
A Pattern for Enabling Multitenancy in Legacy Application

Flavio Corradini, Francesco De Angelis, Andrea Polini and Samuele Sabbatini
University of Camerino, via del Bastione 2, Camerino, Italy

Keywords: Multi-tenancy, Cloud Migration, Cloud Pattern.

Abstract: Multitenancy is one the new property of cloud computing paradigm that change the way of develop software.
This concept consists in the aggregation of different tenant in one single istance in contrast with the classic
single-tenant concept. The aim of multitenancy is the reduction of costs, the hardware needed is less than
single-tenant application, and also the mantainance of the system is less expensive. On the other hand, appli-
cations need an high configuration level in order to satisfy the requirements of each tenant. In this paper is
presented a pattern that enable legacy applications to handle a multitenancy database. After the presentation
of the different approach that implements multitenancy at database system, it is proposed the pattern that aims
to interact with this kind of database managing the different customization of different tenant at database level.

1 INTRODUCTION

The concept of cloud computing is exploding dur-
ing last year. Although the concept of utility com-
puting was introduced about fifty years ago (Parkhill,
1966), it began to be a commercial need only in the
early 2000s. The fact that this new paradigm is driven
by commercial aspects and not from a real scientific
study has led to the creation of different definitions
(Vaquero et al., 2008) depending on the commercial
context. NIST (Mell and Grance, 2011) provides the
most used definition of cloud. They defines the cloud
model as a composition of five essential characteris-
tics, three service models, and four deployment mod-
els. The concept is totally revolutionary in software
development as foundries have been in the hardware
industry (Armbrust et al., 2009). One of the main
challenges is the ability to migrate legacy applica-
tion developed with previous methodologies into a
new environment and making them cloud compliant.
This challenge is due to the fact that legacy applica-
tion have been implemented with previous methods
without taking into considerations concepts unknown
until the advent of cloud (i.e. elasticity, scalability and
multi-tenancy).

This work focuses its attention on multi-tenancy
concept, in particular on how to adapt legacy appli-
cation that already exists in order to take advantage
from this new concept. The multi-tenancy, within the
software architecture community, is usually referred
to as the ability to serve multiple client organizations
through one instance of a software product and it can

be seen as an high level architectural pattern in which
a single instance of a software product is hosted on
the software vendor’s infrastructure, and multiple cus-
tomers access the same instance (Bezemer and Zaid-
man, 2010b).

Before going in deep with the multi-tenancy, it is
important to underline the difference between multi-
tenant and multi-user applications. In a multi-user
application we assume that all users are using the
same application with limited configuration options.
In a multi-tenant application, we assume that each
tenant has the possibility to configure the application
heavily. This results in the situation that, although
tenants are using the same building blocks in their
configuration, the appearance or work flow of the
application may be completely different for two
tenants (Bezemer and Zaidman, 2010a). In order
to understand the meaning of multi-tenancy, it can
be used the definition formulated in (Kabbedijk
et al., 2015) after an evaluation through a Systematic
Literature Review. They analysed the definition of
43 different resources extrapolating a definition using
the most common word founded. The result of this
process is this definition:

Multi-tenancy is a property of a system where
multiple customers, so-called tenants, transparently
share the system’s resources, such as services,
applications, databases, or hardware, with the aim of
lowering costs, while still being able to exclusively
configure the system to the needs of the tenant.

Corradini, F., Angelis, F., Polini, A. and Sabbatini, S.
A Pattern for Enabling Multitenancy in Legacy Application.
In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) - Volume 2, pages 257-264
ISBN: 978-989-758-182-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

257

Multi-tenancy concept involves the entire soft-
ware stack of applications. In this regard, it is nec-
essary to modify the entire stack to adapt legacy ap-
plications to the new model, focusing the attention on
the database and application levels. There are sev-
eral advantages related to multi-tenancy. Here are the
principal ones:

• The possibility to share hardware resources, en-
abling cost reductions (Wang et al., 2008);

• A high degree of configurability, enabling each
customer to create his own look-and-feel and
workflow within the application (Jansen et al.,
2010);

• A shared application and database instance, en-
abling easier maintenance (Kwok et al., 2008).

The aim of the study is to propose a pattern that
can enables applications to manage a multi-tenancy
database. Despite the management of a relational
database has been defined by several studies, the ap-
plication adaptation to this new data management
model is still in process. This research is related
to the Open City Platform project (OCP project,
SCN 00467) founded by the Italian Ministry (Minis-
tero dell’Istruzione, dell’Universita e della Ricerca) in
the Smart Cities and Communities and Social Innova-
tion initiative (OCP Consortium, 2015). This project
aims to migrate the applications used by some Pub-
lic Administration in an private cloud infrastructure.
In this context, this pattern helps companies that are
working in the migration of their application in the
OCP Cloud Platform.

This paper is structured as follows: Section 2
presents some related works. Section 3 shows the
approach that can be used to create a multi-tenancy
database. Section 4 proposes a pattern that could en-
able multi-tenancy in legacy application. Moreover,
in that section it is presented the survey that validate
the pattern proposed. Section 5 focuses on conclusion
and future works.

2 RELATED WORK

This research is part of Italian national project that
aims to migrate legacy application in a cloud plat-
form. The aim of this project is very close to other
two European project: ARTIST(Artist Consortium,
2015) and REMICS (Remics, 2015). ARTIST and
REMICS are two projects very closed to the aim of
the research herein. These projects are funded by the
European Community, and they focus their aim on
migration using Model Driven Engineering (Object
Management Group, 2015b). Both projects aim to

develop different tools of different part of the migra-
tion. REMICS ended in the 2013 and it focused the
attention on the recovery, migration, validation and
supervising processes of the migration itself. How-
ever this project did not cover challenges such as elas-
ticity, multi-tenancy and other non-functional proper-
ties. ARTIST focuses on migrating legacy software
written in Java and C. The project is still open and it
tries to support the migration in every aspect.

This paper focuses its attention on multi-tenancy.
This property is very important with the advent of the
cloud computing. Several researches are working in
the direction of defining an approach to develop cloud
native applications or adapt legacy applications in or-
der to enable multi-tenancy. Bezemer et. al (Bezemer
and Zaidman, 2010a) propose an architectural pattern
that aims to enable multi-tenancy in single-tenant ap-
plication. In order to solve the problem, the solution
proposes three additional layers to be included in the
application. The first layer is the Authentication layer
that is used to manage different tenants. The second
one is the Configuration layer that is used to highly
configure applications. The last layer regards the in-
terface between the application and database layer
that help to adapt the query. The validation of this
approach is proposed in (Bezemer et al., 2010) where
the authors validated it with an Industrial Experience
Report. This works is very close to our work but they
offer an high level point of view that aim to cover all
the aspects of the multi-tenancy.

In (Kang et al., 2011) Kang et al. propose a con-
ceptual architecture of a SaaS platform that enables
the execution of configurable and multi-tenant SaaS
application. The platform allows to configure five as-
pects of SaaS software (User Interface, Data Model,
Organizational Structure, Workflow, Business Logic).
In addition, meta-data driven architecture is applied
for providing multi-tenancy of SaaS application.

Another important work in multi-tenancy is (Mi-
etzner et al., 2009). In that work, it was described
how multi-tenancy can be achieved introducing and
evaluating a set of patterns that can be used to design,
develop and deploy process-aware service-oriented
SaaS applications.

The study of Kabbedijk et. al (Kabbedijk and
Jansen, 2011) is very closed to our. The research pro-
pose a set three of patterns that introduces variability
concept in multi-tenant Software as a Service solu-
tions. The proposed pattern are used to customize the
application depending on the tenants. The patterns
aim to customize data views, create dynamic menus
and implements custom module before or after a data
updating.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

258

3 MULTI-TENANCY DATABASE

With cloud advent, NoSQL databases have acquired
an increased importance as they are more agile than
classical relational database (Sakr et al., 2011) (Chen
and Zhang, 2014). The use of NoSQL database is not
always the best choice, above all if the application al-
ready exists. In this case, the entire database migra-
tion would be very long and expensive. Considering
that the focus of this work is to adapt legacy applica-
tions to cloud, various approaches will be presented
to managing multi-tenancy database elaborated by
(Chong et al., 2006) and used in several works to
better define the concept of multi-tenancy database
level. The description of these approaches is proposed
through the use of key attributes for a well-designed
Saas application (scalability, multi-tenant efficiency
and configuration) as presented in (Chong and Car-
raro, 2006). The approaches proposed are:

• Separated DataBase;

• Shared DataBase, separated schema;

• Shared DataBase, shared schema.

3.1 Separated Database

In this first approach, each tenant has its own database
and its set of data that remains logically isolated from
data of all the other tenants (See Fig. 1). In this case,
in the provisioning process new standard database is
created for the new tenant. Each database can be ac-
cessed through meta-data services. The database can
be modified by the tenant in order to satisfy its needs.
The possible modifications are related both to the user
interface and the program logic and the tenant can po-
tentially create new fields, new queries, new tables
and relationships.

The advantage of this approach relies on the fact
that the database can be modified by the tenant so it
offers the maximum freedom of extension. Moreover,
in some specific case such as sensitive data manage-
ment (i.e. medical or banking data management) this
approach is appropriate due to the strong data iso-
lation requirements. The disadvantages of this ap-
proach is related to the fact that it leads to support
only a limited number of database for each server
and consequence the cost of the infrastructure will be
higher.

3.2 Shared Database, Separate Schema

In the second approach a single database is shared
by all tenants (see Fig.2). In this database a pre-set
of customs fields that tenants can assign and use are

Figure 1: Architecture of ”Separated Database” approach.

present in addition to the standard set fo fields. Each
customer can choose what to use these fields for, and
how data will be collected for them.

The custom fields can be typed or untyped. The
first one enable the customer to use any available
built-in type checking and verification functions that
the application and database provide to validate the
data. In the case of untyped field, the customer can
use them to store any type of data (the customer can
optionally provide its own validation logic, to prevent
users from accidentally entering invalid data).

Shared database allows a single database engine
to support a larger number of customers before par-
titioning becomes necessary rather than isolated ap-
proach. This leads to a lower cost of providing ser-
vice. The disadvantage related to this approach refers
to the extensibility of the data model that is limited to
the number of provided custom field.

Figure 2: Architecture of ”Shared Database, Separate
Schema” approach.

3.3 Shared Database, Shared Schema

A single shared database is building in the third ap-
proach (see Fig. 3). In this case customers can ex-
tend the data model arbitrarily, storing custom data as
namevalue pairs in a separate table. A unique record-
ID is assigned to each customer record (including cus-
tom data). The unique ID matches one or more rows
in a separate extension table. For each row in this ta-
ble, a name-value pair is stored. The name-value pairs
can be created without any limitation (in number and
type) by customers.

When the application retrieves a customer record,
it performs a lookup in the custom data table, selects
all rows corresponding to the customer ID, and re-
turns them to be treated as ordinary data field. In the
custom data table, data cannot be typed, because the
field may contain data in many different forms for dif-
ferent customers. To solve this, a third column can

A Pattern for Enabling Multitenancy in Legacy Application

259

optionally hold a data type identifier, so that the data
can be cast to the appropriate data type once it is re-
trieved.

This approach makes the data model arbitrarily
extensible, while retaining the cost benefits of using
a shared database. But, the added level of complex-
ity for database functions (such as searching, index-
ing, querying, and updating records) can be consid-
ered one disadvantage of this approach. If customers
requires considerable degree of flexibility in extend-
ing the default data model without the requirement of
data isolation. This will be the best approach.

It is important to consider that every time an ex-
tensively approach for data model is developed, any
extension implemented by a customer will require a
corresponding extension to the business logic (so that
the application can use the custom data), as well as an
extension to the presentation logic (so that users have
a way to enter the custom data as input and receive it
as output).

Figure 3: Architecture of ”Shared Database, shared
Schema” approach.

4 ENABLE MULTI-TENANCY IN
LEGACY APPLICATION

In this section we propose the pattern that we imple-
mented. The methodology used to describe the pat-
tern is described in Figure 4. In the context of OCP
project, various organizations have been facing the
problem of migration starting from an assessment to
evaluate the compatibility of an application with the
cloud platform (F. Corradini et al., 2015).

Some problems emerged during the evaluation of
this assessment. Among the most common prob-
lems that the various applications had to face, it
emerged the management of multi-tenancy database
that legacy (and single tenant) applications were not
able to handle. For this reason, it was decided to de-
velop a pattern that would help various developers in
migrating their applications. Pattern validation was
done through the use of questionnaires which were
then proposed to the same developer and to other in-
dustry experts. Depending on the results of the ques-
tionnaire, the necessary changes to the pattern were

carried out until the questionnaires proposed a satis-
factory result. In this case we needed two interaction
to validate the pattern. In the first interaction, we fo-
cusing our attention on the feedback while the second
one was used to refine the pattern.

Figure 4: Methodology of pattern definition.

4.1 Pattern

In the previous section, we presented various ap-
proaches that literature offers at database manage-
ment level. In order to enable multi-tenancy in
legacy application, database adaptation needs several
changes. These changes impact the behaviour of the
higher levels. In legacy application the logic layer re-
ceives standard data depending on the structure of the
tenant. Indeed, multi-tenancy applications data can
vary for each tenant as explained before. In this sec-
tion, we will present a pattern to be applied in an exist-
ing legacy application to enable the logic layer to ma-
nipulate data from multi-tenancy database. The con-
cept of pattern was adopted in software engineering
from the book of the ”Gang of four” (Gamma et al.,
1994). This concept relates to provide a solution to
a recurring problem with a generic scheme applica-
ble in all contexts. The following information will be
used for pattern description:

• The name of the pattern;

• The context of the problem;

• The description of the problem;

• The solution of the problem introduced by:

1. A class diagram expressed in UML (Object
Management Group, 2015a);

2. An explanation of the solution.

• The consequence of the application of the pattern.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

260

4.1.1 Name

Customizable application for data handling.

4.1.2 Context

The concept of multi tenancy introduced with the ad-
vent of cloud has changed the implementation design
of applications. With this pattern, we would adapt
legacy applications to make them able to manage a
multi-tenancy database composed of heterogeneous
data among different tenants.

4.1.3 Problem

The multi-tenancy has led to new patterns of database
design. Although it is now possible to use a single
instance to multiple tenants, hardly the standard so-
lution is suitable for all of them. This involves the
management of different information within the same
instance. This problem affects both the database and
application level. At database level, where it is possi-
ble to manage multiple heterogeneous data sources in
a single instance, the application must be able to han-
dle different results (different data type or number of
arguments) according to the tenant making the query
to the database. So, the purpose of this pattern is to
make the software adaptable to the tenant needs giv-
ing the possibility to change / add / remove fields in
standard components of the application.

4.1.4 Solution

This pattern has to be applied to each component of
the application that has to be adapted to enable it
to manage heterogeneous information. The Compo-
nent class is the generic class that already exists in
the application, with all its attributes and methods al-
ready defined. The rest are new classes that do not
modify the existing code.DataConfigurationMan-
agementclass is the class of access to this pattern and
it has to manage the properties present in theCom-
ponentclass. This class is able to access the generic
class through the use of ”addProperty”, ” deleteProp-
erty” and ”modifyProperty” functions and it enables
to modify the various parameters within the class.

Three methods corresponding to the methods of
the classDataConfigurationManagementare added to
the existing class. The management of the property
is done by the classDynamicProperty. This class is
used to manage all changes to the component and it is
used to define whether the property has been changed,
added or deleted from the component. The classDy-
namicPropertyValuesaves the value of the data and

make it accessible to the component. The classDat-
aComponentregards the interface of the component
with the layer database.

Figure 5: Class Diagram of the pattern that helps to manage
different configuration of multi-tenancy db.

4.1.5 Consequences

As mentioned in the previous sections, the impact of
the patterns in the existing architecture is low. The
pattern integrates itself with the existing code without
being invasive and this minimizes changes in what is
already done. TheComponentclass is the only exist-
ing class and it does not require any changes with the
exception of the three methods that have to be added.
Depending on the implementation of the classCom-
ponentit is possible to implement the pattern using a
derived class or to add these methods directly in the
class without changing the existing code. In this way,
the pattern appears to be context-independent and this
makes it applicable every time it is needed.

In addition to the deployment aspect, the pattern
has non-functional advantages. First of all, the pat-
tern can increase the deployment process of the devel-
oper and it can guarantee the correctness of the sys-
tem. Another advantage of the pattern is to standard-
ize the applications. In this way a cloud provider can
increase the Quality of Services of their hosted appli-
cation implementing a service that properly manage
the pattern.

4.2 Pattern Utilization Example

In this example, we present the utilization of the pat-
tern in order to explain better how it works. First of
all, we present the process to add a new property. The
steps are showed in Fig. 6 and it can be summarize in
these steps:

A Pattern for Enabling Multitenancy in Legacy Application

261

1. The administrator of the system sends a request
of adding property toDataConfigurationManage-
mentclass;

2. The DataConfigurationManagementClass calls
the component that has to be modified;

3. The Componentcreates aDynamicPropertyto
handle the request of new property using the
methodaddProperty;

4. The DynamicProporty class createsDynam-
icPropertyValueclass that will be used byCom-
ponentclass to logically store data.

5. TheComponentuses theDataComponentto store
the changes in the DB.

The process of modified and remove standard
property is the same as showed for creating new prop-
erty. The only changes regards the method called
in the step 3. To modify an already existing prop-
erty, it is used the methodmodifyProperty. Indeed,
deletePropertyis used in order to logically delete
property.

The behaviour of the application at execution time
does not change. A user, with permissions to access
at the component, uses in addition to it all theDy-
namicPropertyValueof its specific tenant (by check-
ing thetenantIDfield of theDynamicPropertyclass).
The classDataComponentis used to get information
from the database or to store modification occurred at
application level.

Figure 6: Sequence diagram of new property creation pro-
cess.

4.3 Validation

The research method used for the validation of the
pattern is a survey. The instrument used to collect
data is a questionnaire. Questionnaires are consid-
ered less time-consuming than interview surveys. The
questionnaire was submitted by using Google Form
and written in Italian, as all the evaluators are native
Italian speakers. The questionnaire consists of a se-
ries of closed questions and one open-ended question
to provide suggestions to improve the pattern. The
questionnaire was proposed to everyone involved in
the OCP project with a good technical basis to address

the evaluation. The following job functions were se-
lected in order to have a correct evaluation: architect,
software development manager or technical manager.
A total of 8 experts were involved in the evaluation.
The questionnaire consists of 4 different parts:

• Introduction of the questionnaire to explain the
context of use of the pattern

• Presentation of the pattern with diagram and de-
scription

• Closed-questions

• One open question for criticisms and hints

4.3.1 Questions

In this section we explain the questions used to eval-
uate the pattern. In the questionnaire eight different
characteristics that are needed in a multi-tenancy en-
vironment are evaluated. For every characteristic the
experts has to assign a score from 1 to 5 depending
on the level of satisfiability. The score is expressed
in the following terms:1: poor; 2: below average;
3: average;4: good; 5: excellent. In the Invasive-
ness and Complexity the score is reverse where score
of 1 means excellent and score of 5 means poor. The
characteristics taken into account regards both cloud
environment and aspects related to the reference ap-
plication. At the end of the questionnaire there is an
open-ended question that is used for some consider-
ations of the experts. The characteristics taken into
account in the questionnaire are:

1. Significance: Level of importance of the pattern.
How useful is to apply it in order to enable multi-
tenancy.

2. Invasiveness:Degree of impact of the pattern in
the existing code. More invasive is the pattern and
greater are the difficulties to implements in differ-
ent contexts.

3. Effectiveness: Evaluation of the pattern in rela-
tion to the initial troubleshooting. This parameter
indicates the degree of solution of the identified
problem.

4. Completeness:Evaluation of the pattern in rela-
tion to the aspects taken into account. Highlight if
the pattern covers all possible usage scenarios.

5. Complexity: Degree of complexity of implemen-
tation of the pattern and degree of efficiency to
which the software product can be made available
for use.

6. Portability: Degree of efficiency for the pattern
to be transferred from one environment to another.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

262

7. Scalability: Degree of reliability of the pattern
when the workload changes. Adaptability of the
pattern to work with multiple instances.

8. Security: Degree to which the pattern ensures
that data are accessible only those authorized to
have access.

4.3.2 Results

In this section we describe the results of the last eval-
uation of the questionnaire(Tab. 1). For each param-
eter, it is shows the average and the variance of the
questionnaire. The average parameter is used to cal-
culate if the result is acceptable, the variance is used
to determine if there is an high dispersion of the score
in the specific parameter. The final results of the ques-
tionnaire are shown as follows:
• Significance:The result of this parameter is fun-

damental because it is used to evaluate if the pat-
tern is useful to enable multi-tenancy in the appli-
cation. A value of 3.8 indicates that the introduc-
tion of this pattern is useful for that aim.

• Invasiveness: The average of this parameter is
good but the variance is too high. This score in-
dicates a different behaviour depending on the ap-
plication.

• Effectiveness:The result is quite sufficient. The
average of the results are quite good but a variance
of 0.84 indicates a problem in some type of appli-
cations. We will monitor this parameter when we
apply the pattern in other application.

• Completeness:This results is better than the Ef-
fectiveness. Even if the average is the same, in
this parameter we have a low level of variance in-
dicating same results from different applications.

• Complexity: It is the worst results of the eval-
uation regarding both average and variance. As
in the invasiveness, the results is a consequence
of the heterogeneous applications that are taken
into account from different experts. The variance
in this characteristics indicates a dispersion of the
results without a significant majority of a value.

• Portability: It is one of the worse results of the
evaluation. The average score is sufficient but it
has a quite high variance that indicates some ”be-
low average” results.

• Scalability: This characteristic is important in
cloud and in a multi-tenancy environment. A
component can have an elastic workload and it
can be duplicated. The scores of this characteris-
tic is good with a low level of variance, this means
that the pattern can handle multiple component in-
stances without problem.

• Security: It is one of the most important param-
eter of that pattern. Indeed, it is fundamental that
each tenant can access only to their data. The re-
sult of this parameter is good with a low variance.

Regarding the first evaluation step, the developers
gave some important feedback that help us to improve
the pattern. The first critic regards the permission of
the instance ofDynamicProperty. To avoid this prob-
lem, we add the attributetenantIDwho stores the ten-
ant with the permission to access and uses its own
specific instance. The second annotation of the devel-
opers regards the management of modified or deleted
standard properties. In this context, we decided to use
an enumerator inDynamicPropertyclass that helps
to choose dynamic properties instead of the standard
ones during the execution of the component.

Table 1: Results of the pattern evaluation.

Parameter Average δ2

Significance 3.8 0.98

Invasiveness 2.3 1.13

Effectiveness 3.6 0.84

Completeness 3.6 0.27

Complexity 3.1 1.27

Portability 3.5 0.86

Scalability 3.7 0.21

Security 3.9 0.7

5 CONCLUSIONS

In this paper we presented our work about building
a pattern to implement in legacy applications in or-
der to enable the accessing multi-tenancy databases.
The pattern is proposed as part of the OCP project. It
helps developers to modify the code of the application
faster and ensure that the applications involved in the
project have the same programming logic. However,
the pattern is independent of context and therefore can
be implemented in any type of application considered
that it is independent from the technology. Next step
of this work is to extend the pattern to other applica-
tion involved in OCP in order to have more feedback
and refine, if necessary, the pattern. The realization
of this pattern was part of a larger effort that leads to
the realization of other patterns that solve problems
encountered in the valuation of the assessment. The
problems are related to the development of applica-

A Pattern for Enabling Multitenancy in Legacy Application

263

tions that enable a high level of configuration in par-
ticular we will focus the attention in these aspects:
Role Configuration; Workflow Configuration; Busi-
ness Rule Configuration; Report Configuration; Ac-
tion Process Configuration. The final results of this
works will be a list of pattern that can be used by the
organization involved in OCP project first of all but
also all the organization that want migrate legacy ap-
plication to the cloud.

REFERENCES

Armbrust, M., Fox, O., Griffith, R., Joseph, A. D., Katz,
Y., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2009). M.: Above the clouds: a berke-
ley view of cloud computing.

ARTIST Consortium (2015). Artist project.
http://www.artist-project.eu/.

Bezemer, C. and Zaidman, A. (2010a). Challenges
of reengineering into multi-tenant saas applications.
Technical report, Delft University of Technology,
Software Engineering Research Group.

Bezemer, C.-P. and Zaidman, A. (2010b). Multi-tenant saas
applications: maintenance dream or nightmare? In
Proceedings of the Joint ERCIM Workshop on Soft-
ware Evolution (EVOL) and International Workshop
on Principles of Software Evolution (IWPSE), pages
88–92. ACM.

Bezemer, C.-P., Zaidman, A., Platzbeecker, B., Hurkmans,
T., and Hart, A. (2010). Enabling multi-tenancy:
An industrial experience report. InSoftware Main-
tenance (ICSM), 2010 IEEE International Conference
on, pages 1–8. IEEE.

Chen, C. P. and Zhang, C.-Y. (2014). Data-intensive appli-
cations, challenges, techniques and technologies: A
survey on big data.Information Sciences, 275:314–
347.

Chong, F. and Carraro, G. (2006). Architecture strategies
for catching the long tail.MSDN Library, Microsoft
Corporation, pages 9–10.

Chong, F., Carraro, G., and Wolter, R. (2006). Multi-tenant
data architecture.MSDN Library, Microsoft Corpora-
tion, pages 14–30.

Corradini, F., Sabbatini, S., De Angelis, F., Polini, A.
(2015). Cloud readiness assessment of legacy appli-
cation. InIn 5th International Conference on Cloud
Computing and Services Science (CLOSER 2015).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).
Design patterns: elements of reusable object-oriented
software. Pearson Education.

Jansen, S., Houben, G.-J., and Brinkkemper, S. (2010).
Customization realization in multi-tenant web ap-
plications: Case studies from the library sector.
Springer.

Kabbedijk, J., Bezemer, C.-P., Jansen, S., and Zaidman, A.
(2015). Defining multi-tenancy: A systematic map-
ping study on the academic and the industrial perspec-
tive. Journal of Systems and Software, 100:139–148.

Kabbedijk, J. and Jansen, S. (2011). Variability in multi-
tenant environments: architectural design patterns
from industry. InAdvances in conceptual modeling.
recent developments and new directions, pages 151–
160. Springer.

Kang, S., Kang, S., and Hur, S. (2011). A design of the
conceptual architecture for a multitenant saas applica-
tion platform. InComputers, Networks, Systems and
Industrial Engineering (CNSI), 2011 First ACIS/JNU
International Conference on, pages 462–467. IEEE.

Kwok, T., Nguyen, T., and Lam, L. (2008). A software as
a service with multi-tenancy support for an electronic
contract management application. InServices Com-
puting, 2008. SCC’08. IEEE International Conference
on, volume 2, pages 179–186. IEEE.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing.

Mietzner, R., Unger, T., Titze, R., and Leymann, F.
(2009). Combining different multi-tenancy pat-
terns in service-oriented applications. InEnterprise
Distributed Object Computing Conference, 2009.
EDOC’09. IEEE International, pages 131–140. IEEE.

Object Management Group (2015a). UML,
http://www.uml.org/.

Object Management Group (2015b). Model Driven Archi-
tecture. http://www.omg.org/mda/.

OCP Consortium (2015). Open city platform project.
http://www.opencityplatform.eu/.

Parkhill, D. F. (1966). Challenge of the computer utility.
REMICS Consortium (2015). Remics project.

http://www.remics.eu/.
Sakr, S., Liu, A., Batista, D. M., and Alomari, M. (2011).

A survey of large scale data management approaches
in cloud environments.Communications Surveys &
Tutorials, IEEE, 13(3):311–336.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lind-
ner, M. (2008). A break in the clouds: towards a cloud
definition. ACM SIGCOMM Computer Communica-
tion Review, 39(1):50–55.

Wang, Z. H., Guo, C. J., Gao, B., Sun, W., Zhang, Z., and
An, W. H. (2008). A study and performance evalu-
ation of the multi-tenant data tier design patterns for
service oriented computing. Ine-Business Engineer-
ing, 2008. ICEBE’08. IEEE International Conference
on, pages 94–101. IEEE.

CLOSER 2016 - 6th International Conference on Cloud Computing and Services Science

264

