
PBCP: A Process-based Bussiness Collaboration Platform

Shiping Chen1,2,*, Tsz Lam Chim2, Zhijie Li2, Bo Yan1, Hendra Wijaya1 and Surya Nepal1

1Commonwealth Scientific and Industrial Research Organization (CSIRO) Data61, Sydney, Australia
2School of Electrical and Information Engineering, The University of Sydney, Sydney, Australia

Keywords: Multi-party Collaboration, Business Process, Rule-based Business Engines, Event-driven Architecture.

Abstract: Business expertise becomes more specialized and focused, which leads to a large number of small and
medium enterprises (SME) to deliver a specific service in context of a business collaboration. This paper
presents such a process-based business collaboration platform to facility this kind of multi-party business
collaboration. The platform features with a process-oriented user interface, event-driven business process
backend, which makes it elegant and generic to be used for different multi-party collaboration applications.

1 INTRODUCTION

Business expertise becomes more specialized and
focused, which leads to a large number of small and
medium enterprises (SMEs) to deliver a specific
service, such as home loan brokers, solicitors and
building inspectors. On the other hand, some
businesses require multiple service providers to
work together to complete a complicated business
process. As a result, there is a strong demand for a
collaboration platform to facilitate such a multi-
party collaboration as an innovative online service,
Blaire Palmer (2014).

Most of web-based collaboration service are
either yellow-page-based simple information
repositories or complicated and expensive
enterprise-level CRM/ERP systems as Salesforce
(1999). We envision a simple, lightweight yet
capable secure collaboration platform that can attract
clients and SMEs to work together by following
natural business processes for dynamic business
collaborations Surya Nepal and Shiping Chen
(2011).

In this paper, we explore software architecture
and middleware technologies for building process-
based business collaboration platforms (PBCP) for
small and medium business. In particular, we
identify common functionalities and requirements
for building and operating process-based business
collaboration systems. A XPDL-based front UI
(User Interface) is designed and implemented by
reusing and extending the standard XML Process
Definition Language (XPDL) in Brunt, J. and K.

Swenson. (2006). A simple business engine
is implemented on top of jBPM v6.2.0 (2015).

2 REQUIREMENTS FROM
MOTIVATION EXAMPLE

We use the following real-world application
scenario as a motivation example to specify the
problem and capture the key functionalities and
requirements of this type of collaboration
applications.

2.1 Motivation Example

Alice wanted to spend $1,000,000 to buy house in
Sydney. First, she contacted a number of banks to
enquire their home loan interest rates. Then she
decided to borrow $800,000 from Bank-A (pay the
rest with her saving), because Bank-A’s home loan
interest is the lowest. She got a pre-approval of her
home loan application from Bank-A before her
property hunting.

Next Alice found out $1,000,000 property near
her workplace via a property agent. She put a $1000
deposit to secure the property. Then she hired a
solicitor to help the purchase. The solicitor reviewed
the sale contract, checked the property registration,
had Alice signed the contract, and exchanged the
contract with the vendors’ solicitor.

According to the local regulation, Alice has 12
days, also called cooling period, to terminate the
contract with reasonable reasons after signing the

Chen, S., Chim, T., Li, Z., Yan, B., Wijaya, H. and Nepal, S.
PBCP: A Process-based Bussiness Collaboration Platform.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 2, pages 575-582
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

575

Start Deposit Taken Exchange
Contract

Cooling-Period
Timeout Settlement End

Parties Involved
(Service Providers)

Vendors Agents Buyers Solicitors/Conveyancers Building/Pest Inspectors Banks

Documents/Artificers Deposit Signed
Contracts

Building
Inspection

Reports

Finance
Approval Final

Settlement
Statements

Move-in

RemovalCleaner

Figure 1: “Buying a property” as the motivating example.

contract. In practice, Alice would hire a property
specialist to conduct building and pest inspections to
ensure there were no major issues with the property.
At the same time, Alice had her home loan
application fully approved from Bank-A after the
property being valued.

Since nothing went wrong during the cooling
period, the contract entered to non-conditional stage,
in which both the buyer and vendors were preparing
for the final settlement of the deal, including booking
cleaning and removal services etc.
The whole business process of “buying a property”
is illustrated in Figure 1. And we can find a
considerable number of this class of multi-part
collaboration applications in our real life.

2.2 Functionalities vs. Requirements

Based on the above motivation example and the
other similar applications, we can capture the
following basic functionalities/features for this class
of multi-party business collaborations applications:

• A collaboration can be defined as a simple
business process.

• The multiple business entities can dynamically
participate in a particular business process.

• A participator can join in a collaborative
process via (but not limited to):

o Queuing
o Invitation
o Auction
o Recommendation

• The interaction between participators can be
either automatic machine-to-machine, or semi-
automatic human-two-machine, or completely
human-to-human.

• The collaborators can share some documents as
the collaboration is going on, such as
contracts, deposit receipts, building inspection
reports, etc.

To support the above features and functionalities
and consider the (performance and cost) overheads,
we identify three generic requirements for
middleware technologies of building and operating
the process-based collaboration systems as follows:

R1. A process-based generic frontend User
Interface, which drives the interaction between
end-users and the service providers and
visualizes the excitation of the whole business
process

R2. A lightweight business process engine that can
decouple the business rules/logics with the
engine execution.

R3. A secure database and/or file system to store
the collaboration process and data

In this paper, we address the top two
requirements and leave the last requirement as our
future work.

3 RELATED WORK

Workflow has been developed for decades ago. It is
used to describe the business procedure by utilizing
a series of tasks. Those tasks are also handled by
different roles in a business process. With the
development of the computer technology, the
workflow processes can be handled by the workflow
application which can automatically or semi-
automatically execute the task in a more efficient
way Xiao, Y., et al (2004). The Workflow
Management Coalition (WFMC) defined a basic
workflow reference model in 1994. It contains
composing, function and interface of the workflow
for further development in Xiao, Y., et al (2004).

For many organizations, the workflow models
have been widely used to deal with the collaborative
processes using heterogeneous workflow
middleware Armin Haller, M.M., et al. (2009). In

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

576

order to define a complex collaborative business
process, the internal and external workflow
processes should be aligned as a whole, which may
cause the low flexibility and interoperability
problems. Therefore, a new workflow approaches
which are the XML Process Definition Language
(XPDL) and Business Process Model and Notation
(BPMN) are created to develop the workflow
process model presented in Brunt, J. and K.
Swenson. (2006).

3.1 XML-based Business Process
Languages

Many XML-based business process languages have
been developed in the past two decades to address
all aspects of enterprise business process Xiao, Y., et
al (2004). It is with many working examples and the
acceptance from large commercial companies to use
these languages to tackle the workflow related
challenges Swenson, K. (2007). .Some of the most
popular languages include BPML (Business Process
Modelling Language) introduced by Business
Process Management Initiative, BPEL (BPEL4WS)
proposed by IBM, Microsoft and BEA, and also
XPDL (XML Process Definition Language)
developed by Workflow Management Coalition
Shapiro, R. (2002).

The comparison between these XML-based
languages has been presented by Shapiro, R. (2002).
In the article, he firstly identified and introduced
them and then clearly compared each of the
components of these languages side by side in a
table format. Within the comparison, the author has
summarized that each of the languages are targeting
to a slightly different user group. For BPML and
BPEL, they are mainly focusing on issues important
in defining web services, whereas XPDL focuses on
issues relevant to the distribution of work. He
supported his view by pointing out that activity
attribute in XPDL is capable of specifying the
resources and applications required to perform the
activity. This would be a slight advantage for XPDL
to be implemented in a collaboration system in
comparison to BPML and BPEL Tran, H., et al.
(2008). However, the author did not make any
further elaboration on the decision of languages
except stating their usages. Also it is important to
note that some of these languages have been evolved
and revised since the release of the paper in 2002,
especially for the mentioned language XPDL 1.0,
which current version XPDL 2.2 is now supporting
to present BPMN 1.x and 2.0 in XML file format as
well. Besides those changes, this article remains to

be a good reference for languages comparison. The
advantage of using XPDL over other languages can
also be seen in the presentation slides prepared by
Brunt, J. and K. Swenson. (2006), where it has
expressed that XPDL 2.0 is particularly good in
terms of extensibility. The language itself allows the
developers to handle and store vendor specific
features without affecting the compatibility. This can
also be seen and further described in XPDL version
2.2 process definition. Developers are allowed to use
“Extended Attributes” to extend the functionality of
this specification to meet individual product needs.

Other than the possibility to extend the language,
XPDL 2.0 and upwards is also capable to serialize
BPMN (Business Process Modelling Notation) to an
XML file, as stated in White, S.A. and S. BEYOND,
(2003). This functionality is important as BPMN is a
graphical notation representation of workflow
processes which allow business people easily to
understand and develop. In conjunction with that, a
lot of existing applications are developed to translate
from other XML processing languages to XPDL.
Yuan, P., et al. (2008) have successfully
demonstrated the possibility to develop a tool called
WFTXB to interpret files from BPEL to XPDL with
a good transformation result. The authors of the
article decided to analyse the structure of the two
languages and finding the similarity between them in
order to write the transformation algorithms in
pseudo-code.

XPDL is also one of the well accepted language
of choice compares to other XML process
languages. A lot of enterprises have chosen to use
this as their language as it is easier to understand.
And this is also presented in Yuan, P., et al. (2008)
and to support this argument.

3.2 Business Process Model and
Notation (BPMN) Approach

In addition to business process representation,
BPMN also specifies how business processes should
be executed in a standard way. The popular BPMN-
based workflow engine is JBPM which is developed
by Red Hat. The JBPM provides mature business
process analysis. Following the JBPM engine,
companies can use internal business workflow editor
to design the specific workflow for their business.

However, using jBPM is seen like too big. It is
because jBPM has comprehensive description for
the business, which leads to the large size library. If
the project is designed to be a light weight system,
the large szie library will also cause the presure to
the system capacity and running budget.

PBCP: A Process-based Bussiness Collaboration Platform

577

3.3 Challenge vs Solutions

One of the biggest challenge to implement a
collaboration system for multi-parties business
process is to apply and design one single workflow
for everyone to be working on. This presents the
difficulty to abstract other business processes for the
current company within the workflow model. To get
around this issue, one could simply define the
business work flow process separately for different
users. But this will create two problems as Armin
Haller, M. M., et al. (2009) identified, choreography
interfaces need to be created and synchronised with
the workflow model manually, and the consistency
of choreography interfaces to the workflow model is
not guaranteed. Hence, this option is not feasible and
there should be a way to address this issue directly.

There are several researches done on this
specific topic over the years. Chebbi, Dustdar et al.
(2006) have presented their solution of this firstly by
allowing the clients define their own private
workflow process and then interconnect them to
present a whole holistic view for the large
collaboration system. This solution allows for partial
visibility of workflows and their resources to the
required users, and this is important to solve the
issue. The presented idea seems to be a good
solution if the system is too complicated to connect
in the first time or some of the components is not
available in the beginning. However, this algorithm
has not been deployed and tested as the time when
the paper is written. Another solution is presented
one year after the last one by Tran, H., et al. (2008).
In this proposed idea, it is a reversed concept of the
previous where this time it first accepts a large fully
developed workflow as an input, and then generates
executable views for each party as an output after

processing has been done. However, in this very
specific solution, only BPEL/WSDL language can
be used within the toolchain provided. It can be a
good solution and a reference to solve this very
specific issue if the chosen language is BPEL.

A similar approach is suggested with the use of
XPDL as input language by Armin Haller, M.M., et
al. (2009). Within the paper, the authors presented
the whole process of the separation of views into 3
main steps, XPDL to m3po, compaction rules
processing, and finally mapping the individual views
to an executable choreography interface model. By
performing these 3 steps, it can translate the large
XPDL workflow into separated executable code to
run in other machines. However, it is important to
note that the output of this approach is no longer in
XPDL format anymore. Also the performance of this
translated executable file or the extensibility
provided by XPDL should be examined before using
this approach.

In this paper, we also use XPDL as business
process representations between business process
design and tool and our collaboration system.
However, we use XPDL heavily for multiple
purposes in our design as follows:

• First, we use XPDL to represent the design of a
business process and its initial states.

• We use XPDL to interact with users to get
users’ inputs.

• Once getting use inputs, we use the XPDL as a
data container to carry the use inputs to send
back to the backend business engine.

• According to the pre-defined business logic, the
business engine would either conduct a set of
actions (e.g., send a number of emails) or
updating some states of the business process in
XPDL to send back to the frontend.

Figure 2: Overall architecture design of process based business collaboration platform.

Front-end Back-end

Function base

Data

XPDL parser

Massage queue

XPDL Interpreter

Pop-up state Handler

Workflow engine

Outer services

HTML
representation

XPDL workflow file XPDL workflow file

Mapping

Updated XPDL file API

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

578

4 PBCP ARACHECTURE DESIGN

The architecture of the system shown in Figure 2 is
an overview of the entire platform. It includes three
main components, front-end, back-end and outer
services, and also some connection mechanisms in
between each of these components.

4.1 Frontend UI

In the front-end, it is a simple model which proves
the possibility of using XPDL to display the content
in an interactive diagram format which combines
with the functionality of displaying and collecting
extra data. It is currently designed to show the
content within a webpage due to ease of
implementation, however, it is possible to use the
same concept and apply to the design of mobile
application as well. On the other hand, the back-end
is receiving the workflow language XPDL and
process it with its own design engine. On the far left
hand side, it represents all the modules within front-
end component, including HTML representation,
XPDL interpreter, and pop-up state handler. All of
these work together to form the front-end user
experience. XPDL interpreter is responsible to
interpret the useful information from the XML-
based file to readable objects for the front end
system, and vice versa to convert it back to XPDL
before it being transferred to the back-end system.
After the file is being interpreted, it sends the
information to HTML representation module.

In here, it takes advantage of existing library for
web application to render these information into an
interactive diagram with CSS and JavaScript.
Besides that, XPDL interpreter also passes state
details to the handler for rendering the information
as a separate pop-up window when the user clicks on
the diagram. All of these are powered by the web 2.0
technology mentioned in the previous “Background”
section. And finally, the pop-up state handler is one
of most important part of the front-end component.
Since the design of the collaboration platform is to
be generic, this part of the implementation is to
leave as much future design space for pop-up
window as possible, while still allowing the handler
to retrieve important information like form inputs at
the end. For the current design, the business process
can define both the pop-up window to be rendered
internally as view in the web application, or
dynamically retrieve the webpage externally with an
URL and replace part of the HTML code to submit
the result to the system.

4.2 Backend Business Process Engine

Back-end component is shown on the far right side
of Figure 2. The main module of the component is
workflow engine where it parses the XPDL file that
it receives or stores in the database and perform the
corresponding function as it matches up the rule
engine inside. There are various ways to perform
this task as suggested by previous people in their
related work. However, this is out of the scope of
this thesis as it focuses only on the front-end part of
the system. Besides the workflow engine, it also
contains database and function base to store all the
information that it receives from the front end and
also outer services. Once the back-end finishes
processing the data and performing the related task
in the workflow, it provides an API for others to
retrieve and get the latest business workflow status
from the system.

4.3 External Services

To allow the extensibility of the platform, the
designed solution is generic to any business process
workflows. Therefore, an outer services component
is drawn in Figure 2. This is to represent the
functions or actions provided by business partners to
be performed after the mapping of rules engine.
When these actions are finished performing, it
would then transfer back the back-end for further
processing and storing

4.4 Communication Channel

There are two main communication channels for the
entire platform, which are message queue and also
API. Both of them are provided by the back-end
server to send and retrieve XPDL file. Message
queue is chosen since the server requires buffer to
handle the requests in an organized manner while
not losing the data during the transfer. On the other
hand, API is chosen for front-end to retrieve data
since the time the customers go online can be
different. And API is good for that use to retrieve the
information stored in the system when it is needed.

5 PROTOTYPING AND TESTING

In this section, we provide technical details in
implementing the above design as a proof concept
prototype. We also evaluate this prototype in terms
of usefulness and performance.

PBCP: A Process-based Bussiness Collaboration Platform

579

Figure 3: Interactive workflow diagram code in JavaScript.

5.1 Prototyping

XPDL Interpreter is one of the main controller
within the web application. The usage of the
interpreter is to retrieve XPDL file from the server
using API call, and process it and send towards both
view and other controller for controlling pop-up
window.

For the implementation of this module, the issue
of unable to read directly from the XPDL file needs
to be solved. For this challenge, an external library
called “xml2js” is used, to first convert the XML-
based language file to JavaScript object. It is then
possible for the controller to process this information
and retrieve the data inside. Due to the
interchangeability of XML and JavaScript object,
the integrity of the data in XPDL is preserved. And
vice versa, when the pop-up window has finished
collecting the data from the user, these information
will be injected back to the JavaScript object and
convert to XPDL file and send back to the server
using message queue.

During the interpretation process, the interpreter
is able to identify the selected components within
the XPDL file. These include activities, and external

attributes within the components. All of these
information will then be passed on to the controller.

Figure 3 shows the skeleton of the JavaScript
code to implement the interaction between users and
a business process. The JavaScript code first gathers
all the important information and create nodes and
edges to represent activities and associations in
XPDL file as shown in Figure 4 (a). Then it
instantiates the diagram with these data and also
enables the diagram to be interactive with click
functionalities. When the corresponding activities
are being clicked, a pop up window will be showing
up and the controller of the pop-up window will be
run and render the information as shown in Figure 4
(b).

The backend was implemented using a RESTFul
web service (Tomcat v7.0), a message queue (
ActiveMQ v5.12.1), and a business process (JBMP
v6.2.0). When the RESTful web service serves as a
gateway to receive requests (e.g., XPDL), a generic
event process engine is implemented using JBMP to
process all event messages. A message queue is used
to store the requests from all parties (The frontend
web UI, as well as the outer services) and feed the
process engine.

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

580

(a) A simple home loans business process (b) Interaction within an activity

(c) Response Time vs. Number of Activities (d) XPDL File Size vs. Number of Activities

Figure 4: Prototype UI and performance testing results.

5.2 Performance Testing

We also conduct some testing to evaluate the
performance and scalability of the XPDL render in
terms of message sizes and processing time. The
testing results are shown in Figure 4 (c) and (d). As
can be seen, both the size of the XPDL files and the
response time of processing these XPDL files are
reasonable as the number of activities in a business
process increases till 1000 activities, which is very
rarely in real life. This means our solution can scale
for most of business process-based collaboration
applications.

6 CONCLUSION

In this paper, we present a novel business process-
based collaboration platform. This work is well
motivated with real-world applications in context of
multi-party collaboration. We abstracted the
software architecture of this kind of systems as a
business process-based UI and a generic event
process engine. A design and implementation are
provided as a proof of concept. We demonstrated

and tested the prototype to show the usefulness and
scalability of our technology. We believe our
technologies can be easily reuse for different
collaboration applications with less efforts than
using classical web applications, due to our generic
software architecture abstraction.

REFERENCES

Blaire Palmer (2014) Collaborating with SMEs - Advice
and Recommendations for Large Enterprises, Whitw
Paper That People Thing

Salesforce (1999): www.salesforce.com/au
Surya Nepal and Shiping Chen (2011): Dynamic Business

Collaborations Through Contract Services. IJSSOE
2(4): 60-82

Xiao, Y., et al (2004) Research of Web services workflow
and its key technology based on XPDL. IEEE
International Conference on Systems, Man and
Cybernetics

Armin Haller, M. M., et al. (2009) Brahmanada Sapkota,
Manfred Hauswirth, From workflow models to
executableWeb service interfaces. 2009 IEEE
International Conference on Web Services

Xin, J., X. et al. (2007). The design and implementation of
XML-based workflow engine. in Software

PBCP: A Process-based Bussiness Collaboration Platform

581

Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2007. SNPD 2007.
Eighth ACIS International Conference on. 2007

Swenson, K. (2007) The Tipping Point for XPDL,
http://social-biz.org/2007/03/19/the-tipping-point-for-
xpdl/.

Shapiro, R. (2002) A technical comparison of xpdl, bpml
and bpel4ws. Cape Visions

Brunt, J. and K. Swenson. (2006) XPDL 2.0 and BPMN
1.0 Tutorial. http://www.fujitsu.com/downloads/
INTSTG/webinars/Fujitsu-Interstage-XPDL-BPMN-
Webinar.pdf.

White, S. A. and S. BEYOND, (2003) XPDL and BPMN.
Workflow handbook: p. 221-238.

Yuan, P., et al. (2008) WFTXB: A Tool for Translating
between XPDL and BPEL. 10th IEEE International
Conference on High Performance Computing and
Communications, HPCC'08.

Chebbi, I., S. et al. (2006) The view-based approach to
dynamic inter-organizational workflow cooperation.
Data & Knowledge Engineering. 56(2): p. 139-173.

Tran, H., et al. (2008) View-Based Reverse Engineering
Approach for Enhancing Model Interoperability and
Reusability in Process-Driven SOAs. In: MEI, H. (ed.)
High Confidence Software Reuse in Large Systems.
Springer Berlin Heidelberg.

ActiveMQ v5.12.1 (2015): http://activemq.apache.org/
jBPM v6.2.0 (2015) open source: http://www.jbpm.org/

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

582

