
What is Software Architecture to Practitioners: A Survey

Mert Ozkaya
Department of Computer Engineering, Istanbul Kemerburgaz University, Istanbul, Turkey

Keywords: Software Architectures, Survey, Architecture Description Languages, UML.

Abstract: Software architecture has been proposed in the nineties as a high-level software design method for specifying
software systems in terms of components and their relation. Since then, software architectures have become an
indispensable part of software design. However, it remains dubious to what extent practitioners use software
architectures in their software design. To better understand this, we conduct a survey study among a number
of practitioners from both industry and academia and aim at understanding their level of knowledge and
experience in software architectures. Our survey consists of a questionnaire of 20 questions, presented in
four distinct sections. We run our survey on 50 participants, 11 of whom are from academia and the rest 39 are
from industry. As a result of our analysis, we reached the following conclusion: while software architecture is
highly crucial for practitioners given the nature of their software projects, practitioners’ knowledge on software
architectures is too limited. Practitioners use Unified Modelling Language (UML), which views software
architectures as a method of communicating system structures. However, other aspects such as architectural
analysis are equally crucial in detecting design errors and verifying software designs for quality properties.

1 INTRODUCTION

Software architecture (Perry and Wolf, 1992; Garlan
and Shaw, 1994; Clements et al., 2003) is a high-level
design activity, concerned with the successful compo-
sition of components into an entire system that meets
functional and non-functional requirements. It is at
the level of architectural design where low-level de-
tails of components are suppressed, and, their high-
level complex interactions via the component inter-
faces (i.e., the protocols of interactions) can be fo-
cused on and reasoned about. So, design problems,
e.g., the use of interface services in the wrong or-
der, can be identified early on at the stage of high-
level design. Indeed, problems due to incompatible
interfaces of inter-connected components are crucial,
which prevent the components from being composed
to a whole system and analysed for non-functional
properties, e.g., reliability and security.

Unified Modelling Language (UML) (Rumbaugh
et al., 1999) is the de facto language for visually spec-
ifying and designing software systems. UML sup-
ports both high-level and low-level designs, which
is widely used in specifying high-level software ar-
chitectures too. It offers a variety of diagrams, such
as class and component diagrams. Using these dia-
grams, systems can be specified as a composition of
components that are connected with each other via as-

sociation links (Ivers et al., 2004). However, UML
does not provide direct support for the first-class spec-
ification of interaction protocols for the linked com-
ponents, which are crucial for reasoning about their
composition. Moreover, UML originally has very
weak formal semantics, which are open to different
interpretations and not easily formally analysed.

To specify software architectures precisely and
formally analyse their behaviours, designers can use
process algebraic formal methods, e.g., FSP (Magee
et al., 1997), CSP (Hoare, 1978), and π-calculus (Mil-
ner et al., 1992), or other formalisms, e.g., Z nota-
tion (Spivey, 1992), which are supported by analy-
sis tools. Using these tools, system behaviours can
be analysed exhaustively to detect safety issues, such
as deadlock, which prevent successful composition of
components. However, these formal methods have
mathematical notations that are based on mathemati-
cal proofs. So, their notations are considerably differ-
ent from the notations of widely used modelling lan-
guages (e.g., UML), and, thus, practitioners are likely
to find formal methods unfamiliar.

Another alternative method for specifying soft-
ware architectures is the architecture description lan-
guages (ADLs), which have emerged in the nineties
and become one of most active areas of software en-
gineering (Vestal, 1993; Clements, 1996; Medvidovic
and Taylor, 2000; Fuxman, 2000; Woods and Hilliard,

Ozkaya, M.
What is Software Architecture to Practitioners: A Survey.
DOI: 10.5220/0005826006770686
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 677-686
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

677



2005). There are numerous ADLs developed so far,
e.g., Darwin (Magee and Kramer, 1996), UniCon
(Shaw et al., 1995), Wright (Allen and Garlan, 1997),
Rapide (Luckham, 1996), C2 (Taylor et al., 1996),
LEDA (Canal et al., 1999), AADL (Feiler et al.,
2006), SOFA (Plasil and Visnovsky, 2002), RADL
(Reussner et al., 2003), etc. Each ADL offers its own
architectural notation, but, they share basic notions,
e.g., components, interfaces, and connectors. Unlike
UML, ADLs allow designers to specify the architec-
tures of their systems precisely. Moreover, ADLs are
offered with various features depending on their scope
of interest. Some offer automatic code generation
for facilitating the implementation of the specified
systems. Some offer notations for specifying non-
functional properties of systems (e.g., reliability and
security), which can be communicated among stake-
holders and analysed via analysis tools. Some offer
notations based on formal methods (e.g., process al-
gebras (Bergstra, 2001)) for specifying the behaviours
of architectural elements and formally verifying them
using formal analysis tools, e.g., model checkers.

1.1 Survey on Software Architectures

As introduced above, there are many techniques for
specifying software architectures, and, each tech-
nique has its own advantages and disadvantages.
UML for instance are found easy to learn and use by
practitioners thanks to its visual notation set. How-
ever, UML originally does not have formally defined
semantics, which may lead to imprecise specifications
that are interpreted differently. ADLs differ from
UML by their precise notations, which also let de-
signers perform further operations on their software
architectures such as automatic code generation, sim-
ulation, and formal analysis. However, ADLs are not
as widely-used as UML by practitioners, since ADLs
are based on formal methods to enable formal analy-
sis that make their learning curve steep too.

Given these software architecture design tech-
niques discussed above, one would hope that soft-
ware architecture must have already entered the main-
stream of practitioners and used by them as a high-
level design activity. However, it is not yet exactly
known whether practitioners are aware of these tech-
niques and use them in their software architecture
specifications. To better understand this, we conduct a
survey among a number of practitioners. Our main fo-
cus is to find answers for the following research ques-
tions:

• what do practitioners understand from software
architectures?

• what do practitioners aim at achieving by speci-
fying software architectures and are they aware of

facilities such as architectural analysis?

We run a survey among 50 participants: 39 of them
are industrial experts and 11 of them are academics.
Our survey consists of 20 different questions, divided
up into 4 different sections. Each section includes a
set of questions for a particular concern, which are
given below.
1. The types of the projects conducted by practition-

ers
2. Practitioners’ understanding of software architec-

tures
3. Practitioners’ interest towards the benefits of

specifying software architectures
4. Software architecture specification techniques

used by practitioners

The first survey section above aids in exploring
whether practitioners develop such software systems
in which specifying the software architectures brings
potential benefits to the development. The second
section explores what software architecture means to
practitioners. By this, we particularly aim at under-
standing practitioners’ level of knowledge on soft-
ware architectures. The third section explores prac-
titioners’ level of interest towards software architec-
tures. More specifically, we attempt at understanding
here whether practitioners utilize from their software
architecture specifications, e.g., analysing them for
quality properties (e.g., reliability and performance)
and generating implementation code from them. The
last section explores the particular techniques that
practitioners prefer to use for specifying software ar-
chitectures.

2 RESEARCH METHODOLOGY

We run the survey in three subsequent stages. First,
we planned our survey, deciding on the types of par-
ticipants and the methods for participation. Second,
we designed our survey, deciding on the questions to
be asked to the participants. Lastly, we worked out
the analysis methods to be applied in analysing the
gathered survey data.

2.1 Planning our Survey

Our first step was to identify the group of practition-
ers whom we will contact for requesting to fill in our
survey. We focussed on two groups: industrial ex-
perts and academics who conduct research and devel-
opment in software engineering.In the rest of this sec-
tion, we introduce our survey plan, depicted in Figure
1.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

678



Figure 1: Survey Plan.

Figure 2: Participant roles in industry.
SA:Software Architect SysA: System Arc. SE: Soft Eng Man/lead:
Manager leader Des: Designer Dev: Developer Ac/Ins: Academics
and instructors in universities An: Analyst Other/Ce: Computer
engineer

Industrial Experts. We contacted a number of
experts in software industry via the following meth-
ods and requested them to fill in our survey. The
role of the industrial experts who have participated
our survey are depicted in in Figure 2.

We initially used social media (e.g., linkedin)
so as to reach groups of relevant people. We deter-
mined 40 different contacts and got in touch with
them via linkedin’s e-mail service or by company
phone numbers (if available). We also went through
the web-sites of the technology parks that operate
in Turkey and identified the e-mail addresses or
telephone contacts of the software development com-
panies based in the technology parks. By doing so,
we got in touch with 34 different companies. Lastly,
we searched in google for the software development
companies that we have not encountered during our
linkedin and technology park searches. By doing so,
we determined 50 different experts and contacted
them either by e-mail or phone-call.

Figure 3: Survey Questions.

Academics. Besides industrial experts, we also
targeted at the academics who work for the computer
engineering (or computer science) department of uni-
versities. We identified the academics and their con-
tact details by browsing the university web-pages.

We browsed through 40 different universities in
Turkey and determined the e-mail addresses of the
academics from their personal web-pages. In total, we
sent e-mails to 100 different academics for requesting
their participation.

In conclusion, we sent 224 e-mails to industrial
experts and academics in total and got in touch with
many others indirectly via group announcements.
Currently, we have got 48 replies: 10 of them told
that they cannot fill in our survey due to their com-
pany policy. The rest 38 accepted to fill in our sur-
vey. Moreover, we also used our personal contacts
and contacted 20 people consisting of industrial ex-
perts and academics. We have got 12 replies, who
accepted to fill in our survey.

2.2 Designing our Survey Questions

In this survey project, we aim at exploring to what
extent practitioners know about software architecture
and apply it in their software design. Therefore, we
structured and designed our survey questions in a way
that aids in understanding practitioners’ knowledge
and experience about software architectures. As de-
picted in figure 3, we proposed five different sections
in our survey, each consisting of a number of ques-
tions. Below, we discuss these survey sections and
the questions in each section.

2.2.1 Personal Information

This section is for gaining some personal information
about the participants so as to argue their answers
to the survey questions in a more sensible way. We
ask three questions in this section and try to learn (i)
whether the participant is an industrial expert or an
academic, (ii) the participant’s job position, and (iii)

What is Software Architecture to Practitioners: A Survey

679



the company or institution for which the participant
works.

2.2.2 The Kinds of Software Systems that are
Developed by Practitioners

In this section, we aim at understanding whether prac-
titioners are involved in the development of software
systems in which software architectural design could
facilitate the development. Initially, we try to learn
whether the participant has ever built a critical soft-
ware system whose failure may lead to catastrophic
results. As mentioned in Section 1, through ADLs, it
is possible to specify the architecture of such critical
systems and analyse their behaviours for quality is-
sues. Second, we ask to learn whether the participant
works in projects with multiple development teams
that can work concurrently. If so, specifying soft-
ware architectures will let teams work concurrently
on separate independent system components. Third,
we ask to learn whether the participant builds long-
lived projects that require constant maintenance ef-
fort. Specifying the architecture of systems in terms
of independent components will be very useful as one
can more easily understand the system functionali-
ties and modify them when needed. Lastly, we ask
whether the participants build families of systems,
such as client-server systems, which can be designed
effectively by using architectural styles.

2.2.3 Practitioners’ Understanding of Software
Architectures

In this section, we seek to understand how well partic-
ipants know about software architectures. We firstly
ask to learn what the participants think that soft-
ware architects do. The second question here is for
learning the participants’ thoughts on possible rea-
sons for specifying software architectures. In the last
three questions, we learn the participants’ research or
teaching background on software architectures.

2.2.4 The Level of Interest Shown by
Practitioners towards Software
Architectures

Besides understanding the participants’ level of
knowledge on software architectures, we also wish to
understand the participants’ level of interest on soft-
ware architectures. Firstly, we ask to learn if the par-
ticipants always consider the architecture specifica-
tion of his/her software system while designing their
system. Secondly, we ask for the ADLs that the par-
ticipant is aware of (if any). Next, we ask when the
participants prefer to check the correctness of their

software and whether they know that architectural de-
sign of software systems can be verified for correct-
ness using architecture description languages. Lastly,
we ask the participants which method they follow in
implementing their software system and whether they
know that architectural designs can be translated into
implementation code by using architecture descrip-
tion languages.

2.2.5 The Specification Methods that are used
by Practitioners

In this last section, we ask three different questions
to learn the tools/languages that the participants use
for specifying software architectures. Firstly, we ask
the participants which tool/language they use (if any).
Next, we ask them to state their observations on the
advantages and disadvantages of the tool/language (if
any).

2.3 Analysing Survey Responses

In this part, we describe how we aim at analysing the
data collected through the survey.

Survey Data Collection and Organisation. We
conduct our survey online via Google Forms. Google
Forms produces an Excel file, which is updated au-
tomatically upon each participant filling the survey.
The excel file includes a unique column for each sur-
vey question; and, a new row is added automatically
when a participant answered the survey questions.

Data Analysis. We aim at analysing the collected
(and organized) data in three ways.

Calculating the Response Rate: Firstly, we calcu-
late the response rate, which is the percentage of the
received response after contacting a particular num-
ber of participants. By doing so, we aim at determin-
ing the level of interest shown towards our survey and
taking some actions for improving the response rate,
especially if it is considerably low.

Calculating the Response Frequencies: For each
different section in the survey, we go through its ques-
tions one by one. We aim at analysing the responses
given to each question by calculating the percentage
of each answer. We create a table per question, which
consists of two rows and a single column. While in
the first row we give the question itself, in the second
row we provide the respective analysis data for that
question obtained from the survey (i.e., the percent-
age of each possible answer for the question given by
the participants).

Computing the Cross-tabulations: Besides
analysing the questions individually, we are also
interested in revealing the relationships between

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

680



different questions (if any). Indeed, for some ques-
tions, the answers given to them may be understood
better and lead to more interesting conclusions if we
consider those answers together with the answer(s)
given by the same participants to another question(s).
For instance, while we wish to know the percentage
of the participants who use UML, we are more
interested in the participants who use UML and at the
same time look for easy to learn and use languages.

Coding: In our survey, some questions allow par-
ticipants to type their own responses as an alternative
to choosing from a pre-defined list of responses. For
instance, when asking what software architects would
do in a software company, we also offer participants
the choice of writing their own view. However, par-
ticipants may choose to write their own view although
their view is very similar (if not the same) to one
of the pre-defined choices. Therefore, we apply the
coding technique here, and, go through the responses
typed by the participants and re-format (and some-
times re-write) their answers so as to match them with
the closest pre-defined choices.

3 MAIN FINDINGS AND
RESULTS

3.1 Practitioners Can Facilitate the
Development of their Systems
through Software Architectures

In Section 2.2.2, we introduced a set of questions for
understanding what kind of software systems that the
participants develop.

Table 1 in the Appendix page 9 gives the response
frequencies for each of the questions. According to
our survey results, 80% of the participants have re-
sponded "Yes" to at least one of the questions. That
is, every 8 participants out of 10 develop either (i)
critical systems, (ii) large systems with more than one
development teams, (iii) long-lived systems, or (iv)
families of systems/products. As already discussed in
Section 2.2.2, specifying the software architectures of
such systems could facilitate their development and
aid in detecting any design errors before they propa-
gate them in the implementation.

3.2 The Analysis of Software
Architectures is a New Concept to
Participants

In Section 2.2.3, we introduced the part of the survey
that includes a set of questions for determining how
well the participants know software architectures.

Table 2 in the Appendix page 9 gives the re-
sponse frequencies for each of the questions. Appar-
ently, 77% of the participants have already got in-
troduced with software architectures, who have ei-
ther taken/given courses on software architectures,
attended seminars/conferences, or done relevant re-
searches. However, many participants are still unfa-
miliar with the role of software architects, believing
that software architects just design the structure of
the system. They miss the point that one of the ma-
jor tasks that can do with software architectures is the
analysis of software architectures for quality issues,
e.g., reliability and performance. 87% of the par-
ticipants who have taken/given courses on software
architectures failed to choose the most complete an-
swer for Q1, i.e., "A software architect decomposes
a system into components, and then analyse these
components along with their interaction for quality
properties". This reveals that practitioners view soft-
ware architectures as a high-level design method for
specifying software systems in terms of components
and their relation. Their main intention in specifying
software architectures is to facilitate the understand-
ing and communication of large and complex soft-
ware systems by dividing them into smaller parts (i.e.,
components). The ability of analysing software ar-
chitectures for detecting design errors and quality is-
sues (e.g., performance and security) is ignored. Even
60% of the participants with the academic role are not
aware of analysing software architectures - they did
not provide the correct answer for Q1. So, this leads
to their students (or potential practitioners) who have
a narrow scope on software architectures.

3.3 Architecture Description Languages
(ADLs) are Shown Lack of Interest
by the Participants

In Section 2.2.4, we introduced the part of the survey
that includes a set of questions for understanding the
level of interest shown by the participants towards ar-
chitecture description languages.

Table 3 in the Appendix page 9 gives the response
frequencies for each of these questions. 68% of the
participants who consider software architectures in
their software design are not aware of any ADLs. This

What is Software Architecture to Practitioners: A Survey

681



means that most practitioners specify their software
architectures either using UML or box-line diagram
drawing tools. However, neither UML nor box-line
drawings helps in analysing software architectures for
design errors and quality properties1. Considering
that 85% of those participants are interested in check-
ing software correctness at design time, this is quite
concerning. Even among the participants both consid-
ering software architectures and aware of architecture
description languages, some still do not know of the
analysis capabilities of architecture description lan-
guages (33%). This is probably because they heard
about ADLs but have not used them for analysis pur-
poses.

According to the survey results, practitioners are
also interested in implementing their software sys-
tems in accordance with their software design (57%).
This is indeed facilitated through ADLs, which of-
fer automatic code generation from software architec-
tures. However, 60% of the participants who prefer to
implement their software design are unaware of the
code generation facilities of ADLs.

3.4 UML is Popular with its Low
Learning Curve and Visual
Notations, while Still Suffering from
the Lack of Support for
Architectural Analysis

In Section 2.2.5, we introduced the part of the sur-
vey that includes a set of questions for understanding
the techniques used by the participants for specifying
ADLs.

Table 4 in the Appendix page 9 gives the response
frequencies for each of the questions. According to
the survey results, 89% of the participants use UML
for specifying software architectures. 63% of the par-
ticipants who use UML look for software design tech-
niques that are easy to learn and use. Likewise, 75%
of the participants who use UML look for visual nota-
tions. This shows that UML is found popular thanks
to its low learning curve and comprehensive set of
visual notations. Moreover, 41% of the participants
who use UML wish that architectural analysis was
supported, which UML lacks in unfortunately.

1Although there are some attempts towards extending
UML through UML profiles so as to support architectural
concepts (e.g., connectors) and analysis, UML does not
originally provide direct support for connectors and anal-
ysis of software architectures.

4 DISCUSSION

In this survey, we asked 20 different questions to 50
participants with the goal of finding answers for the
following two research questions: (i) what do prac-
titioners understand from software architectures? (ii)
what do practitioners aim at achieving by specifying
software architectures and are they aware of facilities
such as architectural analysis? Having discussed the
answers given to the survey questions in Section 3, we
observed that architectural design can be very helpful
for practitioners in their software development. How-
ever, practitioners suffer from the lack of knowledge
on software architectures and are not aware of poten-
tial benefits of specifying software architectures such
as analysis of software architectures for quality prop-
erties. We attribute this to that practitioners mostly
use Unified Modeling Language (UML) that is not
powerful enough for understanding what one can do
with software architectures.

4.1 Lack of Knowledge on Software
Architectures

Software architecture is highly important for practi-
tioners due to the nature of the software systems that
practitioners develop. Despite that, very few prac-
titioners know exactly what software architecture is.
In their understanding, software architecture is just
a design method for specifying the structure of soft-
ware systems. However, very few are aware that soft-
ware architecture is also a method for analysing the
high level design of software systems for quality is-
sues, e.g., safety, performance, and reliability. Indeed,
specifying software architectures requires a consider-
able amount of effort; so, one should not use them
just for communication but also for determining de-
sign defects.

Many practitioners have not ever used ADLs,
sticking on UML. It is indeed the ADLs through
which practitioners can perform further operations on
their software architectures. There are various ADLs
offered for different domains such as embedded sys-
tems, distributed systems, and multi-agent systems.
Each ADL may also have different features, such
as automatic implementation code generation, anal-
ysis for quality properties, simulation of system be-
haviours, etc. For instance, Wright (Allen and Gar-
lan, 1997) is one of the most inspiring ADLs, which
allows designers to specify software architectures in
terms of components and connectors and then for-
mally analyse their behaviours. There are also ADLs
such as SOFA (Plasil and Visnovsky, 2002) that also
focus on generating implementation code.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

682



4.2 UML as the Most Popular Modeling
Language

As already mentioned, UML is the top choice of
most practitioners for specifying software architec-
tures. Apparently, this is due to UML found easy to
learn and use. Indeed, UML has been taught in many
universities for teaching software design and architec-
ture. Moreover, unlike ADLs, UML offers a compre-
hensive set of visual diagram types, making the de-
sign task simpler and more understandable.

While UML reduces the learning curve, its focus
is limited with architectural specification. Issues such
as analysing software architecture specifications for
design errors or quality properties (e.g., performance
and reliability) are ignored in UML. According to the
survey results, many practitioners consider the anal-
ysis of software architectures as a crucial aspect of
software design. Indeed, they agree that a modelling
language that also enables analysis would be much
more preferable. While practitioners can analyse their
architectures using ADLs, ADLs are not found as fa-
miliar as UML due to their complex algebraic nota-
tions.

4.3 The Need for a Language that has
Low Learning Curve and Supports
Analysis

So, given the discussion above, if there was an archi-
tecture modeling language that supports (i) low learn-
ing curve, (ii) visual notation set, and (iii) architec-
tural analysis, practitioners would be very likely to
use that language. To this end, we currently work on
a new architecture description language called XCD
(Ozkaya and Kloukinas, 2014) that supports the above
mentioned features in one place. Unlike the standard
UML notation, XCD considers components and con-
nectors (i.e., interaction protocols) as first-class ar-
chitectural elements. To reduce the learning curve,
unlike algebraic ADLs that are based on complex
process algebras, XCD is based on the well-known
Design-by-Contract approach (Meyer, 1992) and en-
ables the precise and contractual specification of com-
ponents and interaction protocols. XCD supports the
analysis of software architectures in terms of its pre-
cise translation into the SPIN’s ProMeLa formal ver-
ification language (Holzmann, 2004), which is auto-
mated via a tool that we developed2. So, unlike UML,
in XCD designers can translate their contractual XCD

architectures into ProMeLa models automatically and

2XCD’s website: https://sites.google.com/site/ozkayam
ert1/home/xcd

use the SPIN model checker to analyse their archi-
tectures for a number of properties, including dead-
lock, race-condition, wrong use of component ser-
vices, and completeness. Now, we have been improv-
ing XCD with a visual notation set and a drawing edi-
tor, through which practitioners will be able to specify
their XCD architectures visually and analyse them.

5 RELATED WORK

There have been many surveys conducted on soft-
ware architectures, e.g., (Woods and Hilliard, 2005;
Medvidovic and Taylor, 2000; Vestal, 1993; Fuxman,
2000). They shed light into what ADLs are basically
for and what practitioners can do with the ADLs that
may differ depending on the scope and the domain
of each ADL. These surveys are extremely helpful in
getting introduced with ADLs and their useful fea-
tures such as formal analysis for quality properties
and automatic code generation. However, it is not
possible to understand from these surveys whether
the current set of ADLs are successful in meeting the
needs of practitioners. Indeed, what practitioners care
most about may not be any of the features discussed in
these surveys. Moreover, ADLs are just one of aspect
of software architectures. There are other architec-
ture modelling approaches, such as UML, which are
outside the scope of these surveys. So, we are more
interested in understanding whether practitioners are
satisfied with the existing architecture modeling ap-
proaches and what features they look for in an archi-
tecture modeling approach.

Recently, another survey has been conducted by
Malavolta et al. (Malavolta et al., 2012). Unlike the
aforementioned surveys, Malavolta et al.’s survey fo-
cuses on determining what practitioners expect from
ADLs. Malavolta et al.’s survey sheds light into very
interesting results. For instance, they determined that
practitioners are not so interested in using ADLs, in-
stead using UML. This is due to the steep learning
curve required by the ADLs. Moreover, Malavolta et
al. also determines that formal analysis is one of the
main reasons of practitioners in specifying software
architectures. However, Malavolta et al.’s survey does
not help in understanding practitioners’ view of soft-
ware architectures, and their level of knowledge and
experience. Therefore, while one can understand why
practitioners stay away from ADLs, it may not be so
easy to understand what software architecture actu-
ally is to the practitioners.

What is Software Architecture to Practitioners: A Survey

683



6 ASSUMPTIONS AND VALIDITY

6.1 Sampling

In this survey study, we chose participants from both
industry and academia so as to reduce any biases to-
wards our work. Indeed, software architecture is not
only used by industrial experts but also academics
who can teach software architecture or do research
on it. We used convenience sampling in choosing the
participants for our survey. We determined the indus-
trial experts from a number of IT companies devel-
oping software systems in various fields such as avi-
ation, finance, telecommunication, and automation,
etc. Our choice of the IT companies were random
without paying any special attention to their profile
or the industry field in which they do their business.
Moreover, we determined the universities and the aca-
demics that we have contracted randomly too. The
only constraint on our choice of academics is for fo-
cussing on those who have teaching/research back-
ground on software engineering.

6.2 Survey Technique

We conducted our survey as a questionnaire, thus ex-
pecting participants to choose one (or multiple ones)
of the pre-defined answers for a set of questions. To
get practitioners’ views in the most complete way
possible, we have also considered having interviews
with the participants on the survey questions. Unfor-
tunately, most practitioners were not willing to sep-
arate their times for that. Therefore, we instead de-
cided to include the "other" option in some questions
in which we believe participants may like to give their
own particular answers. Then, we applied the coding
technique to predict the most closest predefined an-
swers to the participants’ own answers.

6.3 Threats To External Validity

Having analysed our survey results, we reached four
different findings, discussed in Section 3. These are
(i) practitioners can facilitate the development of their
systems through software architectures, (ii) the anal-
ysis of software architectures is a new concept to
participants, (iii) architecture description languages
(ADLs) are shown lack of interest by the participants,
and (iv) UML is popular with its low learning curve
and visual notations, while still suffering from the
lack of support for architectural analysis. However,
the above findings are based on our survey among 50
participants who have been chosen from the compa-
nies located in Turkey. Therefore, the findings herein

may not necessarily be generalized to the entire com-
munity of software engineering.

7 CONCLUSION

Software architecture has been one of the most crucial
topics in software engineering since the nineties. Var-
ious techniques have been developed to support the
specification of software architectures, such as Uni-
fied Modelling Language (UML) and architecture de-
scription languages (ADLs). However, it always re-
mains ambiguous what practitioners know about soft-
ware architecture and how they use it in their soft-
ware design. To understand this, we conducted a sur-
vey among 50 different practitioners, including both
industrial experts and academics. We asked 20 ques-
tions and analysed their answers by evaluating each
question individually and also the relations between
the questions. According to our analysis results, soft-
ware architecture has high potential in facilitating the
software development of practitioners. However, de-
spite that, practitioners are not familiar with soft-
ware architectures. They use software architectures
for specifying the structure of systems, but ignoring
other aspects such as the analysis of software archi-
tectures for design errors and quality properties. This
is because practitioners restrict their scope with UML,
which enables the visual – i.e.,friendly – specification
of software architectures but does not provide direct
support for their analysis.

REFERENCES

Allen, R. and Garlan, D. (1997). A formal basis for architec-
tural connection. ACM Trans. Softw. Eng. Methodol.,
6(3):213–249.

Bergstra, J. A. (2001). Handbook of Process Algebra. El-
sevier Science Inc., New York, NY, USA.

Canal, C., Pimentel, E., and Troya, J. M. (1999). Specifica-
tion and refinement of dynamic software architectures.
In Donohoe, P., editor, WICSA, volume 140 of IFIP
Conference Proceedings, pages 107–126. Kluwer.

Clements, P. C. (1996). A survey of architecture descrip-
tion languages. In Proceedings of the 8th Interna-
tional Workshop on Software Specification and De-
sign, IWSSD ’96, pages 16–, Washington, DC, USA.
IEEE Computer Society.

Clements, P. C., Garlan, D., Little, R., Nord, R. L., and
Stafford, J. A. (2003). Documenting software archi-
tectures: Views and beyond. In Clarke, L. A., Dillon,
L., and Tichy, W. F., editors, ICSE, pages 740–741.
IEEE Computer Society.

Feiler, P. H., Gluch, D. P., and Hudak, J. J. (2006). The Ar-
chitecture Analysis & Design Language (AADL): An

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

684



Introduction. Technical report, Software Engineering
Institute.

Fuxman, A. D. (2000). A survey of architecture description
languages. Technical Report CSRG-407, Department
of Computer Science,University of Toronto, Toronto,
Ontario, Canada M5S 3G4.

Garlan, D. and Shaw, M. (1994). An introduction to soft-
ware architecture. Technical report, Pittsburgh, PA,
USA.

Hoare, C. A. R. (1978). Communicating sequential pro-
cesses. Commun. ACM, 21(8):666–677.

Holzmann, G. J. (2004). The SPIN Model Checker - primer
and reference manual. Addison-Wesley.

Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B.,
and Silva, J. R. O. (2004). Documenting component
and connector views with UML 2.0. Technical Report
CMU/SEI-2004-TR-008, Software Engineering Insti-
tute (Carnegie Mellon University).

Luckham, D. C. (1996). Rapide: A language and toolset
for simulation of distributed systems by partial order-
ings of events. Technical report, Stanford University,
Stanford, CA, USA.

Magee, J. and Kramer, J. (1996). Dynamic structure in soft-
ware architectures. In SIGSOFT FSE, pages 3–14.

Magee, J., Kramer, J., and Giannakopoulou, D. (1997).
Analysing the behaviour of distributed software archi-
tectures: a case study. In FTDCS, pages 240–247.
IEEE Computer Society.

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and
Tang, A. (2012). What industry needs from architec-
tural languages: A survey. IEEE Transactions on Soft-
ware Engineering, 99.

Medvidovic, N. and Taylor, R. N. (2000). A classification
and comparison framework for software architecture
description languages. IEEE Trans. Software Eng.,
26(1):70–93.

Meyer, B. (1992). Applying “Design by Contract”. IEEE
Computer, 25(10):40–51.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of
mobile processes, i. Inf. Comput., 100(1):1–40.

Ozkaya, M. and Kloukinas, C. (2014). Design-by-
contract for reusable components and realizable ar-
chitectures. In Seinturier, L., de Almeida, E. S.,
and Carlson, J., editors, CBSE’14, Proceedings of
the 17th International ACM SIGSOFT Symposium
on Component-Based Software Engineering (part of
CompArch 2014), Marcq-en-Baroeul, Lille, France,
June 30 - July 4, 2014, pages 129–138. ACM.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the
study of software architecture. SIGSOFT Softw. Eng.
Notes, 17(4):40–52.

Plasil, F. and Visnovsky, S. (2002). Behavior protocols
for software components. IEEE Trans. Software Eng.,
28(11):1056–1076.

Reussner, R., Poernomo, I., and Schmidt, H. (2003). Rea-
soning about Software Architectures with Contrac-
tually Specified Components. In Cechich, A., Piat-
tini, M., and Vallecillo, A., editors, Component-Based
Software Quality, volume 2693 of Lecture Notes in

Computer Science, page 287âĂŞ325. Springer Berlin
Heidelberg.

Rumbaugh, J. E., Jacobson, I., and Booch, G. (1999).
The unified modeling language reference manual.
Addison-Wesley-Longman.

Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young,
D. M., and Zelesnik, G. (1995). Abstractions for soft-
ware architecture and tools to support them. IEEE
Trans. Software Eng., 21(4):314–335.

Spivey, J. M. (1992). Z Notation - a reference manual (2.
ed.). Prentice Hall International Series in Computer
Science. Prentice Hall.

Taylor, R. N., Medvidovic, N., Anderson, K. M., Jr., E.
J. W., Robbins, J. E., Nies, K. A., Oreizy, P., and
Dubrow, D. L. (1996). A component- and message-
based architectural style for gui software. IEEE Trans.
Software Eng., 22(6):390–406.

Vestal, S. (1993). A cursory overview and comparison of
four architecture description languages. Technical re-
port, Honeywell Technology Center.

Woods, E. and Hilliard, R. (2005). Architecture description
languages in practice session report. In Proceedings of
the 5th Working IEEE/IFIP Conference on Software
Architecture, WICSA ’05, pages 243–246, Washing-
ton, DC, USA. IEEE Computer Society.

APPENDIX

In the Appendix, you will find a table for each sur-
vey section, in which the percentages of the responses
are shown for the questions of that section. Note
that we have not included the questions of the first
section (i.e., Personal Information introduced in Sec-
tion 2.2.1) as the responses for those questions are not
discussed in Section 3 for finding an answer to the re-
search questions. Note also that for some questions,
the percentages are not integer values (e.g., 42.8). In
such cases, the nearest integer values are given (e.g.,
43 for 42.8).

What is Software Architecture to Practitioners: A Survey

685



MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

686


