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Abstract: This paper presents a dynamic pricing and energy management framework for electric vehicle (EV) charging
service providers. To set the charging prices, the service providers faces three uncertainties: the volatility
of wholesale electricity price, intermittent renewable energy generation, and spatial-temporal EV charging
demand. The main objective of our work here is to help charging service providers to improve their total
profits while enhancing customer satisfaction and maintaining power grid stability, taking into account those
uncertainties. We employ a linear regression model to estimate the EV charging demand at each charging
station, and introduce a quantitative measure for customer satisfaction. Both the greedy algorithm and the
dynamic programming (DP) algorithm are employed to derive the optimal charging prices and determine how
much electricity to be purchased from the wholesale market in each planning horizon. Simulation results show
that DP algorithm achieves an increased profit (up to 9%) compared to the greedy algorithm (the benchmark
algorithm) under certain scenarios. Additionally, we observe that the integration of a low-cost energy storage
into the system can not only improve the profit, but also smooth out the charging price fluctuation, protecting
the end customers from the volatile wholesale market.

SYMBOLS

N: total number of planning horizon.
s j: the j-th EV charging station.
pk j; charging price of the j-th charging station in
the k-th horizon.
ck: electricity wholesale price in the k-th horizon.
E: electricity storage capital.
Rk: total revenue in the k-th horizon.
ok: electricity purchase in the k-th horizon.
dk j: charging demand at the j-th charging station
in the k-th horizon.
Gk: overall customer satisfaction.
β: weighting parameter of customer satisfaction.
α: shape parameter for customer satisfaction
function.
ω: shaping parameter for customer satisfaction
function.
φk: total charging demand in the k-th horizon.
Qk: stress imposed on power grid due to EV
charging in the k-th horizon.

oref: reference electricity purchase (average
electricity purchase).

omax: maximum electricity purchase.

µ: weighting parameter of electricity purchase
fluctuation.

Ik: electricity storage at the beginning of the k-th
horizon.

uk: renewable energy generation in the k-th
horizon.

Wk: electricity storage cost in the k-th horizon.

η: unit electricity storage cost.

Πk: total utility in the k-th horizon.

γi, j: price elasticity parameter.

Jk(Ik): maximum aggregated utility from the k-th
horizon to the last horizon.

1 INTRODUCTION

Recent innovations in battery and powertrain tech-
nology have served as a catalyst for expediting
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the proliferation of electric vehicles (EVs). EVs
exhibit many advantages over the internal combustion
engine (ICE) vehicles, including lower operation cost,
higher fuel conversion efficiency, and reduced or
eliminated tailpipe emission (Simpson, 2006; IEC,
2007). The American market share of plug-in EVs
in new registered cars increased from 0.14% to
0.37% in 2012, 0.62% in 2013, and 0.72% in 2014
(Electric Drive Transportation Association, 2015).
According to Navigant Research, the global light duty
EV market is expected to grow from 2.7 million
vehicle sales in 2014 to 6.4 million in 2023 (Navigant
Research, 2014). EVs will play a significant role
in transportation electrification. Nevertheless, the
limited driving range and the long charging time are
still the major obstacles to the proliferation of EVs.
The “range anxiety” is like the Sword of Damocles
for EV owners. More charging stations need be
established to alleviate the “range anxiety”. In
addition, the profitability of the EV charging industry
is another critical issue that should be considered.
The EV charging industry needs a promising business
model to bring more private investors into this
industry instead of solely relying on financial support
or incentives from governments. The effective and
efficient management of charging infrastructure is at
the heart of the EV charging industry. The objective
of this paper is to provide guidelines for charging
service providers make informed and optimized
decisions on pricing and energy management so
as to coherently improve profits, enhance customer
satisfaction, and reduce uncertainties or risks.

Currently, there is a plethora of literature aiming at
addressing the dynamic pricing issue of EV charging
stations. Yan et al. proposed a multi-tiered real-
time pricing algorithm for charging stations by taking
into account both the day-ahead predicted electricity
price and the real-time load information (Yan et al.,
2014). However, they did not consider the possibility
that EV owners may change their charging behavior
in response to the varying prices. Han et al.
presented a dynamic pricing and scheduling scheme
for EV charging stations while considering grid-to-
vehicle (G2V) and vehicle-to-grid (V2G) (Han et al.,
2012). They used a Stackelberg game to characterize
the strategic interactions between the “selfish” EV
owners and the charging stations. However, they only
considered a single charging station in their model.
In (Ban et al., 2012), a price control method was
employed to guide EVs to different charging stations
while satisfying the predefined QoS and maintaining
power grid stability. The authors used a multi-queue
system to model the arrival and departure of EVs.
Nevertheless, they treated the charging station as a

profit-neutral entity, which may not be an appropriate
assumption for the real market. In (Martirano et al.,
2014), the authors proposed a scheme called the
“Interactive Energy”, for the dynamic pricing and
electricity delivery of the EV charging services based
on the status of the microgrid. However, the overall
customer satisfaction was not considered in their
analysis. The pricing models proposed in (Rahbari-
Asr et al., 2013) and (Guo et al., 2014) did not
incorporate the renewable energy (like wind power or
solar power), which is becoming an important energy
source. In (Guo et al., 2016), the authors addressed
a two-stage framework for the economic operation of
a microgrid-like electric vehicle parking deck using
a stochastic approach and model predictive control
(MPC).

Our work is motivated by the fact that the
charging service providers face many uncertainties
when determining the appropriate charging prices
and managing the electricity storage. In this paper,
we consider three types of uncertainties that the
service providers may face: (1) the uncertainty of
spatial-temporal charging demand at each charging
station, (2) the uncertainty of renewable energy
generation, and (3) the uncertainty of the electricity
price at the wholesale market. We also assume that
a charging service provider operates a network of
charging stations. As a mediator in the power grid,
the service provider purchases the electricity from
the wholesale market and resells it to EV owners.
We also assume that the service provider owns a
storage system that stores the excessive electricity
temporarily. Additionally, the service provider can
harvest the distributed renewable energy generation,
and use it as a supplementary energy source for EV
charging.

In our study here, we first employ a linear
regression model to estimate the EV charging
demand. Specifically, the customer’s price elasticity
coefficients, reflecting the customer’s sensitivity to
charging price variation, will be estimated using
historical data. Subsequently, we apply the Dynamic
Programming (DP) computation algorithm to derive
the optimal charging prices and how much electricity
to be purchased from the wholesale market based on
the current electricity storage and renewable energy
forecast.

The main contribution of this paper is a
computation framework to help the EV charging
service provider calculate the optimal charging prices
and determine the appropriate amount of electricity to
purchase from the wholesale market in each planning
horizon. Our computation framework can deal with
the three aforementioned uncertainties and is aimed
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at striking a balance among the profit, customer
satisfaction, and the power grid stability.

2 PROBLEM FORMULATION

In our model, we postulate that there is an EV
charging service provider operating a network of
charging stations. As a mediator between the power
grid and the end customers (i.e., EV owners), the
charging service provider purchases electricity from
the wholesale market at the day-ahead prices, and
resells it to EV owners at the retail charging price.
Figure 1 depicts a general business model for EV
charging.

Electric vehicles Power plants Charging service provider 

Renewable energy 

MWh kWh 

Wholesale Retail 

Figure 1: The EV Charging Market.

2.1 Profit of The Service Provider

The worldwide deregulation of electricity market
(e.g., PJM Interconnection, ERCOT in USA, New
Zealand, Singapore, UK markets, etc.) gives
birth to the prosperous forward markets and day-
ahead markets. The Independent System Operator
(ISO) or the Regional Transmission Organization
(RTO) calculates the day-ahead market prices through
an auction between the power generators and the
retailers using the locational marginal pricing (LMP)
scheme (Huisman et al., 2007; Treinen, 2005; Frame,
2001). We assume that the charging service provider
is one of the retailers, buying electricity from the
wholesale market and reselling it to EV owners.
Let S = [s1,s2, · · · ,sL] denote the set of charging
stations. We divide a day into N planning horizons
(stages). At the beginning of each horizon, the service
provider updates the charging prices, and calculates
how much electricity needs to be purchased from
the wholesale market. We allow charging prices
vary among different charging stations. Let Pk =
[pk1, pk2, · · · , pkL](k = 1,2, · · · ,N) be the charging
price vector in the k-th horizon, and ok be the
electricity purchase. Currently, the day-ahead market
prices are calculated on a hourly basis, so N = 24. Let

C = [c1,c2, · · · ,cN ] denote the day-ahead wholesale
market prices. The total profit of the service provider
in the k-th horizon is given by

Rk =
L

∑
j=1

pk jdk j− ckok (k = 1,2, · · · ,N), (1)

where dk j is the charging demand at the j-th charging
station in the k-th horizon, and ∑L

j=1 pk jdk j is the total
revenue, and ckok is the cost of electricity purchased
in the k-th horizon.

2.2 Customer Satisfaction Evaluation

The charging service provider attempts to achieve
the goals of improving the profits, enhancing the
customer satisfaction, and maintaining power grid
stability. Poor customer satisfaction may hinder
the wide adoption of EVs, thus, affecting the
development of the entire EV industry. In this sense,
the charging service provider cannot be a myopic
profit squeezer that maximizes the profit at the
expense of customer satisfaction. Various customer
satisfaction evaluation methods have been studied in
(Yang et al., 2013; Fahrioglu et al., 1999; Faranda
et al., 2007). In this paper, we use a quadratic function
to characterize the overall customer satisfaction of the
entire population of EV owners, denoted by Gk.

Gk = β
(

ωφk−
α
2

φ2
k

)
, 0≤ φk ≤ E (2)

where β is the weighting parameter and E is the
capacity of the electricity storage system, ω and α
are the shape parameters of this quadratic function.
The variable φk is the total electricity consumption
(charging demand) of all EV owners in the k-th
horizon which is defined as

φk =
L

∑
j=1

dk j. (3)

The quadratic functions with different combina-
tions of ω and α are shown in Figure 2. We observe
that the quadratic function has a minimum value of
0, suggesting that the EV owners are very “unhappy”,
and a maximum value of 1, suggesting that the EV
owners are very “happy”. Additionally, Equation
(2) is a non-decreasing concave function with a non-
increasing first-order derivative. The overall customer
satisfaction grows as the total electricity consumption
increases. However, the decreasing growth rate
suggests that the customer satisfaction tends to get
saturated as the electricity consumption increases.
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Figure 2: Customer Satisfaction Functions (E = 200).

2.3 Impact of EV Charging on Power
Grid

Many studies (Lopes et al., 2011; Kinter-Meyer et al.,
2007; Scott et al., 2007) have shown that large-scale
simultaneous EV charging presents many challenges
to the existing power grid pertaining to severe power
loss, power grid stability, frequency drift, and voltage
fluctuation, etc. In the electric power system,
the networked generators cooperatively adjust their
outputs to balance the supply and the demand and
maintain the power quality. Generally, the power
generators hope that the load is predictable and
relatively stable (or at least slow-varying). If the
load fluctuates too much, the power generators have
to ramp up and down frequently, resulting in low
efficiency and high maintenance cost. As a result,
we do not want the electricity purchase from the
wholesale market ok to fluctuate too much which
may create a heavy “burden” on the power grid. We
formulate the penalty of EV charging in the following
way

Qk = µ(ok−oref)
2, (4)

where oref is a reference purchase (or average
electricity purchase) and ok is the electricity
purchased in the k-th horizon. The variable µ is
the weighting parameter reflecting the sensitivity of
electricity purchase fluctuation.

2.4 Cost of Electricity Storage

We assume that the charging service provider has an
electricity storage with a capacity of E(MWh). Let Ik
denote the electricity in the storage at the beginning of
the k-th horizon, and let uk be the renewable energy
generation (i.e. wind power or solar power). Here
uk is the predicted renewable energy. The electricity

storage cost in the k-th horizon is given as follows

Wk = η(Ik +uk +ok−
L

∑
j=1

dk j), (5)

where ∑L
j=1 dk j is the total charging demand in the k-

th horizon, and η($/MWh) is the unit storage cost.
The storage cost includes capital cost, maintenance
cost, and power loss due to energy conversion.

Finally, the total utility of the service provider in
the k-th horizon is given as

Πk = Rk +Gk−Qk−Wk

=
L

∑
j=1

pk jdk j− ckok +β
(

ωφk−
α
2

φ2
k

)
−

µ(ok−oref)
2−η(Ik +uk +ok−

L

∑
j=1

dk j),

(6)

Note that the total utility consists of four
components—total revenue, customer satisfaction,
power grid influence, and electricity storage cost. The
values of β and µ reflect the weights of customer
satisfaction and EV charging penalty in the total
utility function.

Our objective here is to maximize the overall
utility by solving the following optimization problem.

(P∗1 ,o
∗
1, · · · ,P∗N ,o∗N) = argmax

P1,o1,··· ,PN ,oN

{
N

∑
k=1

Πk

}
,

s.t.




0≤ ok ≤ omax;k = 1,2, · · · ,N
pk j ≥ 0; j = 1,2, · · · ,L
Ik +ok−∑L

j=1 dk j ≥ 0
Ik +ok−∑L

j=1 dk j ≤ E
dk j ≥ 0; j = 1,2, · · · ,L

(7)

where Pk and ok are , respectively, the charging price
vector and electricity purchase in the k-th horizon.

To resolve this problem, we are facing two major
challenges: (1) accurately estimate the charging
demand φk, and (2) solve the large-scale optimization
problem in a more efficient way. In the following
sections, we will discuss these problems in more
details.

3 SPATIAL-TEMPORAL
CHARGING DEMAND
ESTIMATION

In this section, we consider the estimation of the
charging demand φk. The charging demand function
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characterizes the customer’s responsiveness to the
fluctuation of charging prices, for EV owners may
adjust their charging demand or schedule in response
to the variation of charging prices.

In the initial phase of the optimization framework,
we do not have the information of the EV owner’s
responsiveness to the charging prices. We thus apply
a linear regression model to learn and predict the
charging demand φk. For each charging station j( j =
1,2, · · · ,L), the charging demand is expressed by





dk1 = γ0,1− γ1,1 pk1 + γ2,1 pk2 + · · ·+ γN,1 pkN + εk1,

dk2 = γ0,2 + γ1,2 pk1− γ2,2 pk2 + · · ·+ γN,2 pkN + εk2,
...
dkL = γ0,L + γ1,L pk1 + γ2,2 pk2 + · · ·− γN,L pkN + εkL,

(8)
where γ0, j( j = 1,2, · · · ,L) is the intercept of the j-th
linear regression equation, and γi, j = γ j,i(i 6= j) are the
cross-price elasticity parameters, reflecting how the
change of the charging price of station j can influence
the charging demand at station i. And γi,i is the self-
price elasticity parameter, reflecting how the change
of the charging price of station i can influence its own
charging demand.

In this work, we employ the recursive least
square (RLS) (Proakis, 2007) method to estimate the
elasticity demand parameters from historical data. Let
Wj = [γ0, j,γ1, j, · · · ,γN, j] denote the price elasticity
parameter vector relevant to charging station j( j =
1,2, · · · ,L). Applying the RLS algorithm, we have
the following update formula





ek j = dk j−PT
k Wj,

gk j =
H(k−1) jPk

λ+PT
k H(k−1) jPk

,

Hk j = λ−1H(k−1) j−gk jPT
k λ−1Pk,

Wj←Wj + ek jgk j,

(9)

where ek j is the prediction error and λ is the forgetting
factor. In initialization, H0 j is the identity matrix and
P0 is an all-zero vector.

Note that Equation (8) captures both the spatial
and temporal fluctuation of charging demand. The
difference in population density, traffic flow, and
urbanization level may result in the spatial fluctuation
of charging demand. Thus, we use different linear
regression equations to estimate different charging
stations. On the other hand, the use of RLS algorithm
enables us to characterize the temporal fluctuation of
charging demand. It keeps track of the most recent
changes in customer’s charging behavior because the
price elasticity parameters will be updated once a new
data is observed.

4 PRICING POLICIES: GREEDY
ALGORITHM VS DP
ALGORITHM

Note that Equation (7) is a complex optimization
problem with N(L+1) decision variables and N(2L+
3) constraints. It is mathematically cumbersome
and hardly feasible to solve this problem in a
brute force manner. One approach is to divide the
original optimization problem into N independent
subproblems. Each horizon corresponds to a
subproblem, and then employ the greedy search
algorithm. This idea will be further discussed in
Subsection 4.1.

On the other hand, we observe that the original
problem exhibits the properties of overlapping
subproblems and optimal substructure, which can
be exploited to solve this problem more efficiently.
Here, we apply the dynamic programming (DP)
computation algorithm to the original problem. DP
is a computation algorithm of solving a large-scale
complex problem by partitioning it into a set of
smaller and simpler subproblems (Cormen et al.,
2001; Bertsekas, 2000). By solving and combining
these subproblems in a forward (bottom-up) or
backward (top-down) fashion, we can obtain the
solution to the original problem. In contrast to the
brute force approach, DP can significantly accelerate
computation speed and save storage. We will discuss
DP in Subsection 4.2.

4.1 Greedy Algorithm

The original optimization problem in Equation (7)
aims to maximize the total utility over N horizons.
The control variables are “chained” in the sense that
the decision variables in the previous horizon can
influence the decision variables in the current horizon.
For simplicity, we ignore the correlation between
adjacent horizons, and try to maximize the utility in
each individual horizon. Specifically, we attempt to
solve the following problem in the k-th horizon,

(P∗k ,o
∗
k) = argmax

Pk,ok

{Πk}

s.t.




0≤ ok ≤ omax;k = 1,2, · · · ,N
pk j ≥ 0; j = 1,2, · · · ,L
Ik +ok−∑L

j=1 dk j ≥ 0
Ik +ok−∑L

j=1 dk j ≤ E
dk j ≥ 0; j = 1,2, · · · ,L

(10)

where Pk and ok are , respectively, the charging price
vector and electricity purchase in the k-th horizon. We
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will use the greedy algorithm as a benchmark in the
simulations.

4.2 Dynamic Programming Algorithm

Note that the hourly-based wholesale electricity
prices are only posted day ahead. We analyse the
dynamic pricing problem with finite horizons (stages)
with N = 24. The system dynamics are expressed by
the evolution of some variables, or the system’s state
variables, under the influence of the decision variables
at the beginning of each horizon (stage) (Bertsekas,
2000; Nemhauser, 1996). The system dynamics are
expressed by the following evolution equation

Ik+1 = Ik +uk +ok−φk

= Ik +uk +ok−
L

∑
j=1

dk j

= f (Ik,uk,Pk,ok),k = 1,2, · · · ,N

(11)

where Ik is the state variable, representing the
electricity storage at the beginning of the k-th
horizon. The variables uk and ok are, respectively, the
renewable energy and the electricity to be purchased
from the wholesale market. The charging demand
in the k-th horizon is φk. Note that φk is actually
a function of the charging price vector Pk, and the
decision variables of the system are (Pk,ok). The
aggregated utility of the service provider from the first
horizon to the Nth horizon is given by

ΠN+1(IN+1)+
N

∑
k=1

Πk(Ik,Pk,ok), (12)

where ΠN+1(IN+1) is the terminal utility incurred at
the end of the process. We can assign a heuristic value
for the terminal utility. The maximum utility J1(I1) is
given by the following form

J1(I1) =

max
P1,o1,··· ,PN ,oN

{
ΠN+1(IN+1)+

N

∑
k=1

Πk(Ik,Pk,ok)

}
,

(13)
Furthermore, the utility J1(I1) can be calculated in a
recursive manner as follows

J1(I1) = max
P1,o1
{Π1(I1,P1,o1)+ J2(I2)} , (14)

or

J1(I1) = max
P1,o1
{Π1(I1,P1,o1)+ J2( f (I1,u1,P1,o1))} ,

(15)
where J2(I2) is given by

J2(I2) =

max
P2,o2,··· ,PN ,oN

{
ΠN+1(IN+1)+

N

∑
k=2

Πk(Ik,Pk,ok)

}
,

(16)
We can apply Equation (15) recursively from the Nth
horizon backward to the first horizon to derive the
solution J1(I1). The detailed derivation of Equation
(13) to Equation (15) is given in Appendix.

Let Xk = [pk1, pk2, · · · , pkL,ok]
T denote the deci-

sion variables. Moreover, the recursive DP formula
can be rewritten as one of quadratic programming as
follows,

Jk(Ik) = max
Xk∈Z(Xk)

{1
2

XT
k QXk +BT

k Xk + rk

}
, (17)

where Z(Xk) is the feasible solutions derived from the
constraints in Equation (7). The matrix Q is given by



−2γ1,1−αβΓ2
1 · · · 2γ1,L−αβΓ1ΓL 0

2γ2,1−αβΓ2Γ1 · · · 2γ2,L−αβΓ2ΓL 0
...

...
2γL,1−αβΓLΓ1 · · · −2γL,L−αβΓ2

L 0
0 · · · 0 −µ




(18)
where Γ j( j = 1,2, · · · ,L) is

Γ j =−γ j, j +
L

∑
i=1,i 6= j

γ j,i. (19)

Bk is

Bk =




γ0,1 +(η+βω)∑N
j=1 γ1, j−αβΓ0Γ1
...

γ0,L +(η+βω)∑N
j=1 γL, j−αβΓ0ΓL

−ck−η+2µoref


 ,

(20)
where Γ0 is

Γ0 =
L

∑
i=1

γ0,i. (21)

rk is

rk =−η(Ik +uk)+βφk−µo2
ref+

(η+βω)Γ0−
αβ
2

Γ2
0 + Jk+1(Ik+1),

(22)

where Jk+1(Ik+1) is the total aggregated utility
starting from the (k+1)th horizon to the Nth horizon,
which can be calculated using the DP recursive
formula. We can treat Jk+1(Ik+1) as a constant value
when we calculate Jk(Ik).
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5 DYNAMIC PRICING AND
ENERGY MANAGEMENT
FRAMEWORK SUMMARY

There are two principal modules in the dynamic
pricing and energy management framework: the
charging demand prediction module and the DP
module. Figure 3 illustrates the schematics of the
framework. They work collaboratively to make the
optimal decisions on charging prices Pk and the
electricity purchase ok for the service provider. The
algorithm is summarized below:

Algorithm 1: Dynamic Pricing and Energy Management.

Input:
1: The electricity storage (system state), Ik;
2: The renewable energy prediction

uk,uk+1, · · · ,uN ;
3: The wholesale electricity prices, ck,ck+1, · · · ,cN ;

Output: The new system state Ik+1, the charging
prices Pk, and electricity purchase ok;

4: Load the price coefficients γk
i, j(i, j = 1,2, · · · ,N)

from linear regression module into the DP engine
module;

5: The DP engine takes the inputs and generates the
outputs Pk,ok using Eq. (17);

6: Compute the charging demand prediction error
ek = φk − φ̂k. Apply the RLS method to update
the price coefficients γk+1

i, j = f (γk
i, j,ek);

7: Update the electricity storage Ik+1 = Ik + uk +
ok−φk; return Ik+1,Pk,ok;
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Figure 3: Dynamic Pricing and Energy Management
Algorithm

6 SIMULATION RESULTS AND
DISCUSSIONS

The simulation parameters are given in Table 1. We
use the historical data of the PJM day-ahead market
in our simulations, see Figure 4. We use the solar
radiation data from the National Solar Radiation
Data Base (National Renewable Energy Laboratory,
2015) as a proxy of the predicted renewable energy
generation. For simplicity, we assume that the
solar cell efficiency is 20%. The renewable energy
generation prediction is shown in Figure 5. We notice
that the solar power generation begins at 8:00 and
ends at 17:00 with a peak at 13:00.

6.1 DP Algorithm versus Greedy
Algorithm

We use the greedy algorithm as the benchmark, and
compare DP algorithm with the greedy algorithm.
Figure 6 shows the profit increase of DP algorithm
(using greedy algorithm as the benchmark). The
simulation reveals that DP algorithm achieves up
to 9% increase in profit in contrast to the greedy
algorithm. The reason why DP algorithm can achieve
a higher profit is that it exploits the information of
the entire hourly day-ahead prices and the renewable
energy prediction to make optimized decisions at each
horizon. The decisions made in each horizon are
optimized so that the aggregated profit over multiple
horizons is maximized. In contrast, the greedy
algorithm is a myopic algorithm because it only
maximizes the profit in the current horizon without
considering the day-ahead prices and the renewable
energy generation in the future. Comparing the
computational complexity of the two algorithms,
we note that greedy algorithm has a linear time
complexity O(N), while DP algorithm has a quadratic
time complexity O(N2), where N is the number of
planning horizons. Therefore, DP algorithm achieves
a higher profit (better performance) at the cost of
increased computing time.

6.2 Tradoff between Profit And
Customer Satisfaction

This section considers how the profit and customer
satisfaction change as the customer satisfaction
weighting parameter β increases from 0 to 30000 with
an interval of 5000. From Figure 7, we observe that
as β increases, the customer satisfaction increases
and the profit suffers a significant decrease. It
is clear that the charging service provider should
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Table 1: Simulation Parameters.

Coefficient Description Unit Value
N Number of horizons - 24
E Energy storage capacity MWh 200
ω Customer satisfaction para. - 0.01
α Customer satisfaction para. - 5e-5
β Satisfaction Parameter - 0, · · · , 30000
µ Power grid impact parameter - 0.1
η Storage cost $/MWh 0.5, 1.0, 1.5
oref Reference purchase MWh 40

make a tradeoff between profit maximization and
customer satisfaction improvement by choosing a
proper weighting parameter β.

6.3 The Aggressive or Conservative
Electricity Purchase Strategy

The electricity storage system enables the charging
service provider to purchase extra electricity from the
wholesale market when the wholesale price is low,
and store the unsold electricity for future use when
the wholesale price is high. In this simulation, we
analyze how this “buy low and sell high” strategy
may change as the energy storage cost increases. In
Figure 8, the first three subplots are the electricity
purchase with different energy storage costs (η =
0.5,η = 1.0,η = 1.5 ), and the last subplot is the
day-ahead wholesale market prices. From Figure
8, we make three observations: (1) The average
electricity purchase is 37 MWh in each horizon; (2)
When η = 1.5, the electricity purchase almost does
not change. This suggests that the service provider
becomes conservative in electricity purchase as the
storage cost increase. In other words, the service
provider cannot improve the profit through “buy low
and sell high” strategy due to the high storage cost;
(3) When η = 0.5 and η = 1.0, the service provider
is likely to purchase more electricity during low-
price horizons (from 3:00 to 8:00), and purchase less
electricity during high-price horizons (from 11:00 to
19:00). Generally speaking, low electricity storage
cost spurs the service provider to adopt an aggressive
electricity purchase strategy.

6.4 Smoothing Price Fluctuation via
Electricity Storage System

In this section, we investigate the correlation between
the charging prices and the electricity storage cost. In
the simulation we have 20 charging stations in total,
and we randomly choose 3 charging stations to plot
Figure 9. The solid lines represent the charging prices

with low storage cost (η = 0.5), and the dash lines are
the charging prices with high storage cost (η = 1.5).

First, we notice that different charging stations
have different charging prices. Second, the charging
prices with high storage cost are more volatile than
those with low storage cost. When the wholesale
prices are low (from 1:00 to 8:00), the charging prices
with high storage cost are lower than those with low
storage cost. When the wholesale prices are high
(from 12:00 to 19:00), the charging prices with high
storage cost are higher than those with low storage
cost. The reason for the difference is that when the
storage cost is low, the service provider can have more
electricity reserved in the storage system which can be
used in the future when the wholesale electricity price
is high. Therefore, the charging prices stay relatively
stable over time. As the storage cost increases,
electricity storage becomes expensive. Without the
“buffer effect” of the electricity storage system, the
EV owners are exposed to the varying charging price
which is directly influenced by the wholesale market.
Hence, a low-cost energy storage system can not only
increase the total profit but also act as a buffer to
smooth out the fluctuation of the charging prices.

7 CONCLUSION

In this paper, a DP based pricing and energy
management framework for EV charging stations is
studied. The proposed framework aims to strike a
balance among three conflicting goals of improving
the total profit, enhancing the user satisfaction, and
reducing the EV charging impact on the power grid.
In this study here, we incorporate the electricity
storage system and the renewable energy generation
as an energy supplement. To solve the optimization
problem, we apply the DP algorithm to calculate the
charging prices and the electricity purchase for each
planning horizon. The simulation results show that
the DP algorithm can obtain higher profits compared
with the greedy algorithm. In addition, we observe
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Figure 4: PJM Electricity Wholesale Prices.
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Figure 8: Electricity Purchase with Different Storage Cost.

that the electricity purchase is heavily influenced by
the wholesale prices and the energy storage cost.
A low-cost energy storage system is beneficial for
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Figure 5: Hourly Renewable Energy Generation.
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Figure 9: Charging Prices with Different Storage Cost.

improving the profit and stabilizing the charging
prices.
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APPENDIX

Given the following optimization problem

Jk(Ik) =

max
Pk,ok,··· ,PN ,oN

{
ΠN+1(IN+1)+

N

∑
j=k

Π j(I j,Pj,o j)

}
.

(23)
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Note that I j+1 = I j + u j + o j− φ j;( j > k), so I j+1 is
a function of I j,o j,and Pj. We can prove that I j+1
is actually a function of (Ik,ok,ok+1,o j,Pk, · · · ,Pj) by
recursively applying the formula to substitute I j. Then
we can rewrite Equation (23) as follows,

Jk(Ik) = max
Pk,ok,··· ,PN ,oN

{
ΠN+1(IN+1)+

N

∑
j=k

Π j(Ik,Pk, · · · ,Pj,ok, · · · ,o j)

}

= max
Pk,ok

{
Πk(Ik,Pk,ok)+

max
Pk+1,ok+1,··· ,PN ,oN

{
ΠN+1 +

N

∑
j=k+1

Π j

}}

= max
Pk,ok

{
Πk(Ik,Pk,ok)+ Jk+1(Ik+1)

}
,

(24)
where Jk+1(Ik+1) is given by

Jk+1(Ik+1) = max
Pk+1,ok+1,··· ,PN ,oN

{
ΠN+1 +

N

∑
j=k+1

Π j

}
.

(25)
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