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Abstract: It is popular to use real-world data to evaluate or teach data mining techniques. However, there are some 
disadvantages to use real-world data for such purposes. Firstly, real-world data in most domains is difficult to 
obtain for several reasons, such as budget, technical or ethical. Secondly, the use of many of the real-world 
data is restricted or in the case of data mining, those data sets do either not contain specific patterns that are 
easy to mine for teaching purposes or the data needs special preparation and the algorithm needs very specific 
settings in order to find patterns in it. The solution to this could be the generation of synthetic, “meaningful 
data” (data with intrinsic patterns). This paper presents a framework for such a data generator, which is able 
to generate datasets with intrinsic patterns, such as decision trees. A preliminary run of the prototype proves 
that the generation of such “meaningful data” is possible. Also the proposed approach could be extended to a 
further development for generating synthetic data with other intrinsic patterns. 

1 INTRODUCTION 

In our modern society in the internet age, collections 
of data and even more important making use of 
existing available data gain more and more importance. 
Especially in the domain of teaching data mining or 
data mining research, investigators often come across 
some main problems. Firstly, in order to research or 
teach a certain problem, most of the techniques and 
methods in this domain rely on having relevant, big 
collections of data. It is very common to use real-world 
data for such purposes. However, real-world data in 
most domains is difficult to obtain for several reasons, 
such as budget, technical or ethical (Rachkovskij and 
Kussul, 1998). Secondly, the use of many of the real-
world data is restricted or in the case of data mining, 
those data sets do either not contain specific patterns 
that are easy to mine for teaching purposes or the data 
needs special preparation and the algorithm needs very 
specific settings in order to find patterns in it. For 
example, it is also very likely that real data may contain 
sensible data (be it personal or confidential) which 
makes it necessary to hide or obscure those parts, 
resulting in a huge effort to carry out this task because 
of the sheer size of these data collections. The third 
problem is that in case of teaching data mining 
techniques, learners may encounter the same “standard 
datasets” (e.g. the IRIS dataset or the Cleveland Heart 
Disease dataset) multiple times during their studies and 

mining them becomes “less exciting” . This can lower 
their motivation and as a consequence their learning 
success.  

A solution to these problems could be using 
synthetic generated data with intrinsic patterns. There 
are a number of approaches and techniques that have 
been developed for generating synthetic data (Coyle 
et al., 2013, Frasch et al., 2011, van der Walt and 
Bernard, 2007, Sanchez-Monedero et al., 2013, Jeske 
et al., 2005, Lin et al., 2006, and Pei and Zaiane, 
2006). However, since each of the previous research 
was either focused on a particular category, such as 
clustering, or using some special techniques, there are 
still spaces for further research. There is also a survey 
paper that provides current development about 
general test data generation tools (Galler and 
Aichernig, 2014). 

This paper presents a novel approach to a 
synthetic data generator for matching data mining 
patterns, such as decision trees, by developing a novel 
decision tree pattern generating algorithm. A 
preliminary run of the prototype proves that the 
generation of such big size of “meaningful data” is 
possible. Also the proposed approach could be 
extended to a further development for generating 
synthetic data with other intrinsic patterns.   

The rest of this paper is structured as follows. 
Related works are described in next section. The main 
contribution of this paper is presented in section 3, 
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which introduces the novel approach, the 
architecture, the algorithm, the design and 
implementation of the generator. The testing and 
evaluation are discussed in section 4. Finally, this 
paper is concluded and future work pointed out in 
section 5. 

2 RELATED WORK 

Sanchez-Monedero et al (2013) proposed a 
framework for synthetic data generation, by adopting 
a n-spheres based approach. The method allows 
variables such as position, width and overlapping of 
data distributions in the n–dimensional space can be 
controlled by considering their n-spheres. However, 
this approach only focuses on cases dealing with 
topics specially in the context of ordinal 
classifications.   

Coyle et al (2014) presented a method for 
estimating data clusters at operating conditions where 
data has been collected to estimate data at other 
operating conditions, enabling classification. This 
can be used in machine learning algorithms when real 
data cannot be collected. This method uses the earlier 
mean interpolation along with a method of 
interpolating all of the matrices comprising the 
singular value decomposition (SVD) of the 
covariance matrix to perform data cluster 
interpolation, based on a methodology termed as 
Singular Value Decomposition Interpolation (SVDI). 
It is claimed that the method can be used to yield 
intuitive data cluster estimates with acceptable 
distribution, orientation and location in the feature 
space. However, as authors admitted the method 
“assumes a uni-model distribution, which may or may 
not true for classification and regression problems”.  

Motivated by research work on data 
characteristics (van der Wlat and Bernard, 2007, 
Wolpert snd Macready, 1997), Frasch et al (2011) 
proposed a method for generating synthetic data with 
controlled statistical data characteristics, like means, 
covariance, intrinsic dimensionality and the Bayes 
errors. It is claimed that synthetic data generator 
which can control the statistic properties are 
important tools for experimental inquiries performed 
in context of machine learning and pattern 
recognition. The proposed data generator is suitable 
for modelling simple problems with fully known 
statistical characteristics. 

Pei and Zaiane (2006) developed a distribution-
based and transformation-based approach to synthetic 
data generation for clustering and outlier analysis. 
There are a set of parameters that are considered as 

user’s requirements, such as the number of points, the 
number of clusters, the size, shapes and locations, and 
the density level of either cluster data or noise/outliers 
in a dataset. The generator can handle two-
dimensional data. However, it was claimed that based 
on the heuristic devised, the system could be extended 
to handle three or higher dimensional data. 

Jeske et al. (2005) proposed an architecture for an 
information discovery analysis system data and 
scenario generator that generates synthetic datasets 
on a to-be-decided semantic graph. Based on this 
architecture, Lin et al. (2006) developed a prototype 
of this system, which is capable of generating 
synthetic data for a particular scenario, such as credit 
card transactions.  

The work probably most closely related to the one 
proposed in this paper is the one by Eno and Thompson 
(2008). The authors proposed an approach toward 
determining whether patters found by data mining 
models could be used and reverse map them back into 
synthetic data sets of any size that would exhibit the 
same patterns, by developing an algorithm to map and 
reverse a decision tree. Their approach was based on 
two technologies: Predictive Model Markup Language 
(PMML) and Synthetic Data Definition Language 
(SDDL). The algorithm would scan a decision tree 
stored as PMML to create an SDDL file that described 
the data to be generated. It was claimed that their 
method confirmed the viability of using data mining 
models and inverse mapping to inject realistic patterns 
into synthetic data sets. However, their work is limited 
to the two techniques used.  

3 THE APPROACH 

This section describes the proposed framework, 
including the architecture, the pattern generating 
algorithm, the design and implementation of the 
approach.  

3.1 Architecture  

Figure 1 illustrates the relationship of all modules in 
the framework. These modules can be implemented 
to run in separate threads or even on separate systems 
to create a distributed system which would optimise 
the performance of the whole application. The 
architecture is a modified version of the one proposed 
by Houkjær et al. (2006). 
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Figure 1: The Architecture. 

Main components in this architecture are described as 
below: 
 GUI:  This   package   contains   all   the   classes  

necessary for the graphical user interface. The 
GUI classes enable the user 

- to set parameters and inputs; 
- to choose and set up the connection to the 

database; 
- to view the meta data connected to the tables in 

the database; 
- to choose from a list of available data generation 

algorithms/methods; 
- to set the desired output formats. 
 Data Generation Module: This package contains 

the classes needed to generate data, e.g. different 
number generators (such as zero bitmap number 
generators, shuffle number generators or 
specialised number generators), classes that can 
produce addresses or names and so on; 

 The Core Module: This package contains three 
sub packages:  

- Graph Builder: This sub package contains all 
classes necessary to generate a directed graph 
which represents the database/table structures 
retrieved from the database through the Metadata 
Interface; 

- Graph: The graph sub package holds a 
representation of the database in memory. This is 
necessary in order to generate consistent data that 
fulfils constraints as well as intra- and inter-table 
relations; 

- Interfaces: This sub package contains the 
interfaces and their class implementations which 
are used by the graph, graph builder and data 
generation module classes and provide the 
different ways of input (different DBMS, e.g. 
MySQL, Oracle, etc.; inputs for name/address 
generation), output (e.g. into flat files) and the 
interfaces used for the different data generation 
algorithms or number distributions. One of the 

most important interfaces in this design is the 
pattern interface. This interface can be used 
together with the new approach to pattern 
generation in data to form a really unique data 
generator. 

3.2 A Decision Tree Algorithm: ID3 

This new approach employs the idea of “Backwards 
Engineering”: an existing well established 
classification algorithm (in this case ID3) is used as 
the basis to discover the patterns; then an algorithm is 
developed that produces data in way such that this 
basis algorithm is able to discover a structure in the 
data. 

In this framework, the well-known ID3 algorithm, 
originated by Quinlan (1979, 1986) was used 
following the description of Berthold et al (2010): 

 
Figure 2: The ID3 algorithm as described by Berthold et al. 
(Berthold et al., 2010, p. 211). 

Figure 2 shows a general algorithm to build 
decision trees. ID3 in particular uses a concept called 
the Shannon Entropy H: 

 
Here, D indicates the training data set, C the target 

(class) attribute, i.e. the attribute towards which the 
entropy is calculated, and A the set of attributes. The 
entropy ranges from 0 to 1 and reaches the maximal 
value of 1 for the case of two classes and an even 
50:50 distribution of patterns of those classes. On the 
other hand, an entropy value of 0 would tell us that 
only one of these classes would exist in the given 
subset of data. The entropy H therefor provides us 
with a measure of the diversity of a given data set. 
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The ID3 algorithm tries to reach the leaves of a 
decision tree (i.e. nodes that only hold a single class 
of attributes) as fast as possible, meaning that the 
entropy of each subset of data after the split of the 
values should have the least possible entropy. 
Therefore, another measurement is needed, called the 
“Information Gain”: 

 

Where 

 

and DA=a indicates the subset of D for which attribute 
A has value a. HD(C, A) denotes the entropy that is left 
in the subsets of the original data after they have been 
split according to their values of A. 

This Information Gain makes it possible to split 
the classes in D into subsets with each having the least 
possible remaining entropy within. Using this 
Information Gain as measurement in the split 
condition for the Class attribute of the algorithm 
outlined in figure 2, the ID3 algorithm is complete. 

3.3 The Algorithm 

With the ID3 algorithm and its underlying concepts 
defined, the pattern generating algorithm can be 
described. 

The requirements for this algorithm are a 
classification decision tree with a table in a database 
having at least columns for each of the attributes that 
are present in the nodes of the tree and the Class 
attribute. In contrast to the ID3 algorithm that will 
later be used to find the same tree again, the proposed 
pattern generating algorithm does not start from the 
root of the tree, working its way “downwards” over 
nodes with the highest Information Gain to the leave 
nodes, but it starts from the leave nodes in an 
“upward” way. 

The basic idea of the algorithm can be described 
as follows. The leave nodes L have to be the nodes 
with the least Information Gain of the whole data set. 
This can be ensured by maximally distributing the 
values of the Class attribute C on this level (this will 
of course result in a very inaccurate classification 
tree; in the implementation different distribution 
levels can be used to make it more accurate). To do 
this, a minimum number of entries in the database 
table has to be specified; according to this number, 
the table is then populated with maximal distribution 
in C (which means all possible value c in C appears 
with the same frequency), leaving all other columns 

blank with the exception of the values in L (noted as 
l in future). These are then chosen such that each 
combination of l and c appears equally. 

Now, when c is maximally distributed among l, 
the entropy of L in respect to C is 1 and since the 
Information Gain can never be negative and the range 
of entropy is between 0 and 1, the Information Gain 
for L is 0 and ID3 will use L as the leave nodes when 
the other attributes have a higher Information Gain. 

For the next level of nodes N1 in the given 
classification tree, all that has to be done is to make 
sure the entropy for this level is a little lower than the 
previous one, the easiest way to ensure this is to add 
one more combination of a specific value of c and a 
specific value n1 of N1; the rest of the combinations 
should stay maximally distributed (again, in the 
implementation this “step width” can be set to 
different values). To achieve this, a number of rows 
depending on the number of different values of c rows 
have to be added. Only the distribution among the 
combinations of n1 and c must be altered, not the 
distribution of combinations of l and c. This will 
result in an entropy value slightly lower than 1 for the 
attribute N1 in respect to C thus this attribute N1 will 
be used in the node level just above the leaves. 

For the next node level N2 (again having the 
different values n2) in the classification tree, not only 
one specific combination of n2 and c has to be added 
but two, therefore two times the number of values c 
of rows have to be added to keep the combinations of 
c and l maximally distributed and the combinations of 
c and n1 slightly less distributed. 

This means again the entropy H(N2|C) < H(N1|C) 
< H(L|C) and in that way, L will be found as leaves 
by ID3, N1 as the node level above the leaves, N2 as 
the node level above N1 and if this procedure is 
repeated until the root of the classification tree. The 
database table will grow with each step. But the 
entropy of each attribute higher to the top of the input 
classification tree will be lower than the entropy to 
the attributes closer to the leave nodes, which means 
their Information Gain is higher. Thus ID3 will place 
them into the right position. 

3.4 Implementation 

This section describes the implementation of the 
algorithm outlined above.   

3.4.1 Overview of the Implementation 

Figure 3 shows the complete class diagram of the 
prototype. The implementation of the pattern 
generating algorithm is split among three main classes:  
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 the “Tree” class provides the framework for the 
classification tree data structure required for 
the algorithm; 

 the “Node” class provides all the methods and 
functions necessary to traverse the tree, get 
certain nodes and update the entropy values 
accordingly; 

 the “TestMain” class makes the use of this data 
structure, sets the entropy values of the 
different Node levels and finally also deals with 
the data generation; 

In addition to the three main classes, there are two 
helper classes, “BSGTree” and “BSGTreeBean”:  

 “BSGTree” class defines and builds the tree 
data structure utilising the “Tree” and “Node” 
classes; 

 the “BSGTreeBean” class is a simple Java 
Bean with private members and Getters and 
Setters for them. It is used by the “TestMain” 
class in order to generate the data. 

 

Figure 3: Class diagram. 

3.4.2 The Implementation 

The prototype only includes the implementation of 
the pattern generating algorithm, which can be 
described as the following steps: 
 first of all, conclusion lists containing the 

values of the class attribute are generated with 
different entropy values; 

 then, each of these lists is used to set the 
conclusion lists of the nodes in one level. 
Hence, these lists define the starting entropy for 

level 0 and the “step width” as described in the 
“description of the algorithm” section; 

 the next step is the generation of the predefined 
tree data structure followed by getting node 
lists for the different types and levels. With 
these node lists, each level can be populated 
with conclusion lists with increasing entropy 
values; 

 further, after the above are all done, each row 
of data has to be generated. As stated before, 
each entry in the conclusion lists of the leaf 
nodes represents a complete data set to be 
generated. Consequently in order to generate 
the data rows, all of the leaf nodes can be 
retrieved by the tree and then their conclusion 
lists can be looped through; the parent nodes of 
the leaf nodes recursively contain the values of 
other attributes. Of course, some attributes 
might be missing in the chain from a leaf node 
to the root node. These missing values are 
replaced by a placeholder value and handled 
later. All of these row data is collected in a list 
of beans of the corresponding tree. 

 finally, the placeholder values have to be 
replaced with real attribute values. It is of high 
importance that the entropy values for the 
different attributes are not altered in this step. 
This could happen easily if the placeholder 
vales are not replaced carefully. 

The generated data then can be exported after 
optionally shuffling the resulting rows. 

4 TESTING AND EVALUATION 

4.1 Testing  

The proposed pattern generator was tested by 
arbitrarily generating three datasets with three 
different types of classification trees constructed in, 
and then finding the patterns in each of the dataset by 
the J48 classification algorithm of WEKA.  

Testing results are shown in figures 4, 5 and 6. 

 
Figure 4: Left: Test tree 1. Right: Tree found by WEKA 
J48. 
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Figure 5: Left: Test tree 2. Right: Tree found by WEKA 
J48. 

 
Figure 6: Left: Test tree 3. Right: Tree found by WEKA 
J48. 

Figure 4 shows a simple tree with only 6 notes 
constructed in a generated dataset at the left hand side 
and the tree found by the J48 algorithm in Weka at 
the right hand side. Figure 5 and 6 shows the similar 
practice with a little bit more complicated tree 
structures in generated datasets. In all of the testing 
cases, the designed tree structures were found 
successfully in the generated datasets, respectively. 

4.2 Evaluation 

The test cases show that it is definitely possible to 
generate data that matches a data mining pattern. In 
some cases, the entropy step width had to be altered 
or additional “hidden nodes” had to be introduced to 
the tree in order to make some splits. But this is most 
likely due to the fact that the pattern generator 
algorithm’s implementation is not technically mature 
yet and can be improved in further versions. 
Furthermore, a module should be developed that 
reads trees as XML files (or similar) and generates the 
tree structure necessary to generate the data 
automatically. This would greatly increase the 
versatility of the synthetic data generator. 

In summary, the testing results prove that the 
proposed synthetic data generator is able to generate 
datasets with intrinsic patterns, such as decision trees. 
Additionally, the performance of the data generator 
was surprisingly good. It was possible to create 
almost a million rows in a few seconds with a laptop 
with basic specifications. 

 
 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, a novel approach for developing a 
synthetic data generator for matching decision trees 
has been proposed. A prototype of such a generator 
has been implemented. The results of the test run 
prove that a large dataset with patterns like decision 
trees can be generated automatically within seconds.  

While the prototype meets all requirements set out 
within the aims of the project, the work introduces a 
number of further investigations, including: a) to add 
more classification algorithms into the generator; b) 
to add more algorithms into the generator, which 
allow patterns of association rules, clustering and 
repression to be created; c) to develop a 
comprehensive, user-friendly interface, which allows 
users to select algorithms from different categories, 
define the number of attributes, and other parameters.  
The successful outcome of such future work would 
result in a comprehensive synthetic data generator, 
which is able to generate big datasets with patterns for 
data mining research and training.  
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