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Abstract: The dynamic nature of web data brings forward the need for maintaining data versions as well as identifying 
changes between them. In this paper, we deal with problems regarding understanding evolution, focusing on 
RDF(S) knowledge bases, as RDF is a de-facto standard for representing data on the web. We argue that 
revisiting past snapshots or the differences between them is not enough for understanding how and why data 
evolved. Instead, changes should be treated as first-class-citizens. In our view, this involves supporting 
semantically rich, user-defined changes that we call complex changes, as well as identifying the 
interrelations between them. In this paper, we present our perspective regarding complex changes, propose a 
declarative language for defining complex changes for RDF(S) knowledge bases, and show how this 
language is used to detect complex change instances among dataset versions. 

1 INTRODUCTION 

The increasing amount of information published on 
the web poses new challenges for data management. 
A central issue concerns evolution management. 
Data published on the web frequently change, as 
errors may need to be fixed or new knowledge has to 
be incorporated. Data consumers need to know what 
changed among versions, as well as how and why it 
changed. Thus, the need for maintaining data 
versions and identifying changes becomes evident.  

In this paper we focus on interpreting evolution 
on RDF(S) knowledge-bases, as RDF is the de-facto 
standard for representing data on the web. A typical 
approach for handling changes among dataset 
versions is computing diffs between them, leading to 
a machine-readable representation of changes based 
on triple additions and deletions. This approach does 
not provide any intuition about change semantics or 
possible relations between them. An ideal approach 
would compute human-readable, semantically rich 
changes along with any interrelations between them.  

For example, consider a simplified ontology 
representing a company's employees, as in Figure 1. 
Figure 1(a) depicts the initial version, while Figure 
1(b) the version after the modifications. Note that 
classes are in bold font. Each employee is described 

by her name, salary, position and optionally grade 
and projects assigned. Employees are organised in a 
hierarchical structure, depicting position hierarchy, 
as each one refers to another. In Figure 1(b), 
modified parts are depicted in light grey. Initially, 
employee "theo" is leading a small team of 
programmers, comprising of "mary" and "kate" 
working on project A. Later, he gets an excellent 
appraisal turning his grade from 9 to 10. As a result, 
he gains a salary increase. Also, he gets promoted to 
a manager. The promotion leads to an additional 
salary increase and overall the salary doubles. As the 
business goes well, a new employee has to be hired 
in order to organize the increasing team 
responsibilities. As a result, a new team leader is 
added, "nick", serving as senior employee, guiding 
"mary" and "kate", and reporting to the manager. 
From now on, the projects are assigned to him and 
thus they are moved from "mary" and "kate" to him. 

Computing the diff between these two versions 
totally misses capturing change semantics and 
dependencies. Understanding the intentions behind 
data modifications can be even more complicated for 
large datasets, where changes are numerous and 
dispersed. Instead, Figure 2 depicts an intuitive and 
descriptive representation of how data changed. 
Figure 2(a) depicts the modifications regarding 
"theo", while Figure 2(b) regarding "nick". Each
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Figure 1: Simplified part of an employee ontology. (a) Initial version. (b) Version after modifications. 

node represents a change instance detected between 
the aforementioned dataset versions. Change 
instances on leaf nodes (in grey) are fine-grained 
and model-specific, meaning that they do not 
comprise of other change instances and their 
semantics suit to the RDF data model. Each one 
corresponds to an added or deleted triple, having a 
suitable name and descriptive parameters. They are 
simple change instances. The rest change instances 
(in white) are coarse-grained and application/data-
specific, meaning that they demonstrate structure 
and semantics suitable to the employee example. 
The hierarchical structure indicates that a change 
instance is build on top of others, demonstrating 
relations and dependencies among changes. They are 
complex change instances. 

Consider the change instances Add_Grade and 
Delete_Grade in Figure 2(a). They serve as 
specializations of the model specific Add_Property 
_Instance and Delete_Property_Instance, 
respectively. This holds for all similar change 
instances regarding employee properties. 
Employee_Positive_Appraisal instance contains 
them, modelling the positive evaluation that took 
place. Similarly, Employee_Promotion_Manager 
and Employee_Salary_Increase group change 
instances providing richer semantics on how data 
changed. Employee_Salary_Increase is caused by 
Employee_Positive_Appraisal and 
Employee_Promotion_Manager. Causality is 
modelled on top of these changes through 
Salary_Increase_after_Positive_Appraisal and 
Salary_Increase_after_Promotion_Manager. These 
change instances are overlapping as they share a 
common part, Employee_Salary_Increase, 
modelling that they cause the same effect on data. 
Similar properties are demonstrated on change 
instances of Figure 2(b). Add_Employee instance 
groups all properties related to a newly added 
employee. Add_Senior_Employee instance is a 
specialization of Add_ Employee, where the added 
employee (with id e:Q551181, i.e. "nick") reports to 

a manager (with id e:M227757, i.e. "theo") and 
serves as a leader to other employees (with ids 
e:N338868 and e:P449979, i.e. "mary" and "kate"). 
This is modelled by the position he gets in the 
hierarchy, via Add_Reference instances. Also, 
Add_Senior_Employee instance contains a 
Move_Project_Assignment instance, as project A is 
moved from "mary" and "kate" to "nick", and 
Delete_Reference instances as these employees 
initially had "theo" as a leader. These changes are 
secondary and may happen when adding a senior 
employee. 

In this paper, we argue that for understanding 
data evolution, changes should be treated as first-
class-citizens. In our view, this involves supporting 
human-readable, semantically rich, user-defined 
changes, named complex changes. These changes 
are application/data-specific and coarse-grained, 
defined over primitive and model-specific changes, 
named simple changes. Modelling explicitly 
complex changes provides additional information for 
interpreting past data, while supporting user-defined 
changes allows interpreting evolution in multiple 
ways. On top of this, supporting interrelated 
complex changes, through nesting and overlaps, is 
an additional feature that enriches the complex 
changes' expressivity. A complex change may be 
part of another, may generalize/ specialize another, 
may cause another or may provide supplementary 
interpretation of evolution. Section 3 contains the 
basic concepts of our approach. Given these 
concepts, we provide a declarative language for 
defining complex changes (Section 4). We then 
define a process for detecting complex change 
instances among dataset versions (Section 5). Both 
the language and detection algorithm are influenced 
by our main contribution of supporting interrelated 
complex changes. Section 2 discusses related work 
and Section 6 concludes the paper. 
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Figure 2: Hierarchy of detected simple and complex change instances (in grey and white fill respectively) of the employee 
ontology of Fig. 1. (a) Change instances regarding "theo". (b) Change instances regarding "nick". 

2 RELATED WORK 

A number of works focus on computing the 
differences between knowledge bases. In (Berners-
Lee and Connolly, 2004) an ontology for 
representing differences between RDF graphs, in the 
form of insertions and deletions, is proposed. RDF 
graphs comparison is discussed, as well as updating 
a graph from a set of differences. In (Volkel et al., 
2005) two diff algorithms are proposed: one 
computing a structural diff (as the set-based 
difference of the triples explicitly recorded into the 
two graphs), and one semantic diff (taking into 
consideration the semantically inferred triples). In 
(Franconi et al., 2010), an approach for computing a 
semantic diff is proposed, focusing on propositional 
logic knowledge bases but also being applicable to 
more expressive logics. A number of desired 
properties are discussed, like semantic diff 
uniqueness, the principal of minimal change, the 
ability to undo changes and version reconstruction. 
Similar properties are supported in (Zeginis et al. 
2011), which focuses on computing deltas over 
RDF(S) knowledge bases. In (Noy and Musen, 
2002; Klein, 2004), a fixed point algorithm for 
detecting ontology change is proposed. It employs 
heuristic-based matchers, introducing uncertainty to 
results. 

Other works focus on supporting human-
readable changes. In (Papavasileiou et al., 2013), a 

set of predefined high-level changes for RDF(S) 
knowledge bases and an algorithm for their detection 
are proposed. Changes verify the properties of 
completeness and unambiguity, for guaranteeing that 
every added or deleted triple is consumed by one 
detected high-level change and that detected high-
level changes are not overlapping, respectively. In 
(Roussakis et al., 2015), an extension of 
(Papavasileiou et al., 2013) is proposed, providing a 
more generic change definition framework, based on 
SPARQL queries. In (Plessers, De Troyer and 
Casteleyn, 2007), Change Definition Language is 
proposed for defining and detecting changes over a 
version log using temporal queries. In (Auer and 
Herre, 2007) a framework for supporting evolution 
in RDF knowledge bases is discussed. Changes are 
triple additions and deletions and aggregated triples, 
resulting in a hierarchy of changes. However, neither 
a detection process, nor a specific language of 
changes is defined. In (Klein, 2004), an extension of 
(Noy and Musen, 2002) is proposed for detecting 
some of the proposed basic and composite changes. 
In general, (Klein, 2004), (Papavasileiou et al., 
2013) and (Stojanovic, 2004) provide human 
readable changes in similar categories regarding 
granularity and semantics. 

Our approach focuses on human readable 
changes. A visionary work was presented in (Galani 
et al., 2015). Similar to (Klein, 2004), 
(Papavasileiou et al., 2013), (Roussakis et al., 2015) 
and (Stojanovic, 2004) we assume primitive 
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changes, as simple changes, and groupings of them, 
as complex changes. Instead of providing a 
predefined list of complex changes, we support user-
defined complex changes in order to capture richer 
semantics and multiple interpretations of evolution, 
as (Plessers, De Troyer and Casteleyn, 2007) and 
(Roussakis et al., 2015). Our main contribution is 
supporting interrelated complex changes providing a 
language for defining complex changes over simple 
or other complex changes and an appropriate 
detection algorithm. (Plessers, De Troyer and 
Casteleyn, 2007) and (Roussakis et al., 2015) do not 
support interrelated complex changes. 

3 SIMPLE AND COMPLEX 
CHANGES 

Modelling changes as first class citizens involves 
taking into account granularity and semantics of 
changes. Granularity poses the question of having 
fine-grained or coarse-grained changes. Fine-grained 
changes have the advantage of describing primitive 
changes, while coarse-grained changes provide 
semantics and conciseness by grouping primitive 
changes in logical units. Semantics poses the 
question of having model-specific or 
application/data-specific changes. Model-specific 
changes describe modifications that appear in a 
specific model, constituting a fixed set of generic 
changes. Application/data-specific changes suit 
specific use-cases and may be user-defined, allowing 
multiple interpretations of evolution. 

As a result, we distinguish between simple and 
complex changes. Simple changes constitute a fixed 
set of fine-grained, model-specific changes. 
Complex changes are coarse-grained, user-defined, 
application/data-specific changes providing richer 
semantics on how data changed. Definitions 1 and 2 
formally define simple and complex changes. 

Definition 1: A simple change ݏ is a tuple ሺ݊,  ,ሻ
where:  

 ݊ is the name of ݏ, which must be unique. 
 ,ݏ is the list of descriptive parameters of  

where each one has a unique name within ݏ.  
Definition 2: A complex change ܿ is a quadruple ሺ݊, , ,ܦ  :ሻ, whereܨ
 ݊ is the name of ܿ, which must be unique and 

different from the simple change names. 
 ,ܿ is the list of descriptive parameters of  

where each one has a unique name within ܿ. 
 and complex (ௌܦ) is the set of simple ܦ 

changes (ܦ) that ܿ comprises of, where 

ܦ = ܦ ∪ ܦ ,ௌܦ ∩ ௌܦ = ∅ and ܦ ≠ ∅. 
 specifying the (ܨ) verify and bindings ܦ that changes in (ܨ) is the set of constraints ܨ 

parameters in , where ܨ = ܨ ∪ ܨ  andܨ ܨ∩ = ∅. Constraints are on changes (ܨ) or 
change parameters (ܨ), where ܨ = ܨ ܨ  andܨ∪ ∩ ܨ = ∅.  

For simple changes we rely on (Papavasileiou et 
al., 2013). Appendix summarizes the simple changes 
considered. They verify completeness and 
unambiguity properties, constituting a first layer of 
human-readable changes. Simple changes are 
additions, deletions and terminological changes 
(rename, split, merge) of RDF(S) entities (classes, 
properties, individuals). As stated, simple changes 
are fine-grained, i.e. they cannot be decomposed in 
more granular changes. This holds for additions/ 
deletions, but not for terminological changes, as they 
can be expressed as additions/ deletions plus extra 
conditions. For example, a class rename can be 
considered as an add class plus a delete class, which 
have the same "neighbourhood" (properties, 
connections to classes). However, we prefer them as 
simple changes in order to distinguish at simple 
change level real additions/deletions from virtual 
ones representing terminological changes. Thus, 
simple changes' set is not minimal.  

A complex change is defined in terms of simple 
or other complex changes verifying constraints. 
Constraints specialize its meaning and are divided 
into those defined on changes and those on change 
parameters. Bindings specify complex change 
parameter values. Section 4 includes more details. 

The ultimate goal of supporting simple and 
complex changes is detecting actual instances 
between dataset versions. Detection process leads 
into instantiating change parameters with values, 
indicating that specific data elements have been 
affected by a change in a specific manner. 
Definitions 3 and 4 define simple and complex 
change instances. Figure 2 presents simple and 
complex change instance examples. 

Definition 3: A simple change instance of a 
simple change ሺ݊, ,ሻ, is a tuple ሺ݊  is an ݒ ሻ whereݒ
instantiation of the parameters . 

Definition 4: A complex change instance of a 
complex change ሺ݊, , ,ܦ ,ሻ, is a tuple ሺ݊ܨ  . is an instantiation of the parameters ݒ ሻ whereݒ

For simple change detection we rely on 
(Papavasileiou et al., 2013). For complex changes 
we provide an algorithm in Section 5. Definition 5 
defines when a complex change instance is detected. 
Definitions 6 and 7 define possible relations among 
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change instances, as interrelations between changes 
are reflected on them. 

Definition 5: Let ܿ = ሺ݊, , ,ܦ  ሻ be a complexܨ
change and ܸ and ܸ two dataset versions. A 
complex change instance ܿ = ሺ݊,  ሻ is detected ifݒ
for all changes in ܦ instances are detected between ܸ and ܸ, forming ܦ, such that constraints in ܨ are 
verified on ܦ, ܸ and ܸ, bindings in ܨ applied on ܦ form ݒ and ܦ is maximal. 

We say that the set of change instances ܦ 
corresponding to ܿ verifies the complex change ܿ. 

Definition 6: Let ܿ be an instance of complex 
change ܿ and ܦ the corresponding set of change 
instances verifying ܿ. ܿ contains the change 
instances in ܦ.  

Definition 7: Let ܿ and ܿᇱ be two complex 
change instances, where ܿ does not contain ܿᇱ and 
vice versa. They are overlapping if they both contain 
at least one common simple or complex change 
instance. 

Containment is transitive. Complex change 
instances may form a hierarchy due to containment 
and overlaps, as in Figure 2. 

4 A LANGUAGE FOR DEFINING 
COMPLEX CHANGES 

We believe that an intuitive, user-friendly language 
based on change semantics should be provided for 
defining complex changes. Complex change 
definitions are then used for detecting respective 
instances. In this section, we propose a declarative 
language for defining complex changes. We provide 
its syntax by means of EBNF specification (Table 1) 
and some illustrative examples (Table 2) concerning 
the employee ontology in Figure 1. 

A complex change definition is composed by a 
heading and a body. The heading contains a unique 
name and a list of descriptive parameters. The body 
contains a list of changes that the complex change 
comprises of, constraints on the changes appearing 
in the list and their parameters, and parameter 
bindings declaring how complex change parameters 
are evaluated. Constraints and bindings are optional. 
A complex change definition is nested if complex 
changes appear in its change list. Thus, complex 
changes are defined as interrelated. Constraints are 
divided into cardinality, testing value, relational, 
pre/post-conditions and functions. 

Cardinality constraint determines whether zero, 
one or multiple instances of a specific change are to 
be grouped into a complex change. In case of one or 

multiple change instances, the change is defined as 
mandatory. In case of zero instances the change is 
defined as optional, and if no instance is detected, 
the respective complex change can be still detected. 
Thus, complex changes are flexible and tolerant in 
partially performed modifications of minor 
significance. Posing a cardinality constraint is 
optional. If it is not defined, the default case is one 
change instance for the respective change. The 
following notations hold: at least one change 
instance "+", zero or one "?", zero or more "*". 

Parameter bindings determine how complex 
change parameters are evaluated. In general, a 
complex change parameter equals a parameter of a 
change in its change list. However, recall that due to 
cardinality constraints multiple change instances of a 
specific change type may be grouped. In such case, a 
complex change parameter equals the union of the 
parameter values for all the change instances of a 
specific type grouped. As a result, complex change 
parameters are distinguished into those that evaluate 
into type set and those that evaluate into scalar 
values. In order to distinguish the parameter types, 
parameters evaluating into scalar values start with a 
lowercase letter, while those evaluating into sets 
with an uppercase letter. Parameter bindings are 
optional, in case they can be inferred by repeating 
each parameter into the contained changes and 
respective constraints. 

Testing value constraints, relational constraints, 
pre/post-conditions and functions are constraints 
defined on change parameters. Testing value 
constraints limit a parameter value against a given 
constant, while relational constraints involve two 
change parameters defining how changes are 
connected. For these constraints binary operators are 
supported. Pre/post-conditions define how 
parameters are related in the version before (Vb) or 
after (Va) the change, stating whether a triple must 
or must not exist in the version before or after. If a 
triple may be inferred in a version, this is denoted by 
the flag "inferred". Constraints may also be in the 
form of predefined functions of return type boolean. 
For example consider common functions on strings, 
like contains, which checks whether a string 
contains another given string. Constraints may form 
composite conditions, when combined in boolean 
expressions using logical and, or, not. 

As complex changes are used in nested 
definitions and complex change parameters may 
evaluate into set or scalar values, we support binary 
operators between sets and between sets and scalar 
values. Also, in order to write conditions on set 
elements we use quantified expressions, which may 
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Table 1: The EBNF specification of the complex change definition language. 

Table 2: Complex change definitions regarding the employee ontology of Figure 1. 

be in the form ሼ∀, ∃, ∄ሽ	ݔ	 ∈ ܺ: ݂ሺݔሻ or ሼ∀, ∃, ∄ሽ	ݔ	 ∈ܺ:	ሼ∀, ∃, ∄ሽ	ݕ	 ∈ 	ܻ: ݂ሺݔ, ,ݔሻ and ݂ሺݔሻ, where ݂ሺݕ  ሻݕ
are constraints on parameters evaluating into scalar 
values. 

Table 2 contains complex change definitions 
regarding the changes of the employee ontology in 
Figure 1 discussed in introduction. Add_Grade 
models the case where a new grade property with 

value g is assigned to employee x. The changes it 
comprises of are declared in the "change list", while 
constraints in the "filter list". Add_Grade is a 
specialization of simple change Add_Property_ 
Instance, where the property equals to "e:grade". 
This is a testing value constraint over parameter 
prop. Notice that no binding is defined explicitly, as 
they are inferred by repeating complex change 
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parameters as parameters of the changes in change 
list. Besides Add_Property_Instance no cardinality 
constraint is defined, meaning that cardinality one is 
inferred. Similar complex change definitions for all 
employees' properties can be given, but are omitted 
due to space limitations. Employee_ 
Positive_Appraisal models the case when an 
employee x gets a new grade, ng, greater than the 
old one, og. It comprises of Add_Grade, so that the 
new grade is assigned to the employee, and Delete 
_Grade, so that the old grade is removed, both 
referring to the same employee x. A relational filter 
compares the new and the old grade. 
Empployee_Salary_Increase is similarly defined. 
Employee_Promotion_Manager models the case 
when an employee x becomes a manager. Add_ 
Position assigns the new position to x and Delete_ 
Position deletes the old one. A testing value 
constraint specifies the new position as e:Manager. 

The complex change Salary_Increase_after_ 
Positive_Appraisal comprises of Employee_Salary 
_Increase and Employee_Positive_Appraisal, 
modelling the case when a salary increase of 
employee x is caused after receiving positive 
appraisal. Thus, complex changes are grouped due to 
a causality relation. A similar concept holds for 
Salary_Increase_after_Promotion_Manager. These 
changes both base on Employee_Salary_Increase, as 
they try to explain why this increase has been 
caused. Thus, respective instances may overlap, if 
they both refer to the same employee, like "theo" in 
Figure 1 and 2. Due to nested definitions the 
respective instances lead to a hierarchical structure. 

Move_Project_Assignment models the case 
where a project val, initially assigned to a set of 
employees S, is later assigned to another employee 
c. It comprises of Add_Project, as the project is 
assigned to c, and Delete_Project, as the project is 
deleted from another employee s. Both changes refer 
to the same project, as val is repeated in both. 
Besides Delete_Project "+" is noted. This is a 
cardinality constraint defining that there might be 
multiple deletions. The project may be initially 
assigned to multiple employees and then deleted 
from many of them. In such case, all these 
Delete_Project instances will be grouped into the 
respective complex change instance (through 
detection process). Now, consider that similarly the 
project can be moved to multiple employees too. 
This would cause multiple Add_Project instances. 
But, on Add_Project it is assumed cardinality one. 
Therefore, only one instance will be grouped in 
every complex change instance and multiple 
complex change instances will be detected, one for 

each Add_Project instance. As a result, supporting 
cardinality is important in order to define how 
change instances are grouped. We choose to follow 
cardinality as in Table 2 in order to construct 
groupings per project and per employee it has been 
moved to. Due to cardinality constraint, parameter S 
holds all employee' ids that the project has been 
removed from, as defined in the binding list. 

Add_Employee models the case where a new 
employee is added with a number of descriptive 
properties. x is of type e:Employee, as defined in the 
testing value constraint. Property grade is optionally 
added, as defined by "?" besides Add_ Grade. 
Add_Project is optional too, but if it is added there 
might be many instances ("*"). Add_ 
Senior_Employee is a specialization of Add_ 
Employee and thus it is defined on top of it. It 
models the case when a newly added employee 
refers to a manager and leads other employees. This 
is described by e:refersTo property, through 
Add_Reference changes. The fact that the added 
employee refers to a manager is defined by the 
second post-condition. Also, it is likely that projects 
are moved to the added employee from the 
employees he leads. This is demonstrated by 
Move_Project_Assignment and the first post-
condition. A quantified expression is used in order to 
write the post-condition on the elements of set S. 

5 COMPLEX CHANGE 
DETECTION 

Complex change detection is the process of 
identifying complex change instances. It requires as 
input a set of simple change instances detected 
between two dataset versions ( ܵ), the actual dataset 
versions (before ܸ and after ܸ) and the complex 
change definitions that will be evaluated for 
detecting respective instances (ܥ). We focus on how 
nested complex change definitions are handled and 
how constraints are evaluated. In order to implement 
the language, we translate it into an already 
implemented language. As this approach concerns 
RDF data, we choose to rely on SPARQL, which 
provides similar capabilities to our language. The 
presented Algorithm involves two steps: the first 
step handles nested definitions, the second produces 
complex change instances.  

As for the first step, suppose a complex change ܿ 
whose definition is based on a set of complex 
changes (ܦ ≠ ∅). The detection of ܿ instances 
depends on detecting the instances of each complex 
change in ܦ and therefore follows their detection. 
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Note that mutually dependent complex changes are 
not supported. In general, complex change 
definitions constitute a directed acyclic graph, where 
nodes represent changes and edges dependencies 
between them. An edge departing from a complex 
change ܿ arrives at changes in ܦ according to its 
definition. Thus, detection follows a post-order 
depth-first scheme on the induced dependency graph 
by complex change definitions. This is stated in line 
2 of proposed Algorithm. postOrderDfs function call 
runs over the set of complex changes ܥ identifying 
the dependencies among changes, returning a queue ܳ of all changes in ܥ, where the order of elements 
defines the order in which they have to be detected. 

As for the second step, for each complex change ܿ in ܳ, instances are computed (lines 3-10). The 
main idea is that our language is translated into 
SPARQL queries. Accordingly, simple and complex 
change instances and dataset versions are encoded as 
RDF data, so that constructed SPARQL queries are 
applied on them. Therefore, for each complex 
change an appropriate SPARQL query is created 
through createQuery function call (line 5). For this, 
changes in ܦሺܿሻ, constraints on their parameters and 
bindings are employed. Bindings indicate how to 
select complex change parameter values. Cardinality 
is taken into account to identify whether a change is 
optional. This query is executed on the detected 
change instances and dataset versions (line 6) in 
order to select change instances that verify the 
defined constraints. The query results are further 
elaborated, through createInstances function call 
(line 7), so that selected changes are grouped based 
on cardinality. Computed instances are added into 
the set of instances to be reported ܫ (line 8, 
initialized in line 1), and are combined with simple 
change instances in order to be available for 
detecting depending complex change instances (line 
9). Finally, the algorithm returns the set of detected 
complex change instances ܫ (line 11). 

Regarding query generation, testing value and 
relational constraints map to SPARQL filter 
expressions or nested queries with aggregation (in 
case they involve parameters evaluating into sets), 
while pre/post-conditions map to filter exists/not 
exists expressions over appropriate graphs holding 
the version before or after the change. Quantified 
expressions are also mapped to appropriate nested 
queries. Cardinality "?" and "*" map to optional 
declaration, indicating that respective changes may 
not be present. Bindings guide how query variables 
in select clause, representing complex change 
parameters, match query variables in where clause. 

Algorithm: Complex Change Detection  
Input: A set of complex changes ܥ, a dataset 
version before ܸ and after ܸ, a set of 
simple change instances ܵ 
Output: A set of complex changes instances ܫ 
of ܥ 
ܫ  1 ← ሼ	ሽ ; 
2  queue ܳ ←  ሻ ; //complexܥሺݏ݂ܦݎ݁݀ݎܱݐݏ
changes are sorted following dependencies 
3  while !ܳ.   ሻ do	ሺݕݐ݉ܧݏ݅
4   ܿ ← ܳ.  ; ሻ	ሺ݁ݑ݁ݑݍ݁݀
ݕݎ݁ݑݍ   5 ← ,ሺܿሻܦ൫ݕݎ݁ݑܳ݁ݐܽ݁ݎܿ  ; ሺܿሻ൯ܨ
ݐ݁ܵݐ݈ݑݏ݁ݎ   6 ← ,ݕݎ݁ݑݍሺܿ݁ݔ݁ ܵ , ܸ , ܸሻ ; 
ܫ   7 ← ,ݐ݁ܵݐ݈ݑݏ݁ݎ൫ݏ݁ܿ݊ܽݐݏ݊ܫ݁ݐܽ݁ݎܿ  ; ሺܿሻ൯ܨ
ܫ   8 ← ܫ ∪   ; //report instancesܫ
9   ܵ ← ܵ ∪   ; // instances are availableܫ
for detecting depending changes 
10 end while 
11 return  ; 

Regarding instance generation, the query results 
have to be iterated so that they are grouped 
appropriately given cardinality constraints for 
constructing complex change instances. 

For example consider the following query, which 
corresponds to Add_Senior_Employee defined in 
Table 2. In the select clause we consider query 
variables corresponding to contained changes' 
identifiers (?c1, ?c2, ?c3, ?c4 and ?c5) and the 
values which will be assigned to the complex change 
instance parameters (?sx, ?m and ?x). In the where 
clause we consider the changes defined in change 
list and the constraints defined in filter list. For 
Delete_Reference and Move_Project _Assignment 
we use optional parts, due to "*" cardinality 
constraint. For post-conditions we use appropriate 
SPARQL filter expressions evaluating over the 
graph holding Va. The first post-condition refers to 
Move_Project_Assignment and thus it is placed into 
the respective optional part. Also, it involves 
quantification, which is implemented through a 
nested query. The query results should be iterated 
for creating instances. Notice that Add_Employee 
and the first Add_Reference have cardinality equal 
to one. Thus, all rows having the same value in the 
respective query variables (?c1, ?c2) will form one 
complex change instance. 

SELECT ?c1 ?sx ?c2 ?m ?c3 ?x ?c4 ?c5 
WHERE { ?c1 rdf:type ch:Add_Employee; 

ch:aep1 ?sx. 
?c2 rdf:type ch:Add_Reference; ch:ar1 

?sx; ch:ar2 ?m. 
FILTER EXISTS {GRAPH <http://employeeVa> 

{?m e:position e:Manager.}} 
?c3 rdf:type ch:Add_Reference; ch:ar1 ?x; 

ch:ar2 ?sx. 
OPTIONAL {?c4 rdf:type ch:Delete_ 

Reference; ch:dr1 ?x; ch:dr2 ?psx.} 
OPTIONAL {?c5 rdf:type ch:Move_Project_ 

Assignment; ch:mpap1 ?s; ch:mpap2 ?sx; 
ch:mpap3 ?v.{SELECT ?c5 WHERE{?c5 rdf:type 
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ch:Move_Project_Assignment; ch:mpap1 ?s; 
ch:mpap2 ?sx. FILTER NOT EXISTS {GRAPH 
<http://employeeVa> {?s e:refersTo 
?sx.}}}GROUP BY ?c5 HAVING(count(?s)=0)}}} 

6 CONCLUSIONS 

In this paper we argued that treating changes as first 
class citizens is a central issue in evolution 
management. This involves modelling, defining and 
detecting complex changes. Thus semantically rich 
changes and their interrelations are supported for 
interpreting evolution in multiple ways. We 
proposed our perception regarding complex changes, 
a declarative language for defining them on RDF(S) 
knowledge bases and a process for detecting 
complex change instances. Future work is directed 
in evaluating our approach in terms of language 
expressiveness and detection efficiency. 
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APPENDIX 

Simple Changes on RDF(S) Knowledge Bases. 
Add_Type_Class(a): Add object a of type rdfs:class. 
Delete_Type_Class(a): Delete object a of type rdfs: class. 
Rename_Class(a): Rename class a to b. Merge_Classes(A, 
b): Merge classes contained in A into b. Merge_Classes_ 
Into_Existing(A,b): Merge classes in A into b, b∈A. Split_ 
Class(a,B): Split class a into classes contained in B. Split_ 
Class_Into_Existing(a,B): Split class a into classes in B, 
a∈B. Add_Type_Property(a): Add object a of type 
rdf:property. Delete_Type_Property(a): Delete object a of 
type rdf:property. Rename_Property(a,b): Rename property 
a to b. Merge_Properties(A,b): Merge properties contained 
in A into b. Merge_Properties_Into_Existing(A, b): Merge 
A into b, b∈A. Split_Property(a,B): Split property a into 
properties contained in B. Split_Property_ 
Into_Existing(a,B): Split a into properties in B, a∈B. Add_ 
Type_Individual(a): Add object a of type rdfs:resource. 
Delete_Type_Individual(a): Delete object a of type rdfs: 
resource. Merge_Individuals(A,b): Merge individuals 
contained in A into b. Merge_Individuals_Into_Existing 
(A,b): Merge A into b, b∈A. Split_Individual(a,B): Split 
individual a into individuals in B. Split_Individual_Into_ 
Existing(a,B): Split a into individuals in B, a∈B. Add_ 
Superclass(a,b): Parent b of class a is added. Delete_ 
Superclass(a,b): Parent b of class a is deleted. Add_ 
Superproperty(a,b): Parent b of property a is added. 
Delete_Superproperty(a,b): Parent b of property a is 
deleted. Add_Type_To_Individual(a,b): Type b of 
individual a is added. Delete_Type_From_Individual(a,b): 
Type b of individual a is deleted. Add_Property_Instance 
(a1,a2,b): Add property instance of property b. Delete_ 
Property_Instance(a1,a2,b): Delete instance of property b. 
Add_Domain(a,b): Domain b of property a is added. 
Delete_Domain(a,b): Domain b of property a is deleted. 
Add_Range(a,b): Range b of property a is added. Delete_ 
Range(a,b): Range b of property a is deleted. Add_ 
Comment(a,b): Comment b of object a is added. Delete_ 
Comment(a,b): Comment b of object a is deleted. Change_ 
Comment(u,a,b): Change comment of resource u from a to b. 
Add_Label(a,b): Label b of object a is added. Delete_ 
Label(a,b): Label b of object a is deleted. Change_ 
Label(u,a,b): Change label of resource u from a to b. 
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