
From Architecture Modeling to Application Provisioning
for the Cloud by Combining UML and TOSCA

Alexander Bergmayr1, Uwe Breitenbücher2, Oliver Kopp2,
Manuel Wimmer1, Gerti Kappel1 and Frank Leymann2

1Business Informatics Group, TU Wien, Wien, Austria
2IAAS/IPVS, University of Stuttgart, Stuttgart, Germany

Keywords: TOSCA, UML, Model-Driven Software Engineering, Cloud Computing, Cloud Modeling.

Abstract: Recent efforts to standardize a deployment modeling language for cloud applications resulted in TOSCA. At
the same time, the software modeling standard UML supports architecture modeling from different viewpoints.
Combining these standards from cloud computing and software engineering would allow engineers to refine
UML architectural models into TOSCA deployment models that enable automatic provisioning of cloud
applications. However, this refinement task is currently carried out manually by recreating TOSCA models from
UML models because a conceptual mapping between the two languages as basis for an automated translation is
missing. In this paper, we exploit cloud modeling extensions to UML called CAML as the basis for our approach
CAML2TOSCA, which aims at bridging UML and TOSCA. The validation of our approach shows that UML
models can directly be injected into a TOSCA-based provisioning process. As current UML modeling tools
lack cloud-based refinement support for deployment models, the added value of CAML2TOSCA is emphasized
because it provides the glue between architecture modeling and application provisioning.

1 INTRODUCTION

With the emergence of cloud computing, the effort
required for application provisioning has considerably
been reduced. Cloud services can be acquired on de-
mand (Leymann, 2011) via the Web without the need
to negotiate with the cloud provider (Armbrust et al.,
2010). The low upfront costs compared to a traditional
on-premise environment and the operational costs that
scale with the consumed cloud services are key incen-
tives for companies and engineers to deploy their ap-
plications on cloud environments. Several approaches
for application modeling and provisioning to the cloud
have been proposed (Bergmayr et al., 2014a). Stan-
dardizing the representation of cloud-based deploy-
ment models is addressed by TOSCA (OASIS, 2013b).
A deployment model may capture deployment artifacts
and targets as a topology and specify a plan how those
artifacts must be deployed on the targets by a provision-
ing engine. At the same time, the software modeling
standard UML supports architecture modeling from
different viewpoints, including the class, component,
and deployment viewpoint. Hence, it appears bene-
ficial to combine standard modeling languages from
software engineering and cloud computing (Jamshidi

et al., 2013). This would allow engineers to refine
UML architectural models into TOSCA deployment
models that enable automatic provisioning of cloud
applications by means of TOSCA-compliant contain-
ers. From an UML perspective this is beneficial as it
allows the application provisioning for UML deploy-
ment models. On the other hand, TOSCA deployment
models can be considered in the light of UML, thereby
gaining insights into the components manifested by
deployed artifacts and how they are realized from a
fine-grained structural or even behavioral viewpoint.
The deployment viewpoint is provided by both lan-
guages, which favors its use in a mapping process.

However, an effective conceptual mapping be-
tween UML and TOSCA as the basis for an automated
translation between the two languages is still miss-
ing. As a result, the translation is currently carried
out in a tedious manual step, which is only achiev-
able if engineers are familiar with the peculiarities
of both languages and capable to identify the corre-
spondences between them at both levels intensional
and extensional (Kühne, 2006). While at the inten-
sional level common aspects of cloud environments
are captured in terms of types, they are instantiated at
the extensional level by assigning concrete values to

Bergmayr, A., Breitenbücher, U., Kopp, O., Wimmer, M., Kappel, G. and Leymann, F.
From Architecture Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 97-108
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

97

their features. Moreover, due to the generic nature of
UML’s deployment language, it does not natively sup-
port cloud-based deployment models, which hampers
the translation between the two languages.

In this paper, we propose a fully automatic trans-
formation approach CAML2TOSCA which addresses
both the intensional and extensional level of deploy-
ment models. From a UML perspective, we exploit
cloud-specific extensions as a bridge between the two
languages. In previous work, we presented the Cloud
Application Modeling Language (CAML) (Bergmayr
et al., 2014c) as a lightweight extension to UML’s
deployment language. It provides intensional abstrac-
tions over cloud environments. This enables engineers
to create cloud-based deployment models directly in
UML and refine them towards a target cloud environ-
ment. The refinement task is required as a basis for
ultimately carrying out the application provisioning,
which is supported by TOSCA containers, such as
OpenTOSCA (Binz et al., 2013). Hence, CAML can
serve as the bridge between UML and TOSCA, where
CAML2TOSCA provides the glue between architecture
modeling and application provisioning.

The remainder of this paper is structured as follows.
We discuss the background of our work by introduc-
ing the metamodels of UML’s deployment language
including the CAML extensions and TOSCA in 2. In
3, we present an overview of CAML2TOSCA, intro-
duce both modeling levels intensional and extensional,
and discuss in detail the conceptual mapping between
UML and TOSCA. In 4, we validate our approach
by presenting a prototypical implementation of the
CAML2TOSCA transformer and demonstrating it in a
practical setting. The evaluation presented in 5 shows
the practical value of our approach for engineers as cur-
rent UML modeling tools are capable to adopt CAML.
Finally, in 6, we discuss related work before we con-
clude in 7.

2 BACKGROUND

To establish the basis for our work, we introduce
UML’s deployment modeling concepts and the cloud-
specific extensions to them we have developed in pre-
vious work (Bergmayr et al., 2014c). Thereafter, we
give an overview on TOSCA’s modeling concepts most
relevant for our work.

2.1 Cloud Extensions to UML

CAML aims at enabling engineers to create deploy-
ment models by common cloud modeling concepts
and to refine them towards a target cloud environment.

Those concepts are captured by CAML’s cloud library,
whereas UML profiles are employed to support the
refinement step. 1 gives an overview of UML’s meta-
model where the emphasis is placed on the deployment
viewpoint. The cloud-specific concepts provided by
CAML’s cloud library are instances of the generic de-
ployment modeling concepts standardized by UML.
They in turn are extended by environment-specific
modeling concepts that embody concrete cloud ser-
vices, e. g., an M1Medium compute service of the
Amazon AWS environment1. CAML provides UML
profiles dedicated to cloud environments. They are in-
tegrated into a common cloud profile which currently
supports stereotypes for Amazon AWS/OpenStack,
Google cloud platform2, and Microsoft Azure3.

Even though the use of profiles for concrete cloud
environments in addition to a cloud library increases
the complexity of CAML from a language engineering
perspective. However, from an engineer’s perspective,
it allows them to refine deployment models towards a
cloud environment (Ardagna et al., 2012) without di-
rect modifications to the base elements as stereotypes
are only associated to them. Moreover, this flexible
typing mechanism shows its benefit when changing the
refinement, e.g., from an M1Medium compute service
to an M1Large one. It requires only to un-apply and
re-apply the stereotypes.

Turning the focus on the cloud library, it is built
around the concept of cloud service, which is consid-
ered as a virtual resource that is expected to be pro-
vided and managed by a cloud environment. Special-
izations of the cloud service concept capture common
cloud environment capabilities such as computational
capacity and data management. The former is embod-
ied by the compute service concept. The elastic nature
of a cloud environment is managed by dedicated scal-
ability strategies. For instance, compute services can
be automatically provisioned and released within a
certain boundary specified by the CAMLMultiplicity
(see cloud profile). A storage service refers to the
data management capabilities of cloud environments.
It captures diverse solutions for structuring applica-
tion data (Fehling et al., 2014) and increasing their
availability by relaxing consistency (Vogels, 2009). To
represent relationships between cloud services, com-
munication channels are employed. They can also be
stereotyped, e. g., to express different forms of com-
munication via specific protocols.

2 shows how the cloud library and the cloud profile
dedicated to Amazon AWS can be applied by means
of a simple deployment model. It consists of an au-

1Amazon AWS: https://aws.amazon.com
2https://cloud.google.com
3https://azure.microsoft.com

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

98

CloudLibrary

CloudService
«Class»

ComputeService
«Node»

dataStructure:StructureKind
consistency:ConsistencyKind

ScalingKind
«Enumeration»

Auto
Manual

[*]

[*]

«CommunicationPath»
CommunicationChannel

channel
Source

channel
Target

StorageService
«ExecutionEnvironment»

«ModelLibrary» Cloud Library

ConsistencyKind
«Enumeration»

Strict
Eventual

StructureKind
«Enumeration»

Relational
KeyValue

scaling:ScalingKind

Node

Execution
Environment

Artifact

Deployment
Target

Deployment DeployedArtifact

Dependency

[0..*]

deployment

deployedArtifact
[0..*]

Classifier
name:String [0..1]
isAbstract:Boolean = false

Coimmunication
Path

Association

classifier

[0..*]

Slot ValueSpecification value
[0..*]

[1..*] source
[1..*] target

UML Metamodel

Deployment
Specification [0..*]

configuration

Enumeration

EnumerationLiteral

slot [0..*] ownedLiteral [0..*]

instanceOf CommonCloudProfile

AmazonProfile

M1Medium
«Stereotype»

instanceOf

«import»

Extension

Stereotype

CAMLElement
«Stereotype»

Element

RegionKind
«Enumeration»

EU
US

CAMLMultiplicity
«Stereotype»

lower:Integer [1]
upper:String [1]

«extends»

«extends»
ComputeService

«Stereotype»

region:RegionKind

M1Large
«Stereotype»

Instance
Specification

[0..*]
general

DynamoDB
«Stereotype»

StorageService
«Stereotype»

«extends»

Figure 1: UML deployment concepts and CAML extensions (excerpt).

«M1Medium»
:ComputeService

dataStructure=KeyValue
consistency=Eventual

:StorageService

scaling:Auto

region=EU
«M1Medium»

«DynamoDB»

:ComputeService

dataStructure=Relational
consistency=Strict

:StorageService

scaling:Auto

Refinement

Deployment model

Cloud
Library

Amazon
Profile

«import» «apply»

Figure 2: Example deployment model and its refinement
towards the Amazon cloud environment.

tomatically scaled compute service that is connected
to a key-value storage service for managing data in
an eventually consistent way. Both cloud services are
refined towards Amazon’s cloud environment. The
refinement is accomplished by applying stereotypes
of the respective UML profile. The modeled compute
service refers to Amazon’s “M1Medium” service of-
fering, whereas “DynamoDB” is used for the required
cloud storage capabilities.

2.2 TOSCA Metamodel

The main concepts of the TOSCA metamodel relevant

for our work are depicted in 3. We simplified some
constructs, where possible, for the sake of compre-
hension. For more details, we refer interested read-
ers to the TOSCA specification (OASIS, 2013b) and
the primer (OASIS, 2013a). A compact overview of
TOSCA is given by Binz et al. (Binz et al., 2014).
TOSCA consists conceptually of two parts. The topol-
ogy template is used to describe the structure of cloud
applications, whereas a deployment plan is basically a
workflow model that can be invoked to execute certain
tasks, e. g., the provisioning of a compute service in-
stance.

Considering the topology template in more detail,
it is a directed graph that consists of node templates
and relationship templates. The former represents arti-
facts related to cloud applications and environments,
while the latter defines dependencies between those
artifacts, e. g., a PHP-based web application is hosted
on a web server which in turn is hosted on a compute
service. Both kinds of templates are typed. The type
of a node template is defined by a node type, simi-
larly is a relationship type used to define the type of
a relationship template. The respective types can be
used to specify a properties definition and manage-
ment interfaces including operations with input and
output parameters. For example, a compute service
type may define a property “public address” and the

From Architecture Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA

99

Definitions ServiceTemplate

TopologyTemplate

NodeTemplate Relationship
Template

Plan

[0..1]

type [1]

properties
name:String [0..1]

EntityTemplate

NodeType RelationshipType
[0..1] validSource

[0..1] validTarget

abstract:Boolean [0..1]
name:String [1]

properties
Definition

[0..*]

EntityType

element:String [0..*]
type:String [0..*]

PropertiesDefinition

source
Element

target
Element

[0..1]

[0..1]

[0..1]

Operation

name:String [1]

input
Parameters

output
Parameters

name:String [1]
type:String [1]

Parameter [0..*] operations
[1..*]

derived
From [0..1]

plans [0..*]

service
Templates

[0..*]

DeploymentArtifact

deployment
Artifacts

[0..*]

topology
Template [1]

Interface

name:String [1]

interfaces [0..*]

name:String [1]
artifactType:String [1]

entityTemplates [0..*]
entity
Types [0..*]

element:String [0..*]
value:String [0..*]

Properties

minInstances:Integer [0..1]
maxInstances:Integer [0..1]

TOSCA Metamodel

ImplementationArtifact operation
[0..1]

Figure 3: TOSCA metamodel (XML-based language (OASIS, 2013b)).

operations “start” and “shut down”. A template of this
type enables the configuration of the public address
that is used to access the compute service instance and
provides the defined operations to start the compute
service instance and shut it down. Generally, types
can inherit from each other, which fosters its reuse:
compute service types specific to a cloud environment,
e. g., Amazon EC2 compute services, may inherit from
a generic compute service type that provides common
properties and operations. An implementation artifact
is used to provide a concrete implementation for an
operation. In theory, any programming language can
be used to implement an operation. From a technical
perspective, a TOSCA runtime container must be ca-
pable to invoke the implementation of an operation.

Finally, a DeploymentArtifact refers to a concrete
implementation of a node template. For example, a
PHP-based web application is considered as a deploy-
ment artifact. Also, binaries of web server are deploy-
ment artifacts. They are required to actually install
it.

3 CAML2TOSCA

Bridging the gap between UML and TOSCA leverages
not only continuous modeling support for cloud ap-
plications but also allows engineers to carry out the
application provisioning. In this respect, the target of
the application provisioning is a cloud environment.
UML provides capabilities to model application archi-
tectures from different viewpoints. On the other hand,
TOSCA enables the provisioning, management, and
termination of cloud services and applications. In the

following, we give first a high-level overview of the
underlying approach to combine UML and TOSCA.
Thereafter, we clarify how the intensional and ex-
tensional modeling levels introduced by UML and
TOSCA relate to each other as this is essential for
providing a useful mapping between them. Finally,
we propose an effective conceptual mapping between
UML and TOSCA where CAML takes the role of cap-
turing cloud-specific features from the perspective of
UML.

3.1 Overview

Considering the high-level overview presented in 4,
the entry point to the CAML2TOSCA approach is a
deployment model capturing the desired state of the
cloud application provisioning. Creating the deploy-
ment model is considered as part of architecture mod-
eling which usually includes to produce a variety of
models (or views on models), each of which address-
ing a concern from a certain viewpoint. In particular,
CAML deals with the class, component, and deploy-
ment viewpoint. A deployment model refined towards
a target cloud environment is considered as input to

Architecture
modeling

TOSCA
tools

TOSCA
container

TOSCA CSAR

 Application
 provisioning

Topology generation &
plan orchestration

 API

Cloud
provider B

 API

Cloud
provider A

DB

[HTTP]
[HTTP]

VM

[SSH]

CAML-based
deployment

Figure 4: Overview of the CAML2TOSCA approach.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

100

a tool chain capable to produce a standard-compliant
executable cloud service archive (CSAR). We collec-
tively refer to the set of tools comprised by this chain
as TOSCA tools. They allow engineers to automati-
cally generate a TOSCA-based representation consist-
ing of type definitions and the topology template that
corresponds to the injected UML deployment model
refined by CAML. Based on those type definitions, the
implementations of management operations required
for the application provisioning are automatically in-
jected (Kopp et al., 2013). To enable their execution
in an appropriate order, a management plan is orches-
trated (Breitenbücher et al., 2014a). All the produced
artifacts by the TOSCA tools constitute the CSAR. It
can be executed by TOSCA-compliant runtime con-
tainers. The presented conceptual mapping between
UML and TOSCA provides the basis for automating
the generation of a typed TOSCA topology template
from a CAML-based deployment model.

3.2 Modeling Levels

Clarifying how the intensional and extensional level
introduced by UML and TOSCA relate to each other is
essential for realizing a conceptual mapping between
them. 5 depicts the core concepts of UML and TOSCA
to create intensional and extensional deployment mod-
els. While in UML the various sub-meta-classes of
classifier are employed to model application architec-
tures from an intensional perspective, the correspond-
ing meta-class in TOSCA is type. For instance, the
compute service with the region property is consid-
ered as a concrete UML classifier or TOSCA type,
respectively. At the extensional level, the meta-classes
instance specification of UML and template of TOSCA
correspond to each other.

[1]

[*]

[1]

[*]

UML
metamodel

Entity of modeled
software system

[*]

[*]

[1]

[*]

Legend

…

Instance
Specification

Type

Template

TOSCA
metamodel

M1Medium

region : RegionKind

: M1Medium

scaling: Auto
region : EU

instance of corresponds to

Stereotype

ComputeService

scaling : ScalingKind

ComputeService

scaling : ScalingKind

«Stereotype»
M1Medium

region : RegionKind

Classifier

«M1Medium»
region : EU

«M1Medium»
: ComputeService

scaling: Auto

In
te

ns
io

na
l

…

Ex
te

ns
io

na
l

In
te

ns
io

na
l

Ex
te

ns
io

na
l

Extension Generalization

«apply»

Figure 5: Comparison of TOSCA’s and UML’s intensional
level and extensional level.

Indeed, the stereotype applied to an instance spec-
ification needs to be taken into consideration to infer
the corresponding type of a produced template because

TOSCA does not directly support stereotypes. Still,
a stereotype can be considered as a type in TOSCA,
which inherits the properties of the base class extended
by the stereotype. For instance, the extension between
the “M1Medium” stereotype and the compute service
is represented as a generalization between the corre-
sponding TOSCA types. This solution implies that
a stereotyped artifact of an extensional deployment
model needs to be translated into a TOSCA template
that is typed by the type of the corresponding stereo-
type instead of its direct classifier. As a result, the
stereotyped compute service instance at the exten-
sional level is represented as a TOSCA template of
type “M1Medium” instead of compute service.

Generally, elements modeled at the extensional
level are employed to designate elements of a (soft-
ware) system in the form of a one-to-one mapping
concerning their individual features (Kühne, 2006).
Considering the instance of the “M1Medium” compute
service, it designates Amazon’s M1 medium compute
service located in the EU. Obviously, in the context of
deployment modeling, several compute services may
be comprised by a running cloud application, which
requires a multiplicity concept not only for elements
of intensional models but also for extensional models.
Regarding the former, a one-to-many or many-to-many
multiplicity is typically supported by default, i. e., it
is not explicitly defined by engineers but integral part
of a metamodel. Multiplicities for elements at the ex-
tensional level determine the lower-bounds and upper-
bounds of real-world entities that are considered as
instances of these elements. This is useful for cloud
applications where cloud services are provisioned and
released on-demand. Clearly, to specify more sophisti-
cated custom rules that trigger the provisioning of new
cloud services or force to release them, dedicated lan-
guage support seems to be required (cf. e. g., (Kritikos
et al., 2014)).

3.3 Conceptual Mapping

The proposed conceptual mapping is generic in the
sense that any UML deployment model can be trans-
lated into a corresponding TOSCA model. As CAML
provides standard compliant extensions to UML in
terms of custom types, they can be considered as sup-
plementaries to UML’s metamodel. In this way, they
can be treated in the mapping process similar to UML
standard meta-classes.

Generally, concrete classifiers of CAML can be
represented as node types in TOSCA and their use at
the extensional level can be represented in terms of
node templates. A specific case are stereotypes which
require special treatment for inferring the type infor-

From Architecture Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA

101

mation assigned to produced node templates.
Moreover, standard relationships of UML typically

applied for deployment modeling, i. e., deployment
and dependency are also addressed. They are usually
applied directly at the extensional level. As a result,
they are represented as instances of the correspond-
ing meta-classes at the extensional level instead of an
instance specification. Both relationship types can cer-
tainly be stereotyped if additional features are required
or certain vocabularies with specific semantics need to
be introduced.

3.3.1 Intensional Level

The mapping presented in 1 acts as the basis to gen-
erate TOSCA type definitions. In fact, node types
can be generated from concrete classifers that con-
stitute CAML’s cloud library and profiles. Basically,
the signature of a classifier including its name and
whether it is abstract or concrete can straightforwardly
be mapped to a node type. A property of a classifier
can be mapped to a properties definition of the corre-
sponding node type. Similarly, an operation including
its input and output parameters can be mapped to an
operation of a node type and added to the exposed
management interface.

Regarding stereotypes, we need to distinguish
whether they extend a base class or inherit from an-
other stereotype. In the former case, the generated
node type specializes the corresponding node type of
the stereotype’s base class, whereas in the latter case,
it inherits from the node type of the super stereotype.

Finally, an association can be mapped to a relation-

Table 1: Mapping for intensional level.

UML/CAML TOSCA
 uml:Model m add Definitions d
 uml:Classifier c add NodeType nt if c.oclIsTypeOf(uml:Class)
 nt.name = c.name
 nt.abstract = c.isAbstract

 nt.derivedFrom = -- obtain CAML base element if(c.oclIsTypeOf
 (Stereotype) and c.extension.oclIsDefined())
 else c.general

 add PropertiesDefinition pd if c.attribute.notEmpty()
 add Interface i if c.ownedOperation.notEmpty()
 uml:Property p for each uml:Property p in c.attribute
 pd.element = -- create element definition from p.name
 pd.type = -- create element type from p.type
 uml:Operation uo add Operation o for each uml:Operation uo
 in c.ownedOperation
 o.name = uo.name
 add Parameter p for each uml:Parameter up in uo.ownedParamer
 p.name = up.name
 p.type = up.type
 o.inputParameters = uo.ownedParameter where p.direction = in
 o.outputParameters = uo.ownedParameter where p.direction = out
 nt.interfaces.operations = o
 uml:Association a add NodeRelationship nr
 nr.name = a.name
 nr.validSource = a.memberEnd.at(1)
 nr.validTarget = a.memberEnd.at(2)

ship type where the first memberEnd of the association
corresponds to the validSource and the second to the
validTarget.

3.3.2 Extensional Level

The mapping presented in 2 provides the basis to gen-
erate a TOSCA topology template from a UML de-
ployment model refined towards a cloud environment.
Thus, the emphasis is now placed on instance spec-
ifications and the generation of corresponding node
templates and relationship templates from them. If a
stereotype is applied to an instance specification the
inferred type refers to the node type of the stereotype
instead of the type assigned to the instance specifica-
tion. Indeed, we need to consider the properties of
both the type assigned and the stereotype applied to
the instance specification. If the assigned type refers
to an artifact, a TOSCA deployment artifact must be
created additionally. It describes the type of an artifact
that is actually deployed, e.g., a web application im-
plemented in PHP.

The deployment relationship in UML is directly
mapped to the predefined TOSCA relationship tem-
plate ttl4:hosted on. Even though there is also a pre-
defined TOSCA relationship template ttl:depends on
that fits well to the dependency relationship in UML,
we need to consider the fact that a dependency may be
stereotyped to specialize its semantics. As a result, a
possibly applied stereotype determines on the type of
the produced relationship template.

4 VALIDATION

To validate the practical feasibility of our approach,
we implemented the CAML2TOSCA transformer on
top of Eclipse5 and integrated it into the open-source
ecosystem OpenTOSCA, which supports modeling,
provisioning, and managing of TOSCA-based cloud
applications. In the following, we present the tool
chain leveraging architecture modeling and application
provisioning based on UML and TOSCA. Thereafter,
we introduce a detailed application scenario to validate
our approach in a real-life scenario.

4.1 Prototypical Implementation

We implemented a Java-based open-source prototype
of the CAML2TOSCA transformer6. It is grounded in

4ttl: Tosca type library
5Eclipse: http://www.eclipse.org
6The open-source prototype is vailable at:
https://github.com/alexander-bergmayr/caml2tosca

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

102

Table 2: Mapping for extensional level.

UML/CAML TOSCA
 uml:Model m add Definitions d
 add ServiceTemplate st
 st.name = m.name
 add TopologyTemplate tt
 uml:InstanceSpecification is

 switch(is.classifier.oclType())
 case : uml:Classifier c using

 rst = cs.getAppliedSubstereotype
 (cpp:CAMLElement)
 mst = cs.getAppliedStereotype
 (cpp:CAMLMultiplicity)

 add NodeTemplate nt
 nt.name = is.name

 nt.type = is.classifier if rst.oclIsUndefined()
 else rst.name

 nt.minInstances = is.getValue(mst, 'lower')
 nt.maxInstances = is.getValue(mst, 'upper')
 add Properties

 add Element e, Value v for each uml:Slot sl
 in is.slots

 e = sl.definingFeature.name
 v = sl.getValues()

 add Element e, Value v for each uml:Property p
 in rst.attribute

 e = p.name
 v = is.getValue(rst, p.name)
 add DeploymentArtifact da if(c = uml:Artifact)
 da.name = c.name
 da.artifactType = -- obtain it from c.filename
 case uml:Association a

 using
 rst = cc.getAppliedSubstereotype
 (ccp:CAMLElement)

 add RelationshipTemplate rt
 rt.name = is.name

 rt.type = is.classifier if rst.oclIsUndefined()
 else rst.name
 add Properties

 add Element e, Value v for each uml:Property p
 in rst.attribute

 e = p.name
 v = is.getValue(rst, p.name)
 uml:Deployment d add RelationshipTemplate rt
 name = "HostedOn"
 type = ttl:HostedOn
 sourceElement = d.source
 targetElement = d.target
 uml:Dependency d

 using
 rst = cc.getAppliedSubstereotype
 (ccp:CAMLElement)

 add RelationshipTemplate rt
 name = "DependsOn" if rst.oclIsUndefined()
 else rst.name
 type = ttl:DependsOn if rst.oclIsUndefined()
 else rst.name
 add Properties

 add Element e, Value v for each uml:Property p
 in rst.attribute

 e = p.name
 v = is.getValue(rst, p.name)
 sourceElement = d.source
 targetElement = s.target

the presented conceptual mapping between UML and
TOSCA (see 3.3). From a technical perspective, the
CAML2TOSCA model transformer comes as an Eclipse
plug-in where the conceptual mapping between UML
and TOSCA is implemented by means of the proven
model transformation language ATL7 (Jouault et al.,
2008). To employ ATL, the source and target meta-
models must be available in a compatible format.
Metamodels represented by EMF’s8 Ecore are di-
rectly supported by ATL. However, language defini-
tions expressed in terms of an XML Schema are not
compatible with it. For that purpose, we automati-
cally reverse-engineered an Ecore-based representa-
tion from the XML-based metamodel of the TOSCA
standard (Neubauer et al., 2015). To produce an XML-
based representation of the TOSCA models generated

7ATL: https://eclipse.org/atl
8Ecore: https://eclipse.org/modeling/emf

by the CAML2TOSCA transformer, the standard seri-
alization mechanisms provided by EMF are exploited.
EMF provides dedicated model converters to trans-
late between the serialization formats used by Ecore
and XML Schema. We integrated the CAML2TOSCA
transformer into OpenTOSCA9 as shown in 6. The
resulting system involves two kinds of users: (i) Ap-
plication engineers model their applications in UML,
which are then automatically provisioned to be used by
(ii) business users. To create the high-level architecture
of a cloud application including its desired deployment
on a cloud environment, engineers can employ the Pa-
pyrus Eclipse UML10 modeling tool for which CAML
plug-ins are available. In a first step, the deployment
model is refined towards the selected target cloud en-
vironment by applying the CAML cloud profile, see
1 . This ensures that a properly typed TOSCA-based

representation can be generated from a deployment
model created in UML and refined by CAML. To sup-
port the application provisioning, the CAML deploy-
ment model is translated into a corresponding TOSCA
topology topology, see 2 . As the generated TOSCA
representation describes only the desired deployment
topology, executable artifacts for the actual application
provisioning are required, e. g., a script to install a web
server on a virtual machine or to configure a web appli-
cation. Those artifacts are automatically injected into
the TOSCA topology by Winery (Kopp et al., 2013),
which is part of OpenTOSCA to model TOSCA-based
cloud applications. Winery injects implementations
of all management operations required for the provi-
sioning by looking up the corresponding node types
and relationship types in a local repository and em-
bedding the required artifacts and type definitions into
the TOSCA topology, see 3 . To execute the required
operations, a BPEL-based deployment plan is auto-
matically generated (Breitenbücher et al., 2014a). It
orchestrates the operation implementations in an appro-
priate order, see 4 . The generated deployment plan,
topology template, and all required artifacts and type
definitions are packaged as portable CSAR. The Open-
TOSCA container consumes the CSAR for installing it.
The CSAR enables the container to provision the mod-
eled application. In fact, the generated deployment
plan is executed on a local workflow engine, see 5 .
As TOSCA allows implementations of management
operations using arbitrary technologies, operation im-
plementations that are not executed in the applica-
tion’s target cloud environment, e. g., local services
that wrap cloud environment APIs, are deployed on
a local IA runtime (Implementation artifact runtime)
and bound to the deployment plan (Wettinger et al.,

9OpenTOSCA: https://github.com/OpenTOSCA
10Papyrus: https://eclipse.org/papyrus

From Architecture Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA

103

Application
architecture

Plan generator

TOSCA
CSAR

Process
engine

IA
runtime

Types &
Artifacts

Instantiation
request

Endpoint
e.g., URL

Business
users

Papyrus
Eclipse UML

Application
engineer

Vinothek
self-service portal

Winery
backend

OpenTOSCA
container

TOSCA
topology
template

CAML2TOSCA
transformer

CAML-based
deployment

1

3 4 5

2

Figure 6: Tool chain for application modeling and provision-
ing to the cloud.

2014b, Wettinger et al., 2014a). Finally, business users
can trigger the provisioning of cloud applications via
the Vinothek (Breitenbücher et al., 2014b), which is a
self service portal that offers those applications.

4.2 CAML2TOSCA by Example

To demonstrate our approach, we refer to the Moodle
learning platform11, which is a LAMP-based appli-
cation. The CAML deployment model of Moodle is
shown in 7. It represents the application structure to-
gether with an excerpt of domain classes, the manifes-
tation of these components by deployable artifacts, and
a possible deployment of these artifacts on OpenStack.

«deploy»

OpenStack-based Deployment «Profile»
CloudProfile

*

MoodleWeb MoodleDomain

Course
- id:int

Module
- id:int

«component» «component»

«class» «class»

MoodleWebApp
«artifact»

«manifestation» «manifestation»

«use»

Moodle Components

*

MoodleDB
«artifact»

:WebServer
«ApacheHttp»

:MoodleWebApp

«deploy»

«deploy»

:ComputeService

«M1Medium»
region=EU

«deploy»

«M1Medium»

scaling=Auto

:OperatingSystem
«LinuxOS»

:DBServer
«MySql»

«deploy»

:MoodleDB

«deploy»

:ServerModule
«PHP»

«deploy»

«import»

«ModelLibrary»
CloudLibrary

«apply»

«import»

«ModelLibrary»
TypesLibrary

«import»

«Profile»
TypesProfile

«apply»
:ComputeService

«M1Medium»
region=EU

«M1Medium»

scaling=Auto

:OperatingSystem
«LinuxOS»

Figure 7: CAML deployment model for Moodle on Open-
Stack.

11https://moodle.org

The depicted extensional deployment model con-
tains two components, MoodleWebApp and MoodleDB.
They are connected to a LAMP-based application stack
on top of two compute services: the first compute ser-
vice hosts the business tier while the data tier is hosted
on the second one. Moreover, the two compute ser-
vices are refined towards OpenStack. The stereotypes
are covered by CAML’s cloud profile, where the base
elements to which they can be applied are captured
by the cloud library of CAML. It also covers a set
of base types to specify application stacks for cloud
deployment models.

The CAML deployment model is translated into
a functionally equivalent TOSCA topology template
by the CAML2TOSCA transformer. This topology is
enriched by Winery and packaged into a CSAR, which
can be consumed by the OpenTOSCA container. An
excerpt of the CSAR is depicted in 8. It shows the
definition of the “Apache Web Server” type assigned
to a template. Properties of the “Apache Web Server”
type are captured by an XML schema to support their
validation when they are used. To automatically pro-
vision the Moodle application, the used node types
and relationship types must be available in the model
repository of Winery for injecting the required pro-
visioning logic. We achieved this by semantically
aligning CAML’s cloud profile with the respective
TOSCA types. The CAML deployment model can
thus be transformed into a corresponding TOSCA rep-
resentation without changing its overall semantics. As
a result, CAML deployment models can directly be
injected into a TOSCA-based provisioning process.
In addition, behavioral aspects, i. e., the implementa-
tions of operations required for the provisioning can
be embedded seamlessly without additional manual
effort when creating the CAML deployment model.

CSAR

Types
<xs:complexType name="tApacheWSProperties">
 <xs:element default="80" name="httpdport" type="xs:int"/>
</xs:complexType>
<xs:element name="ApacheWSProperties" type="tApacheWSProperties"/>

Definitions
<NodeTemplate name="Apache Web Server" type="ns2:ApacheWebServer">
 <Properties>
 <ns2:ApacheWSProperties xmlns:ns2="..." xmlns="…">
 <httpdport>80</httpdport>
 </ns2:ApacheWSProperties>
 </Properties>
</NodeTemplate>
<NodeType name="ApacheWebServer">
 <DerivedFrom typeRef="ns1:WebServer"/>
 <PropertiesDefinition element="tns:ApacheWSProperties"/>
 <Interfaces>
 <Interface name="http://docs.oasis-open.org/tosca/ns/interfaces/lifecycle">
 <Operation name="install"/>
 <Operation name="deploy"/>
 </Interface>
 </Interfaces>
</NodeType>

Figure 8: CSAR for Moodle on OpenStack.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

104

However, very specific stereotypes or TOSCA types,
respectively, may require further manual adaptation of
the produced TOSCA topology or deployment plan.
For example, a special script may need to be added
to the TOSCA topology in order to automatically es-
tablish a connection between two custom business
components.

5 EVALUATION

Today, several modeling tools support UML. The aim
of this study is to investigate on their methods for de-
ployment modeling in general and support for cloud-
based deployment targets in particular. We created the
deployment model of 7 in each of the selected tools
with the aim to answer the research question as fol-
lows.
RQ: What are the methods of current UML modeling
tools to represent cloud-based deployment models and
what are the practical implications?
Our comparison criteria mainly address (i) the levels
at which deployment models are represented, (ii) the
support for multiplicities not only at type level but also
at instance level, and (iii) the offered possibilities to
refine environment-independent deployment models
towards a selected cloud environment. Regarding the
second criterion, the support for multiplicities at the
instance level is not directly supported by the UML
standard. However, defining them for modeled appli-
cation artifacts and cloud services appears to be of
particular importance. The multiplicities determine
the lower bounds of running application artifacts and
cloud services as well as their upper bounds since in
a highly scalable cloud environment (Vaquero et al.,
2011) they are provisioned as their demand increases
but also released once their demand decreases.

Comparison Criteria. As deployment models are
specified by exploiting the intensional and extensional
level, the first criterion refers exactly to the capability
of UML modeling tools to support both levels. The
second criterion is dedicated to the support of multi-
plicities at the extensional level because this seems of
particular interest for modeling cloud applications. Fi-
nally, to investigate the need of UML libraries and
UML profiles covering cloud-specific domain con-
cepts, the third criterion addresses the support of cur-
rent UML modeling tools for refining deployment
models towards a target cloud environment.
−CC1 : Is deployment modeling supported at both lev-
els intensional and extensional?
−CC2 : Is the definition of multiplicities supported for
elements at the extensional level?
−CC3 : Is the refinement of deployment models to-

Table 3: Comparison results.

UML
 Deployment Multiplicities

Cloud
Support Modeling Tool Intensional

level
Extensional

level
Intensional

level
Extensional

level Name Version

 Altova UML 2015 supported supported via

Object Diagram supported not
supported

no
support

 ArgoUML 0.34 supported directly

supported supported not
supported

no
support

 Enterprise Architect 9.3 supported supported via

Object Diagram supported supported SOMF-
based

 Magic Draw 18.0 supported directly

supported supported not
supported

no
support

 Rational Software
 Architect 8.5.1 supported directly

supported supported not
supported

partial
support

 Papyrus 1.0.0 supported supported via

Object Diagram supported not
supported

no
support

 Visual Paradigm 12.1 supported supported via

Object Diagram supported not
supported

no
support

wards a cloud environment supported?
Selected Tools. The selected set of commercial

and open-source UML modeling tools that claim to
support deployment modeling are summarized in Ta-
ble 3.

Evaluation Procedure. First, we first imported the
deployment model of 7 including the required cloud
library and profile into the modeling tools. Thereafter,
we evaluated the capabilities of the modeling tools of-
fered in the standard settings and explored the different
wizard configurations if supported.

Results. The results of our study are summarized
in 3. All evaluated UML modeling tools support both
the intensional and extensional level to create deploy-
ment models. Support for the extensional level slightly
differs between the tools because some of them offer to
directly create instances of deployment artifacts, where
the respective instance specification assigned with a
classifier is generated automatically, i.e., without addi-
tional user interaction. Regarding multiplicities at the
extensional level, only Enterprise Architect supports
them by default. Most of the tools lack cloud-based re-
finement support for UML deployment models. Only
Rational Software Architect introduces a cloud node
concept which is resembled by CAML’s compute ser-
vice. This emphasizes the value of CAML not only to
leverage the refinement of deployment models towards
a cloud environment but also as a bridge from UML to
TOSCA. Finally, even though this evaluation focuses
on UML, it is worth noting that Enterprise Architect
supports describing and analyzing cloud environment
topologies as part of the service-oriented modeling
framework (SOMF)12.

6 RELATED WORK

Several approaches introduce a considerable set of
cloud modeling concepts and propose tool sup-

12SOMF: http://www.sparxsystems.com/somf

From Architecture Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA

105

port to automate the application provisioning. The
Blueprint (Nguyen et al., 2011) approach describes
service-based applications by coarse-grained de-
ployment artifacts that are connected with con-
crete cloud services. Describing such cloud ser-
vices in an XML-based language is supported by
CloudML-UFPE (Gonçalves et al., 2011). Similarly,
Zephyrus (Cosmo et al., 2014) allows specifying ser-
vice types associated with constraints, e.g., the maxi-
mum number of replicas of an application component,
that are attempted to be satisfied when an extensional
deployment model is derived from an initial set of
types. Dependencies between them are expressed via
ports through which the derivation of possible deploy-
ment configurations can be automated. The notion of
ports is also exploited by CloudML (Ferry et al., 2013)
to specify cloud-oriented deployments. Both Zephyrus
and CloudML come with dedicated tools to automate
the software provisioning based on specified deploy-
ment models, which is also supported by the approach
of Holmes (Holmes, 2014) and StratusML (Hamdaqa
and Tahvildari, 2015). Creating deployment models is
addressed by CloudMIG (Frey and Hasselbring, 2011)
where the main focus is on migration scenarios to the
cloud. Migrating existing applications to the cloud is
also addressed by MOCCA (Leymann et al., 2011).
It allows the representation of the architecture and
deployment of existing applications. Moreover, it is
capable to derive an optimal clustering of architec-
tural elements and concrete implementation units that
are assigned to virtual resources of a cloud environ-
ment. They are described in the Open Virtualization
Format (DMTF, 2013) (OVF) to provide support for
the actual resource provisioning. OVF is extended by
RESERVOIR-ML (Chapman et al., 2012) with primi-
tives to describe applications in terms of components
and elasticity rules that control the virtual machine con-
figurations in an OpenNebula13 cloud environment.

Modeling concepts of all these approaches are re-
flected by our approach on a level of abstraction that
supports engineers in the design and deployment of
cloud applications. As a result, modeling concepts
required to, e. g., achieve the optimization of an appli-
cation deployment (cf. (Frey and Hasselbring, 2011)),
express elasticity rules (cf. (Chapman et al., 2012)), or
exploit workload models (cf. (Ferry et al., 2013, Ham-
daqa and Tahvildari, 2015)) are not completely cap-
tured by our approach. However, it enables deploy-
ment models to be specified in such a way that they
are seamlessly applicable on UML models usually cre-
ated throughout application modeling activities, e.g.,
class models to specify the realization of components,
because our approach is based on UML. Consequently,

13OpenNebula: http://opennebula.org

well-connected model-based views on cloud applica-
tions from both perspectives environment-independent
as well as environment-specific are supported. The
refinement of the former is supported by UML pro-
files in general (Bergmayr et al., 2014b) and CAML’s
cloud profile in particular. Cloud-specific stereotypes
allow extensional deployment models to be refined to-
wards a cloud environment without re-modeling of the
deployed artifacts as it is the case for existing cloud
modeling approaches. This additional flexible typing
dimension and the benefits of a multi-viewpoint lan-
guage exploited by our approach differentiates it from
existing approaches.

Cloud modeling support based on UML is pro-
posed by MULTICLAPP (Guillén et al., 2013). It
presents a UML profile for the purpose of represent-
ing applications components that are expected to be
deployed on a cloud environment. As MULTICLAPP
does not support refining application components to-
wards cloud services provided by a certain cloud en-
vironment, our approach is different in the sense that
CAML’s cloud profile is applied to achieve exactly this
environment-specific refinement. Moreover, translat-
ing deployment models refined towards a cloud envi-
ronment into TOSCA brings management support to
engineers as TOSCA-compliant containers enable au-
tomatic application provisioning based on extensional
deployment models.

7 CONCLUSION

Our proposed CAML2TOSCA approach bridges the
gap between UML and TOSCA. As a result, engineers
are capable to combine the capabilities of both lan-
guages where the deployment viewpoint is exploited
for realizing the conceptual mapping between them.
Cloud-specific extensions to UML called CAML are
exploited to accomplish the bridge towards TOSCA.
To automate the translation from UML to TOSCA,
we implemented the CAML2TOSCA transformer. It
is grounded in the presented conceptual mapping be-
tween the two languages and provides the necessary
glue to leverage a full-fledged tool chain for architec-
ture modeling and application provisioning based on
UML and TOSCA. While the evaluation of our ap-
proach shows its practical value, several lines of future
work need to be investigated. We aim to realize a repos-
itory of common deployment types applicable to both
UML and TOSCA. Bi-directional transformations at
the intensional level can play a key role to synchronize
those types between UML and TOSCA and possibly
other languages, such as CloudML. Finally, provid-
ing simulation support for deployment models to sup-

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

106

port prediction about non-functional properties such
as costs and performance before the actual application
provisioning is carried out seems highly desirable. We
plan to explore how fUML (OMG, 2013) can be em-
ployed to provide behavioral semantics for CAML in
a similar way as it can be used to define behavioral se-
mantics of MOF-based metamodels (Mayerhofer et al.,
2013).

ACKNOWLEDGEMENTS

This work is co-funded by the EC, grant no. 317859
(ARTIST project), and the German government, grant
no. 03ET4018B (NEMAR project).

REFERENCES

Ardagna, D., Nitto, E. D., Casale, G., Petcu, D., Mohagheghi,
P., Mosser, S., Matthews, P., Gericke, A., Ballagny, C.,
D’Andria, F., Nechifor, C., and Sheridan, C. (2012).
MODAClouds: A Model-Driven Approach for the De-
sign and Execution of Applications on Multiple Clouds.
In MISE@ICSE.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., Lee, G., Patterson, D. A., Rabkin,
A., Stoica, I., and Zaharia, M. (2010). A View of Cloud
Computing. Commun. ACM, 53(4).

Bergmayr, A. et al. (2014a). Cloud Modeling Languages by
Example. In SOCA.

Bergmayr, A. et al. (2014b). JUMP - From Java Annotations
to UML Profiles. In MODELS.

Bergmayr, A. et al. (2014c). UML-based Cloud Application
Modeling with Libraries, Profiles, and Templates. In
CloudMDE@MoDELS.

Binz, T. et al. (2013). OpenTOSCA – A Runtime for
TOSCA-based Cloud Applications. In ICSOC.

Binz, T. et al. (2014). TOSCA: Portable Automated De-
ployment and Management of Cloud Applications. In
Advanced Web Services. Springer.

Breitenbücher, U. et al. (2014a). Combining Declarative and
Imperative Cloud Application Provisioning based on
TOSCA. In IC2E.

Breitenbücher, U. et al. (2014b). Vinothek – A Self-Service
Portal for TOSCA. In ZEUS.

Chapman, C., Emmerich, W., Márquez, F. G., Clayman, S.,
and Galis, A. (2012). Software Architecture Definition
for On-Demand Cloud Provisioning. Cluster Comput.,
15(2).

Cosmo, R. D., Lienhardt, M., Treinen, R., Zacchiroli, S.,
Zwolakowski, J., Eiche, A., and Agahi, A. (2014). Au-
tomated synthesis and deployment of cloud applica-
tions. In ASE.

DMTF (2013). DMTF, Open Virtualization Format (OVF).
Version 2.0.0.

Fehling, C. et al. (2014). Cloud Computing Patterns - Fun-
damentals to Design, Build, and Manage Cloud Appli-
cations. Springer.

Ferry, N., Rossini, A., Chauvel, F., Morin, B., and Solberg,
A. (2013). Towards Model-Driven Provisioning, De-
ployment, Monitoring, and Adaptation of Multi-cloud
Systems. In CLOUD.

Frey, S. and Hasselbring, W. (2011). The CloudMIG Ap-
proach: Model-Based Migration of Software Systems
to Cloud-Optimized Applications. Intl. J. Advances in
Software, 4(3&4).

Gonçalves, G. E., Endo, P. T., Santos, M. A., Sadok, D., Kel-
ner, J., Melander, B., and Mångs, J. (2011). CloudML:
An Integrated Language for Resource, Service and Re-
quest Description for D-Clouds. In CloudCom.

Guillén, J., Miranda, J., Murillo, J. M., and Canal, C. (2013).
A UML Profile for Modeling Multicloud Applications.
In ESOCC.

Hamdaqa, M. and Tahvildari, L. (2015). Stratus ML: A
Layered Cloud Modeling Framework. In IC2E.

Holmes, T. (2014). Automated Provisioning of Customized
Cloud Service Stacks using Domain-Specific Lan-
guages. In CloudMDE@MoDELS.

Jamshidi, P., Ahmad, A., and Pahl, C. (2013). Cloud Migra-
tion Research: A Systematic Review. IEEE T. Cloud
Computing, 1(2).

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
ATL: A model transformation tool. Sci. Comput. Pro-
gram., 72(1-2):31–39.

Kopp, O. et al. (2013). Winery – modeling tool for TOSCA-
based cloud applications. In ICSOC.

Kritikos, K., Domaschka, J., and Rossini, A. (2014). SRL: A
scalability rule language for multi-cloud environments.
In Proc. of Intl. Conf. on Cloud Computing Technology
and Science (CloudCom), pages 1–9.

Kühne, T. (2006). Matters of (meta-)modeling. Software
and System Modeling, 5(4).

Leymann, F. (2011). Cloud Computing. it - Information
Technology, 53(4).

Leymann, F. et al. (2011). Moving Applications to the Cloud:
An Approach Based on Application Model Enrichment.
Int. J. Cooperative Inf. Syst., 20(3).

Mayerhofer, T., Langer, P., Wimmer, M., and Kappel, G.
(2013). xMOF: Executable DSMLs based on fUML.
In SLE.

Neubauer, P. et al. (2015). XMLText: From XML Schema
to Xtext. In SLE.

Nguyen, D. K., Lelli, F., Taher, Y., Parkin, M., Papazoglou,
M. P., and van den Heuvel, W. (2011). Blueprint Tem-
plate Support for Engineering Cloud-Based Services.
In ServiceWave.

OASIS (2013a). TOSCA Primer v1.0. http://docs.oasis-
open.org/tosca/tosca-primer/v1.0/tosca-primer-
v1.0.html.

OASIS (2013b). TOSCA v1.0. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-
os.html.

OMG (2013). Semantics of a Foundational Subset
for Executable UML Models (fUML), Version 1.1.
http://www.omg.org/spec/FUML/1.1.

From Architecture Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA

107

Vaquero, L. M., Rodero-Merino, L., and Buyya, R. (2011).
Dynamically Scaling Applications in the Cloud. SIG-
COMM Comput. Commun. Rev., 41(1).

Vogels, W. (2009). Eventually Consistent. Commun. ACM,
52(1).

Wettinger, J. et al. (2014a). Streamlining Cloud Management
Automation by Unifying the Invocation of Scripts and
Services Based on TOSCA. IJOCI, 4(2).

Wettinger, J. et al. (2014b). Unified Invocation of Scripts
and Services for Provisioning, Deployment, and Man-
agement of Cloud Applications Based on TOSCA. In
CLOSER.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

108

