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Abstract: Over recent years, the curve of the importance of data replication has risen steeply owing to the fact that 
databases are increasingly deployed over clusters of different workstations over time. A variety of 
replication techniques have been introduced to the distributed systems field which, in this paper, are 
classified based on whether they have an unbalanced load between servers or not (classic and modern). 
Replication techniques from both categories can be enhanced by avoiding some of the challenges that are 
illustrated in detail in this paper. Moreover, this paper analyses replication techniques in each category by 
exploring their strengths and weaknesses as well as providing possible novel solutions that can diminish or 
eliminate these challenges and introduces a brief description of the Dynamic Object Ownership Distribution 
Protocol that aims at increasing throughput by increasing the rate of performing transactions locally in 
addition to viewing a promising preliminary results of its performance. 

1 INTRODUCTION 

We have witnessed a noticeable increase in attention 
paid to the variety of replication techniques since the 
world has now become a small village which makes 
the need for data to be deployed over the whole 
globe. Systems use redundant data through the 
utilization of replication techniques. Replication can 
be defined as creating two or more copies of a data 
object with the intention of providing high 
availability, consistency, and fault-tolerance. These 
replicated data objects are stored at various servers 
to allow accessibility by clients in cases where a 
server is pulled away either by obligation or as an 
option (Özsu and Valduriez, 2011, Charron-Bost et 
al., 2010, Mostafa and Youssef, 2014b). 

Replication techniques can be categorized into 1) 
classic replication techniques which include Active 
Replication when it is used by Paxos, the Primary-
Backup Replication which uses Passive Replication, 
and Chain Replication which is derived from the 
Primary-Backup Replication; and 2) modern 
replication techniques which include Mencius, 
Egalitarian Paxos, Object Ownership Distribution 
Replication, and others. In this paper, when we 
mention Paxos, we mean the replication process in 
Paxos that uses Active Replication. Active 
Replication (State Machine Replication), is a 
technique that has been massively used to implement 

critical systems such as data stores and coordination 
services and in Internet scale infrastructures such as 
Yahoo, Google, and MSN. It works by making all 
the servers in the system execute the same set of 
operations in the same order which requires that the 
process hosted by the servers to be deterministic 
(Charron-Bost et al., 2010, Schneider and Zhou, 
2005, Sousa and Bessani, 2012, Dettoni et al., 2013). 
In passive replication, there is one server, the 
primary server (sequencer), which acts as a single 
organizer for other servers in the system because it 
executes operations and propagates the new state to 
them (Rao, 2008, Cecchet et al., 2008, Lang et al., 
2010, Effatparvar et al., 2010, Budhiraja et al., 1993, 
Mostafa and Youssef, 2014a). 

Classic replication techniques have similar issues 
in that they have a server that is a bottleneck, which 
means that management responsibilities are 
cohesively done by a single server and not 
distributed between servers in a cell as effectively as 
they could be. This leads to an imbalance in the 
communication pattern, which in turn leads to 
limiting the available network bandwidth. In 
addition, in the case of a leader or primary server 
failure, re-electing a new one can cause performance 
degradation. This is because in situations where a 
leader or primary server needs to be pulled out of the 
system for any reason, it is not possible to perform 
this operation until the server is shut down or 
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another protocol that is designed to do this particular 
job is used, such as the Primary Replacement 
Protocol (Mostafa and Youssef, 2014b) and the 
Primary Shift Protoco (Mostafa and Youssef, 2013). 
Thus, without a structured solution programmed to 
be a part of the replication protocol itself, the 
reconfiguration process to the leader or primary 
server may not be easy or effective. On the other 
hand, modern replication techniques are focusing on 
distributing responsibilities of the single point of 
failure that the classic ones struggle with. 

There are many issues that can be found in a 
replication cell which affect the cell’s performance. 
For instance, having an unbalanced load distribution 
between servers in a single cell due to the lack of an 
inherent load balancing technique; the lack of 
latency awareness between these servers and their 
clients and between the servers themselves; poor 
reconfiguration planning; the absence of techniques 
that allow the system to be aware of the resources 
capabilities ( such as CPU or memory) of its servers; 
and the inability of the system to be aware of 
external environmental factors such as network 
changes and clients’ behavior. 

The rest of the paper is structured as follows: 
Section 2 discusses, reviews, and analyzes classic 
replication techniques and shows a detailed 
discussion regarding challenges that these 
techniques struggle with in addition to comparing 
their strengths and weaknesses. Section 3 discusses 
the same aspects that have been discussed in section 
2 but with modern replication techniques. Section 4 
proposes suggestions that could be utilized to 
improve replication techniques. Section 5 proposes 
the Dynamic Object Ownership Distribution 
Protocol and shows some of its preliminary results. 
Section 6 concludes the paper. 

2 DESCRIPTION AND 
CHALLENGES OF CLASSIC 
REPLICATION TECHNIQUES 

This section reviews classic replication techniques 
including Paxos, the Primary-Backup Replication, 
and Chain Replication, and some of the challenges 
associated with them. 

2.1 Paxos 

Paxos is a consensus protocol that uses state 
machines in its replication process (Bolosky et al., 
2011, Lamport, 1998, Lamport, 2001, Lampson, 

2001). It is the first example that comes to mind 
when thinking of a consensus protocol. It results in 
an agreement on the order of inputs between several 
servers, even if some of the servers crash and restart 
or the minority of them fail permanently. More 
details about Paxos in the paper (Tan et al., 2014). 
The Chubby lock service for loosely coupled 
distributed systems (Burrows, 2006) and Spanner as 
Google’s globally distributed database (Corbett et 
al., 2013) are services that utilize Paxos as their core 
replication protocol. 

The challenge that Paxos is facing is that the 
server leading the backups (followers) does all the 
management work without including any of the 
other servers to do that work. If the leader fails, then 
one of the backups is chosen, depending on a 
consensus decision to be the next leader. During the 
election process, any operations that are trying to 
reach this data partition need to stop working for a 
while until a new leader is elected (throughput drops 
to zero). 

2.2 The Primary-Backup Replication 

The Primary-Backup Replication (Cecchet et al., 
2008, Lang et al., 2010, Effatparvar et al., 2010, 
Budhiraja et al., 1993, Mostafa and Youssef, 2014a, 
Schneider and Zhou, 2005) has a single server which 
is the primary one that is responsible for organizing 
and managing the locking/unlocking operations of 
objects. It is exclusively designated to do this job to 
make sure that consistency and serialization are 
applied all the time. Any other server in the system 
is a backup and does not have any of the 
management responsibilities. One of the services 
that sometimes utilizes the Primary-Backup 
Replication is Zookeeper (Hunt et al., 2010).  

The challenge that the Primary-Backup 
Replication has is similar to the one that we have 
discussed with Paxos. It includes an unfair 
distribution of the management responsibilities 
between servers in a cell in addition to having 
difficulties when applying the election process 
which includes dropping the throughput to zero. 

2.3 Chain Replication 

It is one of the Primary-Backup Replication 
approach forms that improves throughput and 
availability (Van Renesse and Schneider, 2004). In a 
paper entitled "Chain Replication for Supporting 
High Throughput and Availability", the two 
researchers, Can Renesse and Schneider, described 
the  Chain  Replication  process  to  be  a   group   of 
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various master/slave replications where servers that 
store replicas of an object are linearly ordered to 
form a chain. All decisions about object updates are 
made by the head of the chain in a strict order and 
these decisions are propagated down the chain. All 
read-only queries are processed by the tail of the 
chain which is the server that is positioned last. One 
of the services that utilizes Chain Replication is 
Hibari (Fritchie, 2010). Figure 1 portrays how Chain 
Replication works. 

The challenge that Chain Replication is facing is 
similar to the one that we have discussed in Paxos 
and the Primary-Backup Replication before. It 
includes not having a fair distribution of the 
management responsibilities between servers in its 
cell, since the head server is responsible for the 
update operations and the tail server for the read 
operations. In addition, there is a process that is 
employed in Chain Replication called the master 
process which deals with a server failure depending 
on the position of the failing server. So, it is difficult 
to apply reconfiguration to the head or tail server 
and having to apply the master process without 
preventing clients from accessing the data partition 
for a while. 

The reason for these issues in these three 
replication protocols is the lack of an inherent load 
balancing technique that is built into the replication 
protocol itself. Table 1 shows a comparison between 
the classic replication techniques. 

 
Figure 1: “Update request” and “Read request” in Chain 
replication (Fritchie, 2010). 

3 DESCRIPTION AND 
CHALLENGES OF MODERN 
REPLICATION TECHNIQUES 

This section reviews modern replication techniques 
including Mencius, Egalitarian Paxos, and Object 
Ownership Distribution Replication and some of the 
challenges associated with them. Their main 
objective is to improve a cell's throughput by 
distributing management responsibilities among 
servers. 

Table 1: Comparison between Paxos, Primary-Backup Replication, and Chain Replication. 

Type of 
Replication Important Strengths Important Weaknesses 

Paxos 

- It is preferable when dealing with 
byzantine faults. 
- Disseminating updates is a 
parallel process. 

- The need for a leader election protocol.  
- No consensus can be made during the leader election process. 
- Most of the real-world servers are non-deterministic.  
- Determinism requires ordering which makes the process harder.  
- Cell’s throughput equals the throughput of the leading server 
(bottleneck problem). 

Primary-
Backup 

Replication 

- Cheap. 
- Disseminating updates is a 
parallel process. 

- The need for a leader election protocol.  
- Cell’s throughput equals the throughput of the primary server 
(bottleneck problem). 
- No transactions can be processed during the primary election 
process. 

Chain 
Replication 

- The primary role is split between 
two servers (head and tail). 
- It guarantees a strong consistency 
and high throughput. 
- For query requests, it provides 
low latency. 

- The need for the master process.  
- For update requests, it provides high latency. 
- Cell’s throughput equals the head’s throughput (write) and the 
tail’s throughput (read). 
- Disseminating updates is a serial process. 
- During the master process run, specific transactions cannot be 
processed after the failure of the head or tail server. 
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3.1 Mencius 

Numerous protocols extend Paxos for the purpose of 
improving consensus performance, two of its 
variants being Fast Paxos (Lamport, 2006), which 
reduces latency, and CoRefP (Dobre et al., 2006), 
that simultaneously runs Paxos and Fast Paxos to 
improve the problem of collisions. Neither of these 
two variants are the most suitable choices when 
thinking of wide-area applications. A better solution 
can be found in Mencius (Mao et al., 2008) which is 
a multi-leader state machine replication protocol that 
comes originally from Paxos. 

The idea of Mencius is to distribute the sequence 
of the instances of the consensus protocol between 
servers in a cell. For instance, if we have five servers 
in a cell, the first server is responsible for instance 0, 
5, 10 and so on, the second server is responsible for 
instance 1, 6, 11, and so on, the third server is 
responsible for instance 2, 7, 12 and so on, and in a 
similar fashion with the rest of the servers. Figure 2 
clarifies that. 

 
Figure 2: Rotating the leadership between five servers in 
Mencius (Wei et al., 2013). 

Mencius is designed to eliminate some of the 
challenges that Paxos has. First, it decentralizes the 
responsibilities between servers by having an inherent 
load balancing technique that rotates leadership 
between all servers in a cell, thus eliminating the need 
for leader election. Second, it lowers latency since 
their clients use a local replica, which leads to 
increasing latency-awareness between clients and 
servers. Third, it smoothes the reconfiguration process 
due to the fact that when pulling away a server from a 
cell, another server arises to be the new leader. This 
can be achieved by having a specific time period for 
each server to hold the responsibility of leadership. 
However, the challenge is that, at any point in time, 
there is still one leader, which can have a negative 
effect on performance. 

3.2 Egalitarian Paxos 

Egalitarian Paxos (Moraru et al., 2013), based on 

Paxos, is a new consensus protocol that aims at a) 
reaching an optimal latency to commit a command 
in wide-area applications, b) having the best possible 
load balance between all servers so the throughput 
can be increased, c) having a graceful degradation in 
performance when some of the servers fail for some 
reason. One of the main properties of this protocol is 
that there is no server that is designated to be a 
leader and clients are able to select which server to 
send a command to. 

To clarify the approach of Egalitarian Paxos, 
Figure 3 portrays an example of command A that is 
sent by client C1 to server S1 which is one of five 
servers in a cell. S1 then sends a preAccept message 
to the majority of servers which represents the 
quorum servers to S1. These servers incorporate S1 
itself, S2, and S3. After that, S2 and S3 send 
acknowledgment messages to S1. Thus, S1 can 
commit locally and asynchronously notify the rest of 
the servers. In this case, S1 is the leader of command 
A. 

 
Figure 3: Executing command A and B in Egalitarian 
Paxos (Moraru et al., 2013).  

Egalitarian Paxos has an input into eliminating 
some of the challenges that classic replication 
techniques have. First, as Mencius, it decentralizes 
the responsibilities between servers by having an 
inherent load balancing technique. This approach 
involves having clients choose any server as the 
command leader, which eliminates the need for 
electing a new leader. Second, it has latency-
awareness between servers in the cell. This is done 
by taking into consideration the latency between 
servers in a cell so each server knows its quorum 
when it needs the majority of servers to execute a 
command. Third, it smoothes the reconfiguration 
process because the execution of commands is not 
disrupted when pulling away a server from a cell 
since clients can choose any other server in the cell. 
The challenge that this protocol has is that it has to 
go through two round trips instead of one when there 
are interfering or concurrent commands. 
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3.3 The Object Ownership Distribution 

The Object Ownership Distribution Replication 
(Mostafa and Youssef, 2014a) aims to improve 
scalability and availability in Primary-Backup 
Replication systems. It decentralizes the exclusive 
management role which is the responsibility of the 
primary server in the Primary-Backup Replication. 
This approach utilizes the concept "object 
ownership", which can be defined as the exclusive 
right a server can have over an object to permit 
update transaction. This approach depends mainly 
on ownership distribution between servers, so the 
server that created the object has the right to own it. 
Figure 4 portrays the system architecture for the 
Object Ownership Distribution Replication Protocol. 

This protocol has also eliminated some of the 
challenges faced by classic replication techniques. 

First, we can see that it solves one of the 
challenges that we have discussed earlier, which is 
the lack of an inherent load balancing technique by 
having the ownership distribution mechanism that 
makes each server responsible for managing some of 
the objects in the system so all servers are involved 
in the management job. Second, when a server needs 
to be reconfigured, all the objects that it owns are 
owned by another server and there is no need for an 
election process that can affect the performance to 
such an extent. The challenge is that the ownership 
distribution is static in a dynamic environment, 
which is impractical and does not reflect the reality 
of the problem. 

Table 2 shows a comparison between the modern 
replication techniques. 

 
Figure 4: Object Ownership Distribution Replication 
system architecture (Mostafa and Youssef, 2014a). 

4 OPPORTUNITIES FOR 
IMPROVEMENTS IN 
REPLICATION TECHNIQUES 

The system to which we are trying to provide a 
replication technique can have several characteristics 
added to either the classic or modern replication 
techniques to improve their performance. One way 
to improve classic replication techniques is by 
injecting an inherent load balancing technique to 
them. This contributes to eliminating the bottleneck 
issue caused by having a single point of failure. 
Partitioning is one technique that has been utilized to 
solve scalability challenges; this technique started 
the problem of having imbalanced distributed 
systems. More information about partitioning is 
available in (Quamar et al.,  2013;  Ishikawa,  2013). 

Table 2: Comparison between Mencius, Egalitarian Paxos, and Object Ownership Distribution Replication. 

Type of 
Replication 

Important Strengths Important Weaknesses 

Mencius 
Replication 

- No single point of failure since there is no leading server. 
- Higher throughput than Paxos since it uses a partitioned leader 
scheme.  
- Full utilization of bandwidth.  
- Lower latency than Paxos when there is a small number of 
clients since they can use a local server to be the leader of their 
requests. 

- There is only one leader at any point in 
time.  
- A server must hear from all other servers 
prior to committing any command. 

Egalitarian Paxos 
- No single point of failure since there is no leading server.  
- Improving load balance which increases throughput and 
scalability. 

- It takes two round trips to deal with 
interfering or concurrent commands.  

Object Ownership 
Distribution (OOD) 
Replication 

- No single point of failure since there is no primary server. 
- Improving load balance which increases throughput and 
scalability. 

- Static ownership. 
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So, when using replication techniques, each data 
partition needs to be replicated into a number of 
servers (normally 3 or 5 servers) which form a 
replication cell. In cells where there is a high load 
and great pressure is placed on the leader or primary 
server, this definitely impairs load balancing within 
a cell since this server has to process all clients’ 
requests (Mao et al., 2008). 

Latency-awareness can contribute in lowering 
latency which is an issue that is barely investigated 
by researchers when designing a replication 
protocol. It means that taking into consideration the 
latency between a client and server, a client can be 
aware of the closest server to it and then sends it a 
request. In Mencius, latency is reduced by using a 
local server to be the request leader. Latency-
awareness can be improved between servers 
themselves, as in Egalitarian Paxos. Each server in a 
cell chooses its quorum based on the lowest latency 
between itself and the rest of the servers.  

Reconfiguration (Aguilera et al., 2010) is an 
important aspect to which some replication protocols 
pay little attention. Whether planned or unplanned, it 
needs to be dealt with practically without having to 
stop accessing the data partition, when dealing with 
clients’ requests, as this slows its performance. 
Classic replication techniques struggle with this 
issue. However, Modern replication techniques ease 
the process of reconfiguration by eliminating the 
need for electing a new leader or primary server. 

One aspect that the available replication 
protocols can take into consideration is the process 
of testing the resources capabilities of each server 
and giving them responsibilities depending on the 
results of these tests, thereby improving performance 
in a cell. 

Another aspect to consider is assigning 
responsibilities to servers based on network changes 
or the continuously changing number of clients’ 
requests that each server receives.  

Table 3 summarizes issues that we have 
discussed in this section, whether addressed or not, 
by the six common replication techniques that we 
have reviewed earlier in this paper. 

5 THE DYNAMIC OBJECT 
OWNERSHIP DISTRIBUTION 
PROTOCOL 

The Dynamic Object Ownership Distribution 
Protocol is a fault-tolerant protocol that aims to 
improve the operations load balance in scalable 
distributed systems for the purpose of increasing 
throughput and lowering latency. While the Object 
Ownership Distribution Protocol has a static 
ownership mechanism to own objects, this protocol 
has a dynamic way to do that. In an environment 
where the behavior of clients is extremely dynamic, 
it is only convenient to have a dynamic solution to a 
problem in a continuously changing environment. 

The protocol gains its dynamicity from the fact 
that it allows object ownership to change from one 
server to another. The change depends on the 
number of update operations that are performed by 
each server on a certain object. The server that 
performs the highest number of operations on this 
object has the right to be its owner. The proposed 
protocol is also able to handle failures. Once a server 
fails, its objects are owned automatically by the 
server that has the highest ratio of operations after 
the   failed   server.   When   a   server   recovers,    a  

Table 3: Addressed and unaddressed issues in classic and modern replication techniques. 

 Classic Replication Techniques Modern Replication Techniques 

Issues Paxos 
Primary-
Backup 
Replication 

Chain 
Replication

Mencius 
Egalitarian 
Paxos 

Object 
Ownership 
Distribution 

Inherent load balancing techniques No No No Yes Yes Yes 

Latency awareness (between a client and a 
server) 

No No No Yes No No 

Latency awareness (between servers themselves) No No No No Yes No 

Smooth reconfiguration process No No No Yes Yes Yes 
Awareness of the capabilities of servers’ 
resources 

No No No No No No 

Reactive nature to network changes No No No Yes No No 

Reactive nature to the amount of clients’ 
requests 

No No No No No No 
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comparison operation must be performed to check 
which server has the highest ratio of update 
operations between the recovered server and the new 
owner.  

 
Figure 5: The throughput graph in the Object Ownership 
Distribution Protocol. 

 
Figure 6: The throughput graph in the Dynamic Object 
Ownership Distribution Protocol. 

In an experiment where the replication factor is 
three, each object is owned by a different server, and 
each client updates an object that did not create, the 
results of the throughput of the Object Ownership 
Distribution Protocol and the Dynamic Object 
Ownership Distribution Protocol are shown in 
Figure 5 and 6. As we can see, the result is in favor 
of the protocol that can perform the largest number 
of local transactions which is, in this experiment, the 
Dynamic Object Ownership Distribution Protocol. 

6 CONCLUSIONS 

Classic replication techniques suffer mainly from 
having the bottleneck issue that makes one server 
take on all the management responsibilities, which 
lowers throughput and increases latency. 
Furthermore, they struggle with performing effective 
reconfiguration operations. On the other hand, 
modern replication techniques decentralize the 
management responsibilities among servers in a cell. 
Numerous approaches to improve current replication 

techniques have been discussed in this paper. In 
addition, the Dynamic Object Ownership 
Distribution protocol is briefly discussed. 
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