
Exploring the Potential of Global Types for Adding a Choreography
Perspective to the jABC Framework

Paola Giannini1∗, Anna-Lena Lamprecht2 and Tiziana Margaria2†

1Computer Science Institute, DiSIT, University of Piemonte Orientale, Alessandria, Italy
2Lero - The Irish Software Research Centre, University of Limerick, Limerick, Ireland

Keywords: Choreography, Global Types, Orchestration, jABC, Workflow, Extreme Modeling Framework.

Abstract: We discuss how global types, aka multiparty session types, provide a complementary perspective on workflow
models within the jABC modeling framework. On a reference example from the Semantic Web Services
Challenge we show how the service orchestrations of jABC workflow applications can be expressed as service
choreographies based on global types. Roles, identified with sets of logically related Service-Independent
Building Blocks (SIBs), bridge between the two ways of looking at the behavior of systems. We compare the
degree of declarativity and robustness in the face of changes of the reference example modeled with the jABC
framework with as a global types specification.

1 INTRODUCTION

The eXtreme Model-Driven Design (XMDD)
paradigm (Margaria and Steffen, 2009) is a software
development methodology that supports automatic or
semi-automatic software evolution and management
of change by rigorous use of user-level models and
refinement throughout the software development
process and software life cycle. The current reference
implementation of XMDD, the jABC (Steffen et al.,
2007), is a framework for service-oriented design and
development. With jABC, users develop services and
applications by composing reusable building blocks
into hierarchical control-flow graph structures that
are formally sound yet easy to read and build. From
an end-user point of view, all the user interaction
happens within an intuitive graphical environment,
hardly requiring any classical programming skills for
the service orchestration.

Choreography is the other principal mechanism
for service composition. Choreography-based pro-
gramming is a powerful paradigm for designing com-
municating systems where the flow of communication
is defined abstractly and from a global point of view,
instead of separately specifying the behaviour of each
participant. A formalization of this paradigm as a

∗Partly funded by “Progetto MIUR PRIN CINA Prot.
2010LHT4KM” and Torino University/Compagnia San
Paolo Project SALT

†Partly supported by Science Foundation Ireland grant
13/RC/2094 and co-funded under ERDF to Lero - the Irish
Software Research Centre (www.lero.ie).

type system for a dialect of Robin Milner’s π-calculus
(Milner et al., 1992) is given in a series of papers by
Kohei Honda and others (Honda et al., 1998; Yoshida
and Vasconcelos, 2007). The formalization is cen-
tered on the notion of session, which specifies a se-
quence of messages exchanged among participants,
called roles. In (Honda et al., 2008), sessions are
described at a global level as the available services,
whose types are multiparty session types, or global
types, and at a local level as the protocols seen from
the participant perspective whose types are session
types. These two levels are related: the global pro-
cesses (thought of as choreographies) and the global
types should project to the local ones, producing the
actual implementations of the specified system.

Service mediation is a typical application domain
for both orchestration and choreography. The Se-
mantic Web Service Challenge mediation scenario
(SWSC) (Petrie et al., 2009) has been used as a case
study for orchestration by many research groups.

In this paper, we refer to this service mediator, in-
troduced in Section 2, and compare its XMDD mod-
eling style with the jABC framework (Section 3) with
a global/session types specification (Section 4). We
discuss the two approaches in Section 5 and in Sec-
tion 6 we draw some conclusions, in the context of
related work.

368
Giannini, P., Lamprecht, A-L. and Margaria, T.
Exploring the Potential of Global Types for Adding a Choreography Perspective to the jABC Framework.
DOI: 10.5220/0005799303680376
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 368-376
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Figure 1: The SWS Mediation Scenario (original picture from the SWS Challenge).

2 THE SWSC MEDIATION
SCENARIO

The basic SWSC mediation scenario aims at mak-
ing a legacy order management system interoperable
with external systems that use a simplified version of
the RosettaNet PIP3A4 specifications3. It requires
finding an adequate service composition that adapts
two conversation partners where both the interaction
protocol and the granularity and format of data mis-
match. It consists of the three components in Fig. 1:
the Company Blue is a customer (service requester)
that purchases goods following the RosettaNet speci-
fication; the Legacy System of the Moon Company
instead uses a proprietary system that differs from
RosettaNet in data model and message exchange pat-
terns, and the Mediator, the sought-for piece of tech-
nology providing automatic or semi-automatic medi-
ation between the Blue and the Moon companies. The
Mediator must implement the Purchase Order receiv-
ing role part of the interaction described in the Roset-
taNet PIP 3A4. In terms of choreography, we have a
system consisting of at least three roles (Blue, Moon,
and Mediator) that need to interoperate via a global
protocol. This protocol is abstract, in the sense that it

3http://www.rosettanet.org/PIP3A4

defines the ”shape” of the conversation and messages,
but does not prescribe the implementation details (e.g.
the concrete steps the software will perform). It de-
scribes what the business process community calls a
“reference process”, to be later refined towards spe-
cific executable solutions, but embodying the global
compliance reference. In terms of orchestration, we
look for a concrete implemented solution for the Me-
diator component that satisfies the interface require-
ments with Blue and Moon and manages the internal
computations needed to process orders correctly, for
any correct shape of the orders. Given the abstraction
in terms of shapes, we see here how natural it is in
both perspectives to resort to types as a semantically
precise abstraction: order types, service types, inter-
action types, conversation types (e.g. Blue/Mediator
and Mediator/Moon).

In the SWS Challenge, both the Moon legacy sys-
tem and the customer Web services (Blue) were pro-
vided by the organizers and accessible on the SWSC
testbed through public Web services described us-
ing WSDL. The services themselves could not be al-
tered by the participants, although their description
could be semantically enriched. From a global types
point of view, these are two independent roles whose
(web)services are, however, physically co-located at
one site. In terms of structures amenable to roles, we

Exploring the Potential of Global Types for Adding a Choreography Perspective to the jABC Framework

369



Figure 2: The original mediator scenario in the jABC.

can further observe that the mediator sketch of Fig. 1
requires two services: one from the RosettaNet re-
quest to the CloseOrder (called Part 1 in the SWS so-
lutions) and one for the order confirmation (Part 2).
They were indeed implemented as two distinct ser-
vices in our original solutions (Margaria et al., 2008;
Margaria et al., 2012). Additionally, to manage its
order processing, Moon uses two back-end systems:a
Customer Relationship Management system (CRM)
and an Order Management System (OMS), that are
additional candidates for role refinement.

The Challenge participants were requested to use
Semantic Web technologies of their choice to address:
the Data mediation to map the Blue RosettaNet PIP
3A4 message to the messages of the Moon back-end
systems; the Process mediation to map message ex-
changes defined by the RosettaNet PIP 3A4 process
to those defined in the WSDL of the Moon back-end
systems; the Conversations between the systems in-
cluding data and process mediation on semantic de-
scriptions of messages, thus requiring the transforma-
tion from messages used by existing systems to the
ontological level.

The following generic structure was applied in-
dependently by all solutions: (1) Extract the relevant
information from the PurchaseOrderRequest and call
Moon’s Customer Relation Management (CRM) to
find the customer data inside the database (if she al-
ready has an account). (2) Use the CustomerID to cre-
ate an order using Moon’s Order Management System
(OMS). (3) Add LineItems as needed and then close
the order. (4) Finally the middle layer receives an Or-
derConfirmationObject and sends a PurchaseOrder-
Confirmation back to Blue.

This common reference structure, identified inde-
pendently of the current work, plays an important role
in the global types solution of Sect. 4.

3 ORCHESTRATING THE
MEDIATOR IN jABC

In the three years of the SWS Challenge we pro-
vided a large set of jABC-based solutions to the me-
diation scenario problem, with increasing levels of
automation and dynamism, discussed in (Margaria
et al., 2012). While the first mediators were mod-
eled manually using the jABC’s facilities for model-
driven design (Margaria et al., 2008), later these mod-
els were automatically generated from semantically
enhanced abstract specifications with a synthesis al-
gorithm (Margaria et al., 2012).

In XMDD, applications are service compositions
(called Service Logic Graphs, or SLGs) that or-
chestrate along the flow of control basic services
in the form of SIBs - Service-Independent Building
Blocks). Applications are constructed within an in-
tuitive graphical SDK environment, hardly requiring
any classical programming skills.

XMDD is largely coding-free: Fig. 2 shows the
original solution to the mediator scenario (Part1) in
the jABC and the corresponding SIB palette. This
SLG orchestrates different roles and respects the
generic solution structure previously described. The
SIBs are parameterizable service types: they are in-
stantiated by dragging them onto the drawing area,
where the SLG assembly takes place. This model is
compiled to running code via Genesys, jABC’s code
generation plugin.

The domain-specific model includes the definition
of taxonomies for the types and the services (SIBs).
These taxonomies often group services and types ac-
cording to particular roles in the application domain:
as shown in Fig. 2, Blue’s and Moon’s SIBs are
grouped together and display a suggestive blue/moon
icon in the SLG. Therefore, these taxonomies provide

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

370



Figure 3: The mediator protocol using global types.

through the identified and recognizable roles a useful
bridge towards the connection with global types.

In XMDD, these domain models are additionally
used by application designers to incrementally ex-
press their business knowledge about the models and
domain-specific knowledge on the taxonomies. Such
information/constraints in CTL are used by the model
checker to verify correctness/compliance, and in LTL
are used by the synthesis of correct/compliant by con-
struction application SLGs.

4 CHOREOGRAPHING THE
MEDIATOR WITH GLOBAL
TYPES

Using global types, we provide a choreography that
describes the generic structure introduced at the end
of Section 2. To write the mediator protocol of Fig. 3,
we adopt (a subset of) the syntax of Scribble, intro-
duced in (Honda et al., 2011).

We introduce the syntax of Scribble by comment-
ing the protocol in Fig. 3. A protocol is defined by
a name, a non-empty set of role parameters, a pos-
sibly empty sequence of message signature parame-
ters, and a global type specifying how messages are
exchanged between the roles involved.

Exploring the Potential of Global Types for Adding a Choreography Perspective to the jABC Framework

371



The basic action of a global type is communica-
tion, i.e., sending a message from one role to an-
other role, msg(par1, . . . ,parn) from role1 to role2.
A message has a name and may have parameters.
Message sending is not blocking, and messages sent
from one role to another are assumed to arrive in the
order they were sent.

The definition of a protocol is preceded by the
declaration of the types of the data that are sent with
messages, which in our case are the types of the jABC
domain platform defined for the mediation scenario.
(In Fig. 3 we omitted the definition of these types.)
Here, messages correspond mostly to single SIBs, but
in more complex examples they could correspond to
entire subworkflows that refine the implementation
towards an operational executability. Lines 2 ÷ 35
define the Mediator protocol. The participants in-
volved are declared as roles in lines 2 and 3 (the
parameters of the protocol). The roles Client and
Server represent the services provided by the chal-
lenge organizers, whereas the roles RosMediator
and MoonMediator correspond to Blue and Moon of
the jABC service taxonomy. Role Customer provides
the communication with the data base of users, and
Helper is an interface to some general data manipu-
lation services.

In the definition of the Mediator protocol
we use two communication patterns, specified by
the protocols: MessageAck (lines 36 ÷ 40) and
MessageReturn (lines 41÷ 46). Both protocols are
generic in the messages specified by the identifiers in
the triangular parentheses following the keyword sig.
MessageAck specifies a message send followed by
waiting for an acknowledgment from the receiver, and
MessageReturn specifies a message send followed
by waiting for a message back from the sender. This
second protocol can be used to return values to the
sender, as we will see when it will be instantiated in
the body of the Mediator.

The Mediator protocol starts when the Client
sends a request with the PurOrderReq data and
waits for acknowledgement that RosMediator has
received the message. This is done (line 4) by in-
stantiating the generic protocol MessageAck with
the message startService(PurOrderReq) and as-
sociating the formal role parameters with the two
roles involved. Then, the role RosMediator sends
a message to the Helper role in order to obtain
from the SearchString in the PurOrderReq the
Tuple representing the lines of the order that are
sent one by one, with the recursion construct, from
the MoonMediator to the Server (lines 14 ÷ 25).
The body of the rec construct is executed and if the
continue statement is found (line 20), the execu-

tion of the body is started again. Inside the body
of rec, after obtaining a single line of order from
the Helper role, there is a choice construct (lines
17 ÷ 24) specifying that MoonMediator is the role
making the choice, and that the interaction continues
following either one of the branches, which are sep-
arated by or. The first branch of the choice (lines
18÷20) says that MoonMediator is sending another
line of the order to the Server and then restarts the
body of the rec. The other branch (line 22 and 23)
specifies that MoonMediator closes the order (there
are no more lines to be sent). The rest of the protocol
description should be obvious.

Global types are projected onto the individual
roles producing an implementation of the system. In
Fig. 4, we show the projection of the global protocol
on MoonMediator and RosMediator, the most in-
teresting roles. To show the exchanged messages, in
the global protocol of Fig. 3, we instantiated all the
MessageAck and MessageReturn subprotocols be-
fore doing the projection.

Local protocols see communications from the
point of view of a single role. The basic actions are
sending a message: msg(par1, . . . ,parn) to role, and
receiving a message: msg(par1, . . . ,parn) from role.

The projection of the global protocol on a
given role is obtained by maintaining only the
communications that have this role as either the
sender or the receiver of the message. Then
msg(par1, . . . ,parn) from role1 to role2 pro-
duces msg(par1, . . . ,parn) to role2 in role1 and
msg(par1, . . . ,parn) from role1 in role2. The pro-
jection of line 7 of the global protocol of Fig. 3 on
RosMediator and MoonMediator produces line 10
and line 25 of local protocols of Fig. 4.

For a choice construct to be projectable, the
first action of each branch must be sending a mes-
sage from the role making the choice to some other
role, moreover, the messages at the beginning of
the branches must be distinct. In our global proto-
col there are two choices: lines 17 ÷ 24 and lines
27÷ 34. Both choices are made by MoonMediator.
These choices are projected on the local protocol
for MoonMediator producing the internal choices of
lines 35÷ 42 and lines 44÷ 48. An internal choice
means that MoonMediator chooses which message
to send to whom. The choices are also projected
on the roles that are receiving the messages from
MoonMediator, which are the role Server for the
choice in lines 17÷ 24, and the role RosMediator
for the one in lines 35÷ 42. In the receiving roles
these are external choices whose branches start with
a receive action from MoonMediator. The receiving
role must provide a branch for each possible message

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

372



received from MoonMediator. The projection of the
second choice of the global protocol (lines 44÷48 of
Fig. 4) on RosMediator produces the internal choice
of lines 11÷19 of the local protocols of Fig. 3). Note
that, the choice of lines 17÷34 of the global protocol
does not produce actions in RosMediator.

5 DISCUSSION

The native SLGs of the jABC and the complementary
approach based on global types embody two different
views of the same specification of the system’s be-
haviour as implemented on the jABC platform for the
SWSC service mediator.

The SWSC organizers actually intended to test
the robustness of the semantic methods in view of
changes and system evolution: a set of successive
modifications built upon this initial mediation prob-
lem foresaw changes in some aspects of the prob-
lem. The evaluation criteria concerned the degree
of declarativity of the specification (ideally, using
semantics the middle layer should be able to au-
tonomously react to changed process specification),
and the robustness of the solutions: how little needed
to be changed manually to satisfy the amended sce-
narios. Accordingly, the three central dimensions we
discuss here are the fitness for change management in
light of variability and evolution, the role played to
this aim by roles and projections, and how they foot
on the domain modelling underlying the description
styles. We briefly discuss them in a bottom-up order.

Domain Modelling. Both specifications require
an initial domain model: specifying the services
needed for the system and organizing data and ser-
vices in domain-specific taxonomies. The data taxon-
omy is common to both methods, whereas the service
taxonomy differs for the two views. Both descrip-
tions of the behaviour of systems rely on the level of
granularity of services offered by the SIBs, and use
aggregations of SIBs to compose the required compu-
tational abstractions. In jABC, the SIBs are organized
in multifaceted taxonomies where facets reflect inde-
pendent description criteria like functional proximity,
provenance (e.g., the providers, here Blue, Moon, or
the Mediator - with jABC icon), or SLA-relevant cri-
teria like efficiency or cost. In the case of global types,
SIBs are primarily aggregated according to the roles,
i.e. according to the participants in the interaction that
should enjoy some kind of location proximity. In this
sense, we can see a potential correspondence between
the provenance facet of the SIB taxonomies and the
roles within the global types.

Roles and Projections. The SLGs are workflows

organized in hierarchical graph structures, and SLGs
express with graphical models the orchestration of
services (SIBs). SLGs primarily focus on the control
flow, which is directly depicted in the models and di-
rectly executable by means of the Tracer, making the
data flow less immediately evident in these models.
Both manual SLG design based on the SIB universe,
and automatic SLG synthesis from SLTL constraints
and taxonomies address problem-specific knowledge
and specifications. In a sense, the underlying philos-
ophy is“solving my specific problem” using existing
suitable SIBs: a decidedly customer-oriented view.

In contrast, global types specify a choreography
where the focus is the collaboration shape. The or-
der of the service execution is only implicitly given
by this description, but not fixed. Additionally, it ex-
plicitly shows the flow of data. Global type specifi-
cations require a suitable identification of sets of log-
ically related services that constitute the roles of the
interaction. The messages exchanged can be associ-
ated with simple SIBs or with sub-workflows com-
posed of SIBs belonging to the same role. From the
global type description, the individual behaviour of
roles can be generates by projection, as also more
generally (correct) traces of executions. Especially
this projection capability onto the roles is here of in-
terest: such projections yield localized specifications
of suitable service provider behaviours. This is a dif-
ferent and provider-centric point of view: given the
projections, service providers can check and decide
whether they are able to be suitable partners for a spe-
cific role in a complex, global choreography, even not
knowing what the other partners do or contribute.

This localization capability is interesting for a fu-
ture enhancement of XMDD’s high-level description
capabilities, especially with regard to adding change
management in long-lived, evolving, collaborative
workflows.

Change Management: Variability, Evolution.
In both cases, expressing variability and changes is
easier than for the typical native web services: since
in both our description styles there are no composi-
tions of operations following a predefined protocol of
execution, one does not need to define here the kind
of low-level adaptation that is needed at the level of
the web services.

Variability is expressed in SLGs by means of vari-
ation point-SIBs that define the set of possible vari-
ants of the workflow. Case by case they are linked
to the sub-workflow implementing the chosen variant,
in a sort of lightweight discovery of the variant, often
also guided by constraints. The taxonomies and the
constraint languages are also used to describe such
variation points and the choices. In global types, an

Exploring the Potential of Global Types for Adding a Choreography Perspective to the jABC Framework

373



Figure 4: The local protocols for RosMediator and MoonMediator.

explicit choice operator specifies on one side that the
role at which the choice is made will contain the selec-
tion of one possible branch, identified by a message
name, and on the other side that whatever expected
message arrives, there are roles offering adequate be-
haviours for all the possible alternatives.

Concerning evolution, the scenario changes of the
SWS challenge were relatively simple, not adding
much to the current insights. A more elaborate appli-
cation scenario including variability and evolution in
complex scientific workflows4 is currently being in-
vestigated. Preliminary results so far seem to con-
firm that these three dimensions are the key to use
the viewpoints’ differences in a profitable way. They

4The case study concerns sea level rise consequences in
climate change scenarios (Al-Areqi et al., 2014).

seem also to be a good basis for being able to use the
one or the other viewpoint at need, with a good map-
ping of the correspondence in both directions.

6 CONCLUSIONS AND RELATED
WORK

We showed the use of global types to provide a
complementary, choreography-oriented perspective
on workflow models within the XMDD paradigm
and illustrated it along a benchmark service media-
tion scenario from the SWSC. The ability to adopt
an orchestration-like or a choreography-like point of
view at need is important in light of increasingly com-
plex service-oriented workflows, that require a tight

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

374



and formally well-defined correspondence between
the customer-oriented view underlying orchestration
and the provider-friendly view of a choreography. We
also showed how the underlying domain abstraction
of the jABC platform provides a bridge between the
different ways of looking at a system behaviour.

The case study illustrates the feasibility in princi-
ple of this well-defined correspondence, that we are
going to investigate on a larger case study from the
climate research domain. While plenty of related
work is present on several aspects of formal meth-
ods for service-orientation, we see our contribution
as demonstrating the practical feasibility of a fielded
case study within a general-purpose software engi-
neering development framework.

We consider several extensions to our current set-
ting. The ultimate goal of declarative models and
specifications like those we described is to support
ease of a system’s change management in terms of
variation, dynamics, and evolution. Interesting ap-
proaches with which we are confronting ourselves
address both software product lines and software
ecosystems like (Seidl et al., 2014), or concern differ-
ent kinds of architectural and service provision evo-
lution as in (Inzinger et al., 2013), which align well
with our approach (Margaria et al., 2010).

The role of distribution and consistent behaviour
of distributed actors in a remote collaboration context
is central to cloud computing, Internet of Things, Sci-
entific Computations and Big Data. Context Model
Ontologies that support multiple facets and aid in
the rule-based expression of consistency and com-
patibility in dynamic settings have been studied in
Lero (Bandara et al., 2015). Even if at the moment
we support less than full OWL, such richer ontolo-
gies can be used equally well in both approaches and
thus are of significant interest to us.

On the description language side, Chor (Montesi,
2013), the choreographic language based on global
types designed for the Sensoria platform5, includes
more advanced constructs, such as delegation and the
possibility of defining partial choreographies that are
interesting in a volatile system. However, in Chor
there is no separation between the language in which
the roles are written (Jolie) and the choreography
specification, which could make a practical separation
of layers difficult.

Our ongoing efforts concern the study of specific
challenges posed by real life case studies, and the in-
tegration of richer description and projection mecha-
nism into the XMDD platform.

5http://www.sensoria-ist.eu

REFERENCES

Al-Areqi, S., Kriewald, S., Lamprecht, A.-L., Reusser, D.,
Wrobel, M., and Margaria, T. (2014). Towards a flexi-
ble assessment of climate impacts: The example of ag-
ile workflows for the ci:grasp platform. In ISoLA2014,
LNCS 8803, pp. 420–435. Springer.

Bakera, M., Margaria, T., Renner, C., and Steffen, B.
(2009). Tool-supported enhancement of diagnosis in
model-driven verification. Innovations in Systems and
Software Engineering, 5:211–228.

Bandara, K. Y., Wang, M., Pahl, C. (2015). An extended
ontology-based context model and manipulation cal-
culus for dynamic web service processes. Service Ori-
ented Computing and Applications, 9(2):87–106.

Honda, K., Mukhamedov, A., Brown, G., Chen, T., and
Yoshida, N. (2011). Scribbling interactions with a for-
mal foundation. In ICDCIT 2011, LNCS 6536, pp.
55–75. Springer.

Honda, K., Vasconcelos, V., and Kubo, M. (1998). Lan-
guage Primitives and Type Disciplines for Structured
Communication-based Programming. In ESOP’98,
volume 1381 of LNCS, pages 22–138. Springer.

Honda, K., Yoshida, N., and Carbone, M. (2008). Mul-
tiparty Asynchronous Session Types. In POPL’08,
pages 273–284. ACM.

Inzinger, C., Hummer, W., Lytra, I., et al. (2013). Decisions,
models, and monitoring - A lifecycle model for the
evolution of service-based systems. In EDOC 2013,
pp. 185–194. IEEE Computer Society.

Margaria, T., Kubczak, C., and Steffen, B. (2012). The
xmdd approach to the semantic web services chal-
lenge. In Semantic Web Services, pp. 233–248.
Springer.

Margaria, T. and Steffen, B. (2007). LTL-Guided Planning:
Revisiting Automatic Tool Composition in ETI. In
SEW 2007, pages 214––226. IEEE Computer Society.

Margaria, T. and Steffen, B. (2009). Agile IT: Thinking in
User-Centric Models. In ISoLA 2008, Vol.17 of CCIS,
pp. 490–502. Springer.

Margaria, T., Steffen, B., and Kubczak, C. (2010). Evo-
lution support in heterogeneous service-oriented land-
scapes. J. Braz. Comp. Soc., 16(1):35–47.

Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Stef-
fen, B. (2008). Automatic Generation of the SWS-
Challenge Mediator with jABC/ABC Semantic Web
Services Challenge. Results from the First Year, pp.
119-138, Springer, 2008.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of
mobile processes, I and II. Information and Computa-
tion, 100(1):1–40, 41–77.

Montesi, F. (2013). Choreographic Programming. Ph.D.
thesis, IT University of Copenhagen.

Petrie, C., Margaria, T., Lausen, H., and Zaremba, M., ed-
itors (2009). Semantic Web Services Challenge. Re-
sults from the First Year, vol. 8 of Semantic Web and
Beyond. Springer.

Seidl, C., Schaefer, I., and Aßmann, U. (2014). Integrated
management of variability in space and time in soft-
ware families. In SPLC ’14, pages 22–31. ACM.

Exploring the Potential of Global Types for Adding a Choreography Perspective to the jABC Framework

375



Steffen, B., Margaria, T., Nagel, R., Jörges, S., and
Kubczak, C. (2007). Model-Driven Development with
the jABC. In Hardware and Software, Verification and
Testing, LNCS 4383, pp. 92–108. Springer.

Yoshida, N. and Vasconcelos, V. (2007). Language
Primitives and Type Disciplines for Structured
Communication-based Programming Revisited. In Se-
cReT’06, ENTCS 171, pp. 73–93. Elsevier.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

376


