 
RDB:PK ≡ NSDBC:PK 
RDB:FK ≡ NSDBC: ∄ RDB:Specialization ≡ NSDBK: ValueSet 
Regarding data items, we may establish a 

mapping in the following way: 
RDB:DataItem ≡ NSDBC:Line 
In terms of relationships, a NSDBC allows their 

implementation by two options: (i) a column family 
may compose information from different but related 
tables; or (ii) data items may have a reference to 
other data items by storing the target primary key. 
The former is the most common option, since it 
allows a better response time. 

Now let RDB be a source database composed by 
CS and NSDBD, a Document NoSQL system, 
composed by CD. Structural conceptual mappings 
between CS and CD are defined, as follows. 

RDB:Table ≡ NSDBD:DocumentCollection 
RDB:SimpleAttribute ≡ NSDBD:Field 
RDB:ComposedAttribute ≡ 

NSDBD:EmbeddedField 
RDB:Multi-valuedAttribute ≡ NSDBD:FieldList 
RDB:PK ≡ NSDBD:ObjectId 
RDB:FK ≡ NSDBD:DBRef | 

NSDBD:EmbeddedField RDB:Specialization ≡ NSDBD: EmbeddedField 
Regarding data items, we may establish a 

mapping in the following way: 
RDB:DataItem ≡ NSDBD:Document  
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Relationships are implemented by defining 
object references between objects belonging to 
documents. Thereby, queries may take into account 
these references to get related objects information. 

Now let RDB be a source database composed by 
CS and NSDBG, a Graph NoSQL system, composed 
by CG. Specific structural conceptual mappings 
between CS and CG are defined, as follows. 

RDB:Table ≡ NSDBG:LabelNode 
RDB:SimpleAttribute ≡ NSDBG:Property 
RDB:ComposedAttribute ≡ NSDBG:ValueSet 
RDB:Multi-valuedAttribute ≡ NSDBG:ValueList 
RDB:PK ≡ NSDBG:Id 
RDB:FK ≡ NSDBG:Edge RDB:Specialization ≡ NSDBK:ValueList 
Regarding data items, we may establish a 

mapping in the following way: 
RDB:DataItem ≡ NSDBG:Node 
In the next section, we provide the way we 

classify identified tables in a given RDB.  

3.2.2 Table Classification 

Regarding the set of concepts CR ∈ RDB, the main 
one is always a Table. Since a table may be the 
result of E-R conceptual entities, relationships, 
specializations, multi-valued or composed attributes, 
we need to understand what a Table means, and its 
importance, to the RDB at hand. We have defined a 
classification of the source Tables as follows. 

 Main Tables: These are the main tables in a 
RDB design. They usually correspond to 
entities found in the conceptual model. 

 Subclasses: These tables are a complement to 
the definition of a main table. They represent 
specializations of the main tables, but do not 
exist independently. 

 Relationships: This classification typifies a 
specific kind of table, which implements a 
many-to-many (N:N) relationship in the 
conceptual model. 

 Common Tables: The other types of tables are 
defined as common in a source RDB schema.  

Our proposed algorithms take into account such 
table classification in order to identify the 
conceptual mappings to be used.  

3.2.3 Conversion Algorithm 

Based on the specified conceptual mappings 
between CS and CT, and on the table classification, 
some algorithms have been developed to allow data 
conversion. A main algorithm, named as 
Algorithm1-Data Conversion, receives a RDB 
enriched with a Table Classification as input and 

generates a NSDBi as output. 
-------------------------------------------- 

Algorithm1: Data Conversion. 
-------------------------------------------- 
Input: RDB rel; 
Output: NSDSi ns; 
Begin 
    //Looks for main tables 
1:  For Each table of rel Do 
2:  If (table.classification() is “main”) 
    Then 
3:      get all table attributes to object 
4:      For Each table referencing table Do 
          //looks for related tables 
5:        goDeep(table, object); 
  //persists object on ns  
6:        persist(object) ; 
7:      End For; 
8:    End If; 
9:  End For; 
End Data_Conversion; 
-------------------------------------------- 

In our approach, the input RDB is composed by 
its metadata and data. Tables were already classified 
and this classification is also used as input. Based on 
that, the algorithm verifies the kinds of existing 
tables and, for each type, extracts the set of data 
items. Through references (FKs), data tables are 
traversed and analyzed. At such verification time, 
decisions are taken according to each type of table. 
-------------------------------------------- 

Algorithm2: goDeep. 
-------------------------------------------- 
Input: table, object; 
Output: table, object; 
Begin 
    //Looks for tables that reference table 
1:  table2 := findTableDeep(table); 
    2:  Do Switch table2.classification 
3:    case “common”: 
4:      get all table2 attributes to object; 
5:      goDeep(table2); 
6:    case “subclass”: 
7:      get all table2 attributes to object; 
8:      goDeep(table2); 
11: End Switch; 
    //looks for related tables 
10: goUp(table, object); 
End goDeep; 
-------------------------------------------- 

Main tables constitute the basis for the analysis. 
With a main table at hand, the algorithm verifies if it 
is related with other ones. In this case, it calls 
another algorithm (Algorithm2–goDeep) where 
existing relating tables are identified. Regarding 
these selected tables, some options may be taken, 
namely: (i) If the table is another main table, no 
other procedure is accomplished because, later, the 
opposite direction of the relationship will be 
considered. At this later time, the second table will 
refer to the first one; (ii) If the table is a relationship 
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table, no action is taken because, only when all the 
data items are persisted, relationships can be 
analyzed; (iii) If the table is a common one, it is 
possible to add its attributes in that main table as 
part of its structure; (iv) If the table is a subclass, 
then its attributes are added to the main table. It is 
understood that it is a specialization of the main one. 

Each time a new table is found in-depth analysis, 
the algorithm selects this table and repeats the 
process until there are no more tables, or a stop 
condition happens. This process is responsible for 
the denormalization of the data, in which the data 
related to the main table are included in a data item. 
-------------------------------------------- 

Algorithm3: goUp. 
-------------------------------------------- 
Input: table, object; 
Output: object, reference_list, 
referenced_list; 
Begin 
    //Looks for tables that reference table 
1:  table2 := findTableUp(table); 
2:  Do Switch table2.classification 
3:    case “common”: 
4:      get all table2 attributes to object; 
5:      goUp(table2); 
6:    case “subclass”: 
   //saves data items to set relationship  
7:      reference_list.add(table); 
8:      referenced_list.add(table2); 
8:      goDeep(table2); 
9:    case “relationship”: break; 
10:   case “main”: 
11:     reference_list.add(table); 
12:     referenced_list.add(table2); 
13:  End Switch; 
End goUp; 
-------------------------------------------- 

After the identification of in-depth relationships, 
the tables that the main table refers are searched up 
(Algorithm3 – goUp). According to the identified 
relationships, one of the following options will be 
considered: (i) to capture the attributes and move up 
or (ii) to save identified instances in a list. This 
function separates tables in which there could be 
composed or multi-valued attributes. It may also 
show that a new entity has been found, and a 
relationship should happen. The procedure is 
repeated until a stop condition is reached. 

After the main table and its related tables of a 
data item are analyzed, the whole set of attributes is 
persisted as an entity in the target database 
(Algorithm1, line 6). Just after all instances have 
been persisted, the algorithm must define the 
relationships among them. 

To establish the one-to-one or one-to-many 
relationships, generated lists (when a main table 
mentioned another one) are used. These lists are 
included in the data items that have references, and 

the data items that are referenced. For each type of 
implemented target database, the algorithm must 
implement a specific procedure. In this work, we 
show one regarding the MongoDB system. This 
algorithm, named as oneTo, was implemented to 
provide DBRef storage. It stores in the 
corresponding document of Table 1 a reference to 
list2, and in the one corresponding to Table 2, a 
reference to list1. In terms of many-to-many 
relationships, it is necessary to identify the double 
meaning of these references (manyToMany 
algorithm). In MongoDB case, a DBRef of each 
document involved in the corresponding document 
is stored. For instance, the student Bill Gates held a 
publication. Thus there is a publication document 
reference in the student's document, and there is a 
student document reference in the publication 
document. Other solution would be to embed all 
related data into one document. However, this 
approach can let the execution of queries harder. For 
instance, if student documents contain publication 
information, more effort would be necessary to 
retrieve people involved in a specific publication. 

4 RESULTS AND EXPERIMENTS 

In this section, we present some implementation and 
experimental results.  

4.1 Implementation and Example of use 

We have developed the R2NoSQL approach in the 
Java language. The main functional requirements 
underlying the tool’s development are the following:  

 Set Source Database: it includes the definition 
of the relational DBMS to be used as well as 
the metadata and data extraction step.   

 Classify Table: The tables extracted from the 
Relational database will be classified by the user.  

 Set Target Database: The user chooses the 
target NoSQL database. 

 Execute Data Conversion: It analyzes the 
extracted metadata and data from the source 
database, verifies tables’ classification and 
possible conceptual mappings, identifies the 
target NoSQL concepts and persists 
corresponding data in the target database. 

In this current version, we have developed a 
prototype which deals with a RDB (e.g., MySQL) as 
a source database and a NSDBD as a target one. To 
the latter, we have used the MongoDB system.  

We provide an example in the following. As 
source RDB, we have used a database with 15 tables 
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(e.g., Person, Publication, Student). Among them, 
there are some relationships (e.g., between Person 
and Publication), and some specializations (e.g., 
Student is a specialization of Person). 

The Table classification is accomplished by the 
user, since, in this version, we have a semi-
automated tool with respect to this functionality. 
Thus, after extracting the source RDB metadata, the 
tool asks the user to classify the extracted tables.  

After table classification, the R2NoSQL tool is 
able to proceed with the data conversion, in 
accordance with the defined algorithms (Section 
3.2.3). The tool selects instances of each table 
classified as main, storing the table attributes and 
their associated values. This happens according to 
the existing mappings. When this process finishes, 
the tool looks for instances related to what was 
analyzed as a complement to the main tables. These 
related tables can be a representation of a complex 
value as a composed attribute, a multi-valued 
attribute or even a specialization.  

Considering a fragment of the source database at 
hand, we show some instances belonging to tables 
Person and Student in Table 1 and Table 2, 
respectively.  Taking into account the data presented 
in Table 1 and Table 2, the tool produces a 
document as depicted in Figure 1. The resulting 
collection of documents is named by using the name 
of the main table of that entity. The attributes and 
values of the tables were converted into document 
fields. However, new fields were introduced as 
depicted in Figure 1: AR_master regards the key 
attribute of table Master, a specialization of Student; 
Person_X_Publication represents the many-to-many 
relationship between Person and Publication. 

4.2 Experiments 

We have conducted some experiments to verify the 
effectiveness of our approach. The goal of our 
experiments was twofold: (i) to check whether a set 
of queries formulated and executed in a RDB may be 
either formulated and executed in a generated 
NSDBD, and (ii) to verify if the query results 
obtained from both databases are similar, i.e., if the 

used mappings and algorithms have generated a 
consistent target NSDBD.  In order to verify the latter 
goal, we checked both obtained query results and 
compared the ones obtained in a NSDBD with respect 
to the corresponding ones from a RDB. 

 
Figure 1: Document obtained after data conversion. 

The working data scenario was the same 
presented in the example of Section 4.1. This 
database was populated with 45 tuples, and queries 
were specified to be executed over them. Table 3 
shows an examples of query used in our 
experiments, which shows all professor attributes 
according to his name. It is presented in SQL and in 
MongoDB query language.  

The first experiment goal was accomplished, 
since, by using the tool, we could submit and 
execute the same set of queries in both source and 
target databases.  

Regarding the latter goal, we have compared the 
obtained query results in terms of data items 
(instances) and their properties. For each query 
submitted and executed in MongoDB, we measured 
the degree of similarity of the answers with respect 
to the set of answers obtained in the relational 
database (which acted as a gold standard).  

All queries returned similar instances with 
identical property values  (100%).  Differences  were 

Table 1: Table Person with a tuple. 

CPF RG name Bdate Natural 
From  nationality e_mail url user pword profile 

74852963214 10987312 Bill 
Gates 

10-28-
1955 

Washing
ton American gates@ms. 

com 
http://gatesnotes. 

com gates gates U 

Table 2: Table Student with a tuple. 

AR CPF Additional_info Adm_semester Adm_year Egressiondate 
790099 74852963214 Co author of 19 articles. 1 1981 03-19-1981 
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obtained only in terms of query results presentation, 
but not regarding the set of obtained data items.  

Therefore, we can see that the goals of this 
experiment were achieved. It was possible to require 
the same information from both source and target 
databases. In addition, it was possible to obtain the 
same set of query results from both ones.  

Table 3: A query example used in the experiment. 

SQL MongoDB 
query language 

select pe.*, pf.* 
from Person pe inner join Professor 
pf on pe.cpf=pf.cpf 
inner join IC_Professor i on 
pf.cpf=i.cpf 
where pe.cpf = '95175368429' 
union 
select pe.*, pf.* 
from Person pe inner join Professor 
pf on pe.cpf=pf.cpf 
inner join Invited_Professor ip on 
pf.cpf= ip.cpf 
where pe.cpf = '95175368429' 

db.Person.find({cpf: 
"98632541754", 
$or:[{type: "ic"},{ 
type: "invited"}]}, 
{cpf:1,  rg:1, 
name:1, birth_date:1, 
naturalness:1, 
nationality:1, user:1, 
password:1, 
profile:1, e_mail:1, 
type:1, 
additional_info:1}) 

5 RELATED WORK 

Data conversion approaches regarding Relational and 
NoSQL models have been tackled. Zhao et al. (2014) 
propose an automatic approach for converting 
relational database schemas to NoSQL ones, which 
establishes conceptual rules for the denormalization of 
the original data. Potey et al. (2015) provide a tool to 
perform data conversion, in which the target database is 
an equivalent relational schema in a Document 
structure. Karnitis and Arnicans (2015) instead provide 
a semi-automatic approach, which allows a 
comprehension of the relationships that the tables carry 
one over the other by a classification strategy. Mpinda 
et al. (2015) present a data conversion process that 
aggregates data tables, which are analyzed along with 
the established relationships.   

Our proposal extends some of these concepts. 
We provide a denormalization technique and we 
deal with some kinds of conceptual relationships, by 
producing references when possible. We have a 
table classification strategy to enrich the overall 
process. Finally, our approach may be applied to any 
of the target NoSQL models.  

6 CONCLUSIONS   

We presented the R2NoSQL approach, which allows 
data conversion between relational and NoSQL 

databases. This approach is based on conceptual 
mappings defined between structural concepts from 
relational and NoSQL ones.  

Experiments have shown that obtained NoSQL 
database is consisted with the source relational one, 
by executing the same set of queries in both source 
and target databases. In fact, they produced similar 
query results.  

As future work, some enhancements will be 
done: (i) the tool will be extended to accomplish 
data conversion by considering other categories of 
NoSQL systems, and (ii) an automated query 
conversion process will also be taken into account. 
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