
Towards a Synthetic Data Generator for Matching Decision Trees

Taoxin Peng and Florian Hanke
School of Computing, Edinburgh Napier University, 10 Colinton Road, Edinburgh, EH10 5DT, U.K.

Keywords: Synthetic, Data Generator, Data Mining, Decision Trees, Classification, Pattern.

Abstract: It is popular to use real-world data to evaluate or teach data mining techniques. However, there are some
disadvantages to use real-world data for such purposes. Firstly, real-world data in most domains is difficult to
obtain for several reasons, such as budget, technical or ethical. Secondly, the use of many of the real-world
data is restricted or in the case of data mining, those data sets do either not contain specific patterns that are
easy to mine for teaching purposes or the data needs special preparation and the algorithm needs very specific
settings in order to find patterns in it. The solution to this could be the generation of synthetic, “meaningful
data” (data with intrinsic patterns). This paper presents a framework for such a data generator, which is able
to generate datasets with intrinsic patterns, such as decision trees. A preliminary run of the prototype proves
that the generation of such “meaningful data” is possible. Also the proposed approach could be extended to a
further development for generating synthetic data with other intrinsic patterns.

1 INTRODUCTION

In our modern society in the internet age, collections
of data and even more important making use of
existing available data gain more and more importance.
Especially in the domain of teaching data mining or
data mining research, investigators often come across
some main problems. Firstly, in order to research or
teach a certain problem, most of the techniques and
methods in this domain rely on having relevant, big
collections of data. It is very common to use real-world
data for such purposes. However, real-world data in
most domains is difficult to obtain for several reasons,
such as budget, technical or ethical (Rachkovskij and
Kussul, 1998). Secondly, the use of many of the real-
world data is restricted or in the case of data mining,
those data sets do either not contain specific patterns
that are easy to mine for teaching purposes or the data
needs special preparation and the algorithm needs very
specific settings in order to find patterns in it. For
example, it is also very likely that real data may contain
sensible data (be it personal or confidential) which
makes it necessary to hide or obscure those parts,
resulting in a huge effort to carry out this task because
of the sheer size of these data collections. The third
problem is that in case of teaching data mining
techniques, learners may encounter the same “standard
datasets” (e.g. the IRIS dataset or the Cleveland Heart
Disease dataset) multiple times during their studies and

mining them becomes “less exciting” . This can lower
their motivation and as a consequence their learning
success.

A solution to these problems could be using
synthetic generated data with intrinsic patterns. There
are a number of approaches and techniques that have
been developed for generating synthetic data (Coyle
et al., 2013, Frasch et al., 2011, van der Walt and
Bernard, 2007, Sanchez-Monedero et al., 2013, Jeske
et al., 2005, Lin et al., 2006, and Pei and Zaiane,
2006). However, since each of the previous research
was either focused on a particular category, such as
clustering, or using some special techniques, there are
still spaces for further research. There is also a survey
paper that provides current development about
general test data generation tools (Galler and
Aichernig, 2014).

This paper presents a novel approach to a
synthetic data generator for matching data mining
patterns, such as decision trees, by developing a novel
decision tree pattern generating algorithm. A
preliminary run of the prototype proves that the
generation of such big size of “meaningful data” is
possible. Also the proposed approach could be
extended to a further development for generating
synthetic data with other intrinsic patterns.

The rest of this paper is structured as follows.
Related works are described in next section. The main
contribution of this paper is presented in section 3,

Peng, T. and Hanke, F.
Towards a Synthetic Data Generator for Matching Decision Trees.
In Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016) - Volume 1, pages 135-141
ISBN: 978-989-758-187-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

135

which introduces the novel approach, the
architecture, the algorithm, the design and
implementation of the generator. The testing and
evaluation are discussed in section 4. Finally, this
paper is concluded and future work pointed out in
section 5.

2 RELATED WORK

Sanchez-Monedero et al (2013) proposed a
framework for synthetic data generation, by adopting
a n-spheres based approach. The method allows
variables such as position, width and overlapping of
data distributions in the n–dimensional space can be
controlled by considering their n-spheres. However,
this approach only focuses on cases dealing with
topics specially in the context of ordinal
classifications.

Coyle et al (2014) presented a method for
estimating data clusters at operating conditions where
data has been collected to estimate data at other
operating conditions, enabling classification. This
can be used in machine learning algorithms when real
data cannot be collected. This method uses the earlier
mean interpolation along with a method of
interpolating all of the matrices comprising the
singular value decomposition (SVD) of the
covariance matrix to perform data cluster
interpolation, based on a methodology termed as
Singular Value Decomposition Interpolation (SVDI).
It is claimed that the method can be used to yield
intuitive data cluster estimates with acceptable
distribution, orientation and location in the feature
space. However, as authors admitted the method
“assumes a uni-model distribution, which may or may
not true for classification and regression problems”.

Motivated by research work on data
characteristics (van der Wlat and Bernard, 2007,
Wolpert snd Macready, 1997), Frasch et al (2011)
proposed a method for generating synthetic data with
controlled statistical data characteristics, like means,
covariance, intrinsic dimensionality and the Bayes
errors. It is claimed that synthetic data generator
which can control the statistic properties are
important tools for experimental inquiries performed
in context of machine learning and pattern
recognition. The proposed data generator is suitable
for modelling simple problems with fully known
statistical characteristics.

Pei and Zaiane (2006) developed a distribution-
based and transformation-based approach to synthetic
data generation for clustering and outlier analysis.
There are a set of parameters that are considered as

user’s requirements, such as the number of points, the
number of clusters, the size, shapes and locations, and
the density level of either cluster data or noise/outliers
in a dataset. The generator can handle two-
dimensional data. However, it was claimed that based
on the heuristic devised, the system could be extended
to handle three or higher dimensional data.

Jeske et al. (2005) proposed an architecture for an
information discovery analysis system data and
scenario generator that generates synthetic datasets
on a to-be-decided semantic graph. Based on this
architecture, Lin et al. (2006) developed a prototype
of this system, which is capable of generating
synthetic data for a particular scenario, such as credit
card transactions.

The work probably most closely related to the one
proposed in this paper is the one by Eno and Thompson
(2008). The authors proposed an approach toward
determining whether patters found by data mining
models could be used and reverse map them back into
synthetic data sets of any size that would exhibit the
same patterns, by developing an algorithm to map and
reverse a decision tree. Their approach was based on
two technologies: Predictive Model Markup Language
(PMML) and Synthetic Data Definition Language
(SDDL). The algorithm would scan a decision tree
stored as PMML to create an SDDL file that described
the data to be generated. It was claimed that their
method confirmed the viability of using data mining
models and inverse mapping to inject realistic patterns
into synthetic data sets. However, their work is limited
to the two techniques used.

3 THE APPROACH

This section describes the proposed framework,
including the architecture, the pattern generating
algorithm, the design and implementation of the
approach.

3.1 Architecture

Figure 1 illustrates the relationship of all modules in
the framework. These modules can be implemented
to run in separate threads or even on separate systems
to create a distributed system which would optimise
the performance of the whole application. The
architecture is a modified version of the one proposed
by Houkjær et al. (2006).

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

136

Figure 1: The Architecture.

Main components in this architecture are described as
below:
 GUI: This package contains all the classes

necessary for the graphical user interface. The
GUI classes enable the user

- to set parameters and inputs;
- to choose and set up the connection to the

database;
- to view the meta data connected to the tables in

the database;
- to choose from a list of available data generation

algorithms/methods;
- to set the desired output formats.
 Data Generation Module: This package contains

the classes needed to generate data, e.g. different
number generators (such as zero bitmap number
generators, shuffle number generators or
specialised number generators), classes that can
produce addresses or names and so on;

 The Core Module: This package contains three
sub packages:

- Graph Builder: This sub package contains all
classes necessary to generate a directed graph
which represents the database/table structures
retrieved from the database through the Metadata
Interface;

- Graph: The graph sub package holds a
representation of the database in memory. This is
necessary in order to generate consistent data that
fulfils constraints as well as intra- and inter-table
relations;

- Interfaces: This sub package contains the
interfaces and their class implementations which
are used by the graph, graph builder and data
generation module classes and provide the
different ways of input (different DBMS, e.g.
MySQL, Oracle, etc.; inputs for name/address
generation), output (e.g. into flat files) and the
interfaces used for the different data generation
algorithms or number distributions. One of the

most important interfaces in this design is the
pattern interface. This interface can be used
together with the new approach to pattern
generation in data to form a really unique data
generator.

3.2 A Decision Tree Algorithm: ID3

This new approach employs the idea of “Backwards
Engineering”: an existing well established
classification algorithm (in this case ID3) is used as
the basis to discover the patterns; then an algorithm is
developed that produces data in way such that this
basis algorithm is able to discover a structure in the
data.

In this framework, the well-known ID3 algorithm,
originated by Quinlan (1979, 1986) was used
following the description of Berthold et al (2010):

Figure 2: The ID3 algorithm as described by Berthold et al.
(Berthold et al., 2010, p. 211).

Figure 2 shows a general algorithm to build
decision trees. ID3 in particular uses a concept called
the Shannon Entropy H:

Here, D indicates the training data set, C the target

(class) attribute, i.e. the attribute towards which the
entropy is calculated, and A the set of attributes. The
entropy ranges from 0 to 1 and reaches the maximal
value of 1 for the case of two classes and an even
50:50 distribution of patterns of those classes. On the
other hand, an entropy value of 0 would tell us that
only one of these classes would exist in the given
subset of data. The entropy H therefor provides us
with a measure of the diversity of a given data set.

Towards a Synthetic Data Generator for Matching Decision Trees

137

The ID3 algorithm tries to reach the leaves of a
decision tree (i.e. nodes that only hold a single class
of attributes) as fast as possible, meaning that the
entropy of each subset of data after the split of the
values should have the least possible entropy.
Therefore, another measurement is needed, called the
“Information Gain”:

Where

and DA=a indicates the subset of D for which attribute
A has value a. HD(C, A) denotes the entropy that is left
in the subsets of the original data after they have been
split according to their values of A.

This Information Gain makes it possible to split
the classes in D into subsets with each having the least
possible remaining entropy within. Using this
Information Gain as measurement in the split
condition for the Class attribute of the algorithm
outlined in figure 2, the ID3 algorithm is complete.

3.3 The Algorithm

With the ID3 algorithm and its underlying concepts
defined, the pattern generating algorithm can be
described.

The requirements for this algorithm are a
classification decision tree with a table in a database
having at least columns for each of the attributes that
are present in the nodes of the tree and the Class
attribute. In contrast to the ID3 algorithm that will
later be used to find the same tree again, the proposed
pattern generating algorithm does not start from the
root of the tree, working its way “downwards” over
nodes with the highest Information Gain to the leave
nodes, but it starts from the leave nodes in an
“upward” way.

The basic idea of the algorithm can be described
as follows. The leave nodes L have to be the nodes
with the least Information Gain of the whole data set.
This can be ensured by maximally distributing the
values of the Class attribute C on this level (this will
of course result in a very inaccurate classification
tree; in the implementation different distribution
levels can be used to make it more accurate). To do
this, a minimum number of entries in the database
table has to be specified; according to this number,
the table is then populated with maximal distribution
in C (which means all possible value c in C appears
with the same frequency), leaving all other columns

blank with the exception of the values in L (noted as
l in future). These are then chosen such that each
combination of l and c appears equally.

Now, when c is maximally distributed among l,
the entropy of L in respect to C is 1 and since the
Information Gain can never be negative and the range
of entropy is between 0 and 1, the Information Gain
for L is 0 and ID3 will use L as the leave nodes when
the other attributes have a higher Information Gain.

For the next level of nodes N1 in the given
classification tree, all that has to be done is to make
sure the entropy for this level is a little lower than the
previous one, the easiest way to ensure this is to add
one more combination of a specific value of c and a
specific value n1 of N1; the rest of the combinations
should stay maximally distributed (again, in the
implementation this “step width” can be set to
different values). To achieve this, a number of rows
depending on the number of different values of c rows
have to be added. Only the distribution among the
combinations of n1 and c must be altered, not the
distribution of combinations of l and c. This will
result in an entropy value slightly lower than 1 for the
attribute N1 in respect to C thus this attribute N1 will
be used in the node level just above the leaves.

For the next node level N2 (again having the
different values n2) in the classification tree, not only
one specific combination of n2 and c has to be added
but two, therefore two times the number of values c
of rows have to be added to keep the combinations of
c and l maximally distributed and the combinations of
c and n1 slightly less distributed.

This means again the entropy H(N2|C) < H(N1|C)
< H(L|C) and in that way, L will be found as leaves
by ID3, N1 as the node level above the leaves, N2 as
the node level above N1 and if this procedure is
repeated until the root of the classification tree. The
database table will grow with each step. But the
entropy of each attribute higher to the top of the input
classification tree will be lower than the entropy to
the attributes closer to the leave nodes, which means
their Information Gain is higher. Thus ID3 will place
them into the right position.

3.4 Implementation

This section describes the implementation of the
algorithm outlined above.

3.4.1 Overview of the Implementation

Figure 3 shows the complete class diagram of the
prototype. The implementation of the pattern
generating algorithm is split among three main classes:

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

138

 the “Tree” class provides the framework for the
classification tree data structure required for
the algorithm;

 the “Node” class provides all the methods and
functions necessary to traverse the tree, get
certain nodes and update the entropy values
accordingly;

 the “TestMain” class makes the use of this data
structure, sets the entropy values of the
different Node levels and finally also deals with
the data generation;

In addition to the three main classes, there are two
helper classes, “BSGTree” and “BSGTreeBean”:

 “BSGTree” class defines and builds the tree
data structure utilising the “Tree” and “Node”
classes;

 the “BSGTreeBean” class is a simple Java
Bean with private members and Getters and
Setters for them. It is used by the “TestMain”
class in order to generate the data.

Figure 3: Class diagram.

3.4.2 The Implementation

The prototype only includes the implementation of
the pattern generating algorithm, which can be
described as the following steps:
 first of all, conclusion lists containing the

values of the class attribute are generated with
different entropy values;

 then, each of these lists is used to set the
conclusion lists of the nodes in one level.
Hence, these lists define the starting entropy for

level 0 and the “step width” as described in the
“description of the algorithm” section;

 the next step is the generation of the predefined
tree data structure followed by getting node
lists for the different types and levels. With
these node lists, each level can be populated
with conclusion lists with increasing entropy
values;

 further, after the above are all done, each row
of data has to be generated. As stated before,
each entry in the conclusion lists of the leaf
nodes represents a complete data set to be
generated. Consequently in order to generate
the data rows, all of the leaf nodes can be
retrieved by the tree and then their conclusion
lists can be looped through; the parent nodes of
the leaf nodes recursively contain the values of
other attributes. Of course, some attributes
might be missing in the chain from a leaf node
to the root node. These missing values are
replaced by a placeholder value and handled
later. All of these row data is collected in a list
of beans of the corresponding tree.

 finally, the placeholder values have to be
replaced with real attribute values. It is of high
importance that the entropy values for the
different attributes are not altered in this step.
This could happen easily if the placeholder
vales are not replaced carefully.

The generated data then can be exported after
optionally shuffling the resulting rows.

4 TESTING AND EVALUATION

4.1 Testing

The proposed pattern generator was tested by
arbitrarily generating three datasets with three
different types of classification trees constructed in,
and then finding the patterns in each of the dataset by
the J48 classification algorithm of WEKA.

Testing results are shown in figures 4, 5 and 6.

Figure 4: Left: Test tree 1. Right: Tree found by WEKA
J48.

Towards a Synthetic Data Generator for Matching Decision Trees

139

Figure 5: Left: Test tree 2. Right: Tree found by WEKA
J48.

Figure 6: Left: Test tree 3. Right: Tree found by WEKA
J48.

Figure 4 shows a simple tree with only 6 notes
constructed in a generated dataset at the left hand side
and the tree found by the J48 algorithm in Weka at
the right hand side. Figure 5 and 6 shows the similar
practice with a little bit more complicated tree
structures in generated datasets. In all of the testing
cases, the designed tree structures were found
successfully in the generated datasets, respectively.

4.2 Evaluation

The test cases show that it is definitely possible to
generate data that matches a data mining pattern. In
some cases, the entropy step width had to be altered
or additional “hidden nodes” had to be introduced to
the tree in order to make some splits. But this is most
likely due to the fact that the pattern generator
algorithm’s implementation is not technically mature
yet and can be improved in further versions.
Furthermore, a module should be developed that
reads trees as XML files (or similar) and generates the
tree structure necessary to generate the data
automatically. This would greatly increase the
versatility of the synthetic data generator.

In summary, the testing results prove that the
proposed synthetic data generator is able to generate
datasets with intrinsic patterns, such as decision trees.
Additionally, the performance of the data generator
was surprisingly good. It was possible to create
almost a million rows in a few seconds with a laptop
with basic specifications.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, a novel approach for developing a
synthetic data generator for matching decision trees
has been proposed. A prototype of such a generator
has been implemented. The results of the test run
prove that a large dataset with patterns like decision
trees can be generated automatically within seconds.

While the prototype meets all requirements set out
within the aims of the project, the work introduces a
number of further investigations, including: a) to add
more classification algorithms into the generator; b)
to add more algorithms into the generator, which
allow patterns of association rules, clustering and
repression to be created; c) to develop a
comprehensive, user-friendly interface, which allows
users to select algorithms from different categories,
define the number of attributes, and other parameters.
The successful outcome of such future work would
result in a comprehensive synthetic data generator,
which is able to generate big datasets with patterns for
data mining research and training.

REFERENCES

Berthold, M., Borgelt, C., Höppner, F., & Klawonn, F.
2010. Guide to intelligent data analysis: How to
intelligently make sense of real data. Springer-Verlag
London.

Coyle, E., Roberts, R., Collins, E., and Barbu, A. 2014.
Synthetic Data Generation for Classification via Uni-
Modal Cluster Interpolation. Auto Robot 37:27 - 45.

Eno, J. and Thompson, C., 2008. Generating Synthetic Data
to Match Data Mining Patterns. IEEE Intenet
Computing, Vol. 12, No. 3 pp. 78 – 82.

Frasch, J. V., Lodwich, A., Shafait, F. and M. Breuel, T. M.,
2011. A Bayes-true data generator for evaluation of
supervised and unsupervised learning Methods. Pattern
Recognition Letters 32.11, pp. 1523–1531.

Galler, S. J. and Aichernig, B. K. 2014. An Evalaution of
White- and Grey-box Testing Tools for C#, C++, Eiffel,
and Java, Int J Softw Tools Technol Transfer 16: pp. 727
-751.

Houkjær, K., Torp, K., and Wind, R. 2006. Simple and
Realistic Data Generation. Proceedings of the 32nd
international conference on very large data bases
(VLDB ’06), pp. 1243-1246

Jeske, D. R., Samadi, B., Lin, P. J., Ye, L., Cox, S., Xiao,
R., Younglove, T., Ly, M., Holt, D., and Rich, R., 2005.
Generation of Synthetic Data Sets for Evaluating the
Accuracy of Knowledge Discovery Systems. In
Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

140

Data Mining. ACM, New York, NY, USA. pp. 756 –
762.

Lin, P., Samadi, B., Cipolone, A., Jeske, D., Cox, S.,
Rendon, C., Holt, D. and Xiao, R., 2006. Development
of a Synthetic Data Set Generator for Building and
Testing Information Discovery Systems. In
Proceedings of the Third International Conference on
Information Technology: New Generations. IEEE, pp.
707 - 712

Pei, Y. and Zaiane, O., 2006. A Synthetic Data Generator
for Clustering and Outlier Analysis. Technical Report,
University of Alberta, Canada.

Quinlan, J. R. 1979. Discovering Rules by Induction from
Large Collections of Examples. In D. Michie (Ed.),
Expert Systems in the Micro Electronic Age. Edinburgh
University Press.

Quinlan, J. R. 1986. Induction of Decision Trees, Machine
Learning 1: 81-106.

Rachkovskij, D. A. and Kussul, E. M., 1998. Datagen: A
Generator of Datasets for Evaluation of Classification
Algorithms. Pattern Recognition Letters 19 (7), 537-
544.

Sánchez-Monedero, J., Gutiérrez, P. A., Pérez-Ortiz, M.
and Hervás- Martínez, C. 2013. An n-Spheres Based
Synthetic Data Generator for Supervised Classification.
Advances in Computational Intelligence. Ed. by Rojas,
I., Joya, G. and Gabestany, J. Lecture Notes in
Computer Science 7902. Springer Berlin Heidelberg,
pp. 613–621.

van der Walt, C. and Barnard, E. 2007. Data Characteristics
That Determine Classifier Performance. SAIEE Africa
Research Journal, Vol 98(3), pp 87-93.

Towards a Synthetic Data Generator for Matching Decision Trees

141

