
Enumerating Naphthalene Isomers of Tree-like Chemical Graphs

Fei He1, Akiyoshi Hanai1, Hiroshi Nagamochi1 and Tatsuya Akutsu2
1 Discrete mathematics, Department of Applied Mathematics and Physics, Graduate School of Informatics,

Kyoto University, Kyoto 606-8501, Japan
2 Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

Keywords: Isomers Enumeration, Naphthalene, Chemical Graph.

Abstract: In this paper, we consider the problem of enumerating naphthalene isomers, where enumeration of isomers is
important for drug design. A chemical graphG with no other cycles than naphthalene rings is calledtree-like,
and becomes a treeT possibly with multiple edges if we contract each naphthalene ring into a single virtual
atom of valence 8. We call treeT thetree representation of G. There may be more than one tree-like chemical
graphs whose tree representations equal toT , which are callednaphthalene isomers of T . We present an
efficient algorithm that enumerates all naphthalene isomers of a given tree representation. Our algorithm first
counts the number of all the naphthalene isomers using dynamic programming, and then for eachk, generates
the k-th isomer by backtracking the counting computation. In computational experiment, we compare our
method with MolGen, a state-of-the-art enumeration tool, and it is observed that our program enumerates
the same number of naphthalene isomers within extremely shorter time, which proves that our algorithm is
effectively built.

1 INTRODUCTION

Enumeration of chemical structures has been widely
applied in drug discovery (Blum and Reymond,
2009), structure elucidation (Meringer and Schyman-
ski, 2013), exploration of chemical universe (Fink
and Reymond, 2007). It is to be noted that these
are important not only in chemo-informatics but also
in bioinformatics because one of the major targets
of bioinformatics is development of novel drugs.
Since DENDRAL was developed as an enumeration
tool for structure elucidation using data from mass
spectrometry (Buchanan and Djerassi, 1976), sev-
eral enumeration tools have been developed to solve
the Computer-Assisted Structure Elucidation (CASE)
problem. MolGen, whose development was initiated
in 1985, is one of the best enumeration tools so far,
since it can not only enumerate all possible chemical
compounds (Benecke and Wieland, 1995) (Benecke
and Wieland, 1997) (Kerber and Meringer, 1998), but
also allow users to add some restrictions to the input
of the enumeration such as the number of multiple
bonds. Recently, OMG (Open Molecule Generator)
has been newly developed as the first open source
enumeration tool (Peironcely, 2012) based on the
canonical augmentation path strategy which grows in-
termediate chemical structures by adding bonds with

checking the uniqueness, with allowing the use of
prescribed substructures to enumerate more chemi-
cally adequate structures. Although OMG is a useful
tool, it is reported that OMG is not faster than Mol-
Gen (Peironcely, 2012), especially when dealing with
large-sized chemical graphs.

Another important enumeration tool is Enumol
(Fujiwara and Akutsu, 2008) (Shimizu and Akutsu,
2011). This tool enumerates chemical structures with
tree-like graphs efficiently. Akutsu and Nagamochi
initiated the development of Enumol after studying
computational complexity of inference of a chemical
graph from its feature vector given as a labeled path
frequency vector (Akutsu and Nagamochi, 2011).
Then, Fujiwara et al. (Fujiwara and Akutsu, 2008)
proposed a branch-and-boundalgorithm to enumerate
tree-like chemical graphs from a given path frequency
vector. Shimizu et al. (Shimizu and Akutsu, 2011)
gave an algorithm for enumerating structures with a
set of feature vectors. These algorithms can only enu-
merate tree-like chemical graphs.

A benzene is a chemical compound with the
molecular formulaC6H6 and the six carbon atoms in
a benzene form into a hexagon. A naphthalene is
a compound with the molecular formulaC10H8, and
its molecule is composed of two benzene rings with

258
He, F., Hanai, A., Nagamochi, H. and Akutsu, T.
Enumerating Naphthalene Isomers of Tree-like Chemical Graphs.
DOI: 10.5220/0005783902580265
In Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016) - Volume 3: BIOINFORMATICS, pages 258-265
ISBN: 978-989-758-170-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

one common edge. Among all ten carbon atoms in a
naphthalene ring, only eight of them are attached with
hydrogen atoms. A substitution of a proton by other
atoms (or atom groups) is one of the most common
reactions of naphthalene. In these substitution reac-
tions, such as sulfonation, chlorination and nitration,
the hydrogen atoms of a naphthalene ring is substi-
tuted by other atoms (or atom groups). Thereby a
naphthalene ring may have bonds with other atoms
(or atom groups) (Hardinger, 2005). The difference
of substitutions in the relative positions of the sub-
stituted hydrogen atoms results in non-isomorphic
structures, which are called the naphthalene isomers.
Given a tree-like chemical graph, Li (Li and Akutsu,
2013) proposed a different method with a guaranteed
time complexity to enumerate the benzene isomers by
the two following steps: (1) count the numberf of
all the benzene isomers of the input tree representa-
tion using dynamic programming; and (2) for each
k = 1,2, . . . , f , generate thek-th benzene isomer by
backtracking the previous computation using the dy-
namic programming. In this paper, we generalize the
algorithm by Li (Li and Akutsu, 2013) into one for
enumerating the naphthalene isomers from a tree-like
chemical graphs. The major difference is that the
combinatorial complexity of arrangements of atom
groups around a naphthalene ring is much higher than
that around a benzene ring. Yet, we managed to gen-
erate all isomers in a running time per isomer similar
with the result by Li (Li and Akutsu, 2013) by gener-
ating all distinct arrangements of atom groups around
a naphthalene ring in advance and storing them in a
table. As discussed later, it is an important step to-
wards extension of enumeration of benzene isomers
to general chemical structures. Our experimental re-
sult shows that our algorithm runs much faster than
MolGen for enumeration of naphthalene isomers of
tree-like chemical compounds.

In this paper, we consider chemical graphs with
naphthalene rings. A chemical graphG possibly with
naphthalene rings is calledtree-like if (i) no two naph-
thalene rings share any atoms; (ii) no multiple edges
exist between a naphthalene ring and an atom (or a
naphthalene ring); and (iii) the graph can be viewed as
a multi-tree (a tree with multiple edges) if we contract
each naphthalene ring into a single vertex of an atom
of a virtual elementna of valence 8. We call the tree
in the above (iii) thetree representation of G. Note
that for a given tree representationT , there may be
more than one tree-like chemical graphs whose tree
representations are given byT . All tree-like chemi-
cal graphs whose tree representations equal toT are
called thenaphthalene isomers of T . Distinct naph-
thalene isomers ofT are caused by different arrange-

ments of the atom groups around a naphthalene ring
when we replace each virtual atom inT with a naph-
thalene ring to obtain a naphthalene isomer.

Given a set of atoms of each kind (including the
virtual atomna) possibly with constraints on the num-
bers of specified paths, all possible tree-like chemi-
cal graphs can be enumerated by efficient algorithms
created by Fujiwara et al. (Fujiwara and Akutsu,
2008) and Shimizu et al. (Shimizu and Akutsu, 2011).
When we replace each virtual atom in a tree repre-
sentation with a naphthalene ring, different chemical
structures may be generated due to different relative
positions of the substituents (atom groups) around
each of the restored naphthalene rings. LetG(T) de-
note the set of all naphthalene isomers of a tree repre-
sentationT . In this paper, we consider the following
problem of enumerating naphthalene isomers.

Input: A tree representationT of a tree-like chemical
graph.
Output: All naphthalene isomersG ∈ G(T) of T .

In this paper, we design an efficient algorithm that
enumerates all the naphthalene isomersG ∈ G(T) of
a given tree representationT . We use dynamic pro-
gramming to first count the number|G(T)| of all the
naphthalene isomers ofT , and then generate all naph-
thalene isomers by tracing back the computation pro-
cess done for counting the total number|G(T)| of
naphthalene isomers. Thus our enumeration algo-
rithm consists of the following two phases.

Phase 1: Count the number|G(T)| of the naphtha-
lene isomers of a tree representationT (v0) by a dy-
namic programming.
Phase 2: For eachk = 1,2, . . . , |G(T)|, generate the
k-th isomerGk ∈ G(T) by a procedure of backtrack-
ing the computation in Phase 1.

The paper is organized as follows. Section 2 de-
fines isomorphism of rooted graphs. Section 3 de-
signs a dynamic programming algorithm for counting
the number of isomers of rooted subtrees and that of
T . Section 4 presents an algorithm for generating the
k-th isomer among all isomers ofT . Section 5 reports
on experiments to an implementation of our algorithm
for counting and generating isomers. Section 6 makes
some concluding remarks.

2 PRELIMINARIES

We introduce isomorphism in tree-like graphs.
A chemical graph is given by a connected undi-

rected graphG = (V,E) with a setV of vertices and
a setE of edges possibly with multiple edges, where

Enumerating Naphthalene Isomers of Tree-like Chemical Graphs

259

col(v) denotes the atom assigned to each vertexv∈V .
For a subgraphH of G, letV (H) andE(H) denote the
sets of vertices and edges inH. For a vertex subsetX
or a subgraphX of G, let NG(X) denote the set of
neighbors ofX (the vertices inV −X orV −V(X) ad-
jacent to some vertex inX). A vertexv with col(v) = ℓ
is called anℓ-vertex. Let EG(u,v) denote the set
of edges between verticesu and v in G. The set
EG(u,v) is called abridge if the graph becomes dis-
connected by removing edges inEG(u,v). Two graphs
G = (V,E) andG′ = (V ′,E ′) areisomorphic if there
is an isomorphism between them, i.e., a bijectionψ :
V → V ′ such that col(v) = col(ψ(v)) holds for each
vertex v ∈ V and |EG′(ψ(u),ψ(v))| = |EG(u,v)| for
all vertex pairsu,v ∈V . When two graphsG = (V,E)
andG′ = (V ′,E ′) have designated verticesr ∈ V and
r′ ∈ V ′ called the roots, we say thatG = (V,E) and
G′ = (V ′,E ′) arerooted-isomorphic if there is an iso-
morphismψ : V →V ′ such thatr′ = ψ(r).

Let G be a tree-like chemical graph. A naphtha-
lene ringH is a cycle of tenC-vertices eight of which
has a neighbor inNG(H) joined by a single edge. For
an ordered pair(v,w) such thatEG(v,w) is bridge,
we denoteG[v,w] the subgraph induced fromG by
the vertex subset{v}∪Xw such thatXw is the set of
vertices reachable from vertexw by a path that does
not pass through vertexv. We regardv as the root of
G[v,w].

For each vertexv not on a naphthalene ring in
G, we define acoterie of the set{G[v,w] | w ∈
NG(v)} of subgraphs to be a maximal subset of
{G[v,w] | w ∈ NG(v)} such that any two in the sub-
set are rooted-isomorphic. Hence the set{G[v,w] |
w ∈ NG(v)} of subgraphs is partitioned into several
sets of coteries, which is called thecoterie-family
of G at vertexv. Fig. 1 shows the coterie-family
{G[v,w1],G[v,w2]},{G[v,w3]} and{G[v,w4]} for the
subgraphs of rootv of graphG, whereG[v,wi] denotes
the subgraph composed of rootv and its adjacent ver-
ticeswi for eachi = 1,2,3,4 respectively.

Figure 1: An example of coterie-family with three coteries.

For a naphthalene ringH with C-vertices
v1,v2, . . . ,v8 in G and NG(H) = {w1,w2, . . . ,w8}

wherewi ∈ NG(vi), eachC-vertexvi ∈ V (H) is con-
tained in the subgraphG[vi,wi]. We define acoterie
of the set{G[vi,wi] | vi ∈ V (H)} of subgraphs to be
a maximal subset of{G[vi,wi] | vi ∈ V (H)} such that
any two in the subset are rooted-isomorphic. Hence
the set{G[vi,wi] | vi ∈ V (H)} of subgraphs is parti-
tioned into several sets of coteries, which is called the
coterie-family of G at naphthalene ringH.

Thesize of a coterie is defined to be the number of
subgraphs that belong to the coterie. Among coteries
with the same size, we introduce some total order, and
we always denote byR j

i the subgraph that belong to
the j-th coterie of sizei. Fig. 2 illustrates an example
of coterie-family at a vertexv with a coterie with size
1, a coterie with size 3 and a coterie with size 4.

Figure 2: An example for a coterie-family at vertex
v in a tree T where the cf-type at vertexv is c =
(1,0,1,1,0,0,0,0).

A coterie-family-type (cf-type) of G at a vertex
v or a naphthalene ringH is defined to be the set
of the number of coteries of each size, and is de-
noted by theoccurrence vector c whosei-th entry in-
dicates the number of coteries of sizei. In Fig. 2,
c = (1,0,1,1,0,0,0,0).

Figure 3: The two layout-types inL(c) of cf-type c =
(1,0,0,0,0,0,1,0).

For a fixed cf-typec of G at a naphthalene ring
H, there may be different ways of placing the sub-
graphs in{G[vi,wi] | vi ∈ V (H)} such that the result-
ing graphs are not isomorphic. The setL(c) of layout-
types consists of such different ways of placing the
subgraphs in{G[vi,wi] | vi ∈V (H)}. For example, cf-
type c = (1,0,0,0,0,0,1,0) has two layout-types in
L(c), which is illustrated in Fig. 3. Letλ(c) = |L(c)|.

BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms

260

Table 1 shows the numberλ(c) of layout types for
each possible cf-typec of a naphthalene ring. Among
the layout-types inL(c) for each cf-typec, we intro-
duce some total order, and denote byLi(c) the i-th
layout-type inL(c). In this paper, we assume that a
complete list of all layout types of each cf-type for
a naphthalene ring is available, where the total num-
ber of layout types is 23,911. An efficient method
for generating all layout types of a geometrical ob-
ject with two axial symmetries including naphthalene
ring has been discussed by He and Nagamochi (He
and Nagamochi, 2015).

Table 1: The numberλ(c) of layout types for each possible
cf-typec of a naphthalene ring.

c λ(c) c λ(c)
(0,0,0,0,0,0,0,1) 1 (1,0,0,0,0,0,1,0) 2
(0,1,0,0,0,1,0,0) 10 (2,0,0,0,0,1,0,0) 14
(0,0,1,0,1,0,0,0) 14 (1,1,0,0,1,0,0,0) 42
(3,0,0,0,1,0,0,0) 84 (0,0,0,2,0,0,0,0) 22
(1,0,1,1,0,0,0,0) 70 (0,2,0,1,0,0,0,0) 114
(2,1,0,1,0,0,0,0) 210 (4,0,0,1,0,0,0,0) 420
(0,1,2,0,0,0,0,0) 140 (2,0,2,0,0,0,0,0) 280
(1,2,1,0,0,0,0,0) 420 (3,1,1,0,0,0,0,0) 840
(5,0,1,0,0,0,0,0) 1680 (0,4,0,0,0,0,0,0) 648
(2,3,0,0,0,0,0,0) 1260 (4,2,0,0,0,0,0,0) 2520
(6,1,0,0,0,0,0,0) 5040 (8,0,0,0,0,0,0,0) 10080

In the rest of this section, we discuss the structure
of isomorphism in tree representations.

Let T be a tree representation with virtualna
atoms of valence 8, which we restore naphthalene
rings to obtain a naphthalene isomer ofT . Note that
ET (v,w) is a bridge ofT for each pair of adjacent ver-
ticesv,w ∈ V (T), andT [v,w] is the induced subtree
of T rooted atv such thatV (T [v,w]) consists ofv and
the vertices reachable fromw without visitingv. Ev-
ery vertexv in T is shared by|NT (v)| subtreesT [v,w]
with w ∈ NT (v). For a subtreeT ′ = T [v,w] for ver-
ticesv ∈V andw ∈ N(v) in T , restoration of T ′ is an
operation of expanding thena-verticesz (6= v) in T ′

into naphthalene ringsHz to obtain a chemical graph
Gv rooted atv, wherev may be ana-vertex. LetG(T ′)
be the set of tree-like graphsGv obtained by restoring
a subtreeT ′ of T .

Our aim is to generate all isomers inG(T) from
a given tree representationT , supposing that we
know the cf-typecv of the coterie-family for the set
{G[vi,wi] | vi ∈ V (Hv), wi ∈ NG(vi)} of subgraphs
around the naphthalene ringHv restored from each
na-vertexv in T . Since distinct isomers are caused by
different layout-types around naphthalene rings after
restoration ofT , an isomerG ∈ G(T) can be specified
by a layout-typeL[v]∈L(cv) of eachna-vertexv in

T . Throughout the paper, we assume that non-rooted-
isomorphic subgraphs in{G[vi,wi] | vi ∈V (Hv), wi ∈
NG(vi)} can be arranged in some total order based
on their topological structure, and we assign indices
R1

i ,R
2
i , . . . to the coteries with the same sizei accord-

ing to the order so that choosing a layout-type in
L(cv) uniquely determines the relative positions of all
the subgraphs in{G[vi,wi] | vi ∈V (Hv), wi ∈ NG(vi)}
around the naphthalene ringHv. However, when we
change a layout-typeL[v] ∈ L(cv) for somena-vertex
v in T , the cf-typecu of some otherna-vertexu may
change. To avoid such inconvenience in generating
all isomers inG(T), we designate a vertex inT as the
root and systematically compute the number of iso-
mers of some subtrees ofT by a dynamic program-
ming, where all isomers ofT will be generated by
backtracking the computation.

Let G(T [v,w]) denote the set of isomers obtained
from the treeT [v,w] by restoring allna-verticesz (6=
v) in T [v,w] into naphthalene ringsHz. Clearly if
T [v,w] andT [v,w′] are rooted-isomorphic forw,w′ ∈
NT (v), then G(T [v,w]) = G(T [v,w′]). Conversely
T [v,w] and T [v,w′] are not rooted-isomorphic for
w,w′ ∈ NT (v), thenG(T [v,w])∩G(T [v,w′]) = /0.

Let us treat a given tree representationT as a tree
rooted at a vertexv0, where the root is chosen as a
topologically unique vertex inT such as “center” or
“centroid.” It is known that every tree has either a
vertex or an edge removal of which leaves no com-
ponent with more than⌊n/2⌋ vertices. The former
vertex is calledunicentroid and the latterbicentroid.
We choose the unicentroid ofT as the rootv0 of T ,
where ifT has the bicentroid(v′,v′′), then we remove
the edge connectingv andv′ and insert a virtual vertex
v with the two neighborsv′ andv′′ as the unicentroid
in the resulting tree. For each vertexv in a rooted
tree representationT = (V,E), let Ch(v)⊆ NT (v) de-
note the set of children ofv, where Ch(v) = /0 if v is
a leaf vertex ofT . Whenv is not the root ofT , let
p(v) ∈ NT (v) denote the parent ofv. By the topolog-
ical uniqueness of the rootv0, we see that for each
non-root vertexv, treeT [v,w] with w ∈ Ch(v) is not
rooted-isomorphic to treeT [v,p(v)].

The set Ch(v) of children of a vertexv in T
is decomposed into sets Ch1(v),Ch2(v), . . . ,Cht(v)
such that the subtreesT [v,u] andT [v,u′] are rooted-
isomorphic if and only ifu,u′ ∈ Chi(v) for somei.
Fig. 4 illustrates the rooted-isomorphic decomposi-
tions of child sets of a tree presentationT . Note that
for a given tree presentationT rooted at a vertexv0,
we can compute the rooted-isomorphic decomposi-
tion {Chi(v) | i = 1,2, . . . , tv} for all verticesv ∈ V in
polynomial time in the size ofT by expressing all sub-
treesT [v,u], u ∈ Ch(v) for eachv ∈ V (T) as canoni-

Enumerating Naphthalene Isomers of Tree-like Chemical Graphs

261

cal forms such as left-heavy trees (Nakano and Uno,
2005).

In what follows, we assume that an input of the
problem is the set

(T,v0,{{Chi(v) | i = 1,2, . . . , tv},v ∈V})
of a tree representationT rooted at the unicentroid
v0 and the rooted-isomorphic decompositions of child
sets ofT .

Figure 4: The rooted-isomorphic decompositions of child
sets of tree representationT , where the dotted rectangles
show the rooted-isomorphic decompositions for all non-leaf
vertices inT .

3 COUNTING THE NUMBER OF
ISOMERS

Let nis(v0) = |G(T)| for the rootv0 of T , and nis(v) =
|G(T [p(v),v])| for each non-root vertexv in T . We
derive recursive formulas over{nis(v) | v ∈ V (T)}
such that nis(v) can be computed from{nis(w) | w ∈
Ch(v)}.

Example 1. Before we present details, we show how
the numbers nis(v), v ∈ V (T) of the exampleT in
Fig. 4 will be computed.
1. Clearly for the leaf verticesv ∈ V (T) −
{v0,v1,v2,v11,v12,v21} in the exampleT , we have
that nis(v) = 1.
2. For the non-na-vertexv2, the rooted-isomorphic
decomposition of the child set Ch(v2) is Ch1(v2) =
{v3,v4} since T [v2,v3] and T [v2,v4] are rooted-
isomorphic, where nis(v3) = nis(v4) = 1, and we
know thatG(T [p(v2),v2]) contains only one isomer,
implying that nis(v2) = 1.
3. We next consider thena-vertexv1 in the example
T . The rooted-isomorphic decomposition of the child
set Ch(v1) is given by Ch1(v1) = {v2} and Ch2(v1) =
{v5,v6,v7,v8,v9,v10} where we know that nis(v2) = 1
and nis(w) = 1, w ∈ Ch2(v1). For any vertexw ∈

Ch(v1), there is only one isomer inG(T [p(w),w]).
The corresponding cf-typecv1=(2,0,0,0,0,1,0,0) has
λ(cv1) = 14 layout-types (see Table 1). Therefore we
have nis(v1) = 14.
4. We now consider the rootna-vertex v0, where
the rooted-isomorphic decomposition of Ch(v0) is
Ch1(v0) = {v1,v11}Ch2(v1) = {v21} and Ch3(v1) =
{v23,v24,v25,v26,v27} and we see that nis(w) = 14,
w ∈ Ch1(v0), nis(w) = 1, w ∈ Ch2(v0) and nis(w) =
1, w ∈ Ch3(v0), respectively. For nis(w) = 14,w ∈
Ch1(v0) and |Ch1(v0)| = 2, there are two different
coterie-families atv0: i) one whenG′ ∈ G(T [v0,v1])
andG′′ ∈ G(T [v0,v11]) are rooted-isomorphic; and ii)
the other when they are not isomorphic.

i) The former cf-type iscv0 = (1,1,0,0,1,0,0,0),
whereR1

1 ∈ G(T [v0,v1]), R1
2 ∈ G(T [v0,v21]) andR1

3 ∈
G(T [v0,v23]). Note that there are nis(v1)×nis(v21)×
nis(v23) = 14× 1 × 1 = 14 combinations of iso-
mers in G(T [v0,w]) with w ∈ Ch(v0) that give cf-
type cv0 = (1,1,0,0,1,0,0,0) at v0. Since there
areλ(cv0) = 42 layout-types (see Table 1), we have
14×42= 588 isomers inG(T) whose cf-type atv0 is
(1,1,0,0,1,0,0,0).

ii) For the latter cf-type is cv0 =

(3,0,0,0,1,0,0,0), where R1
1 ∈ G(T [v0,v1])R2

1 ∈
G(T [v0,v11])R1

2 ∈ G(T [v0,v21]) and R1
3 ∈

G(T [v0,v23]). Note that there are
(nis(v1)

2

)
×

nis(v21)× nis(v23) = 91× 1× 1 = 91 combinations
of isomers in G(T [v0,w]) with w ∈ Ch(v0) for
cf-type cv0 = (3,0,0,0,1,0,0,0) at v0. Since there
areλ(cv0) = 84 layout-types (see Table 1), we have
84×91= 7644 isomers inG(T) whose cf-type atv0
is (3,0,0,0,1,0,0,0).

In total, the number nis(v0) of isomers inG(T) is
588+7644= 8232.

In what follows, we generalize the above idea
into recursive formulas from which we can system-
atically compute the number nis(v) from nis(w),w ∈
Ch(v). The point is how each subset Chi(v) in the
rooted-isomorphic decomposition of Ch(v) can be
further partitioned into coteries. Different partitions
of subset Chi(v), i = 1,2, . . . , t give rise to distinct
cf-types. Letni = |Chi(v)| and fi denote the num-
ber nis(w) = |G(T [v,w])| of isomers of the subtree
T [v,w] rooted at a vertexw∈Chi(v). Denote the num-
ber of coteries partitioned from Chi(v) by hi. Then
1≤ hi ≤ min{ni, fi} for eachi ∈ {1,2, . . . , t}. Let Hv
be the set of all possible vectors, thei-th entrance of
which is the number of coteries in Chi(v), thenHv =
{(h1,h2, . . . ,ht) | 1≤ hi ≤min{ni, fi}, i= 1,2, . . . , t},
where|Hv|= ∏1≤i≤t min{ni, fi}.

For a subtreeT ′ ⊆ T rooted atv and the rooted-
isomorphic decomposition{Ch1, . . . ,Chtv}, we de-
fine a subsetGh(T ′) of G(T ′), h ∈ Hv to be the

BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms

262

set of restored graphs ofT ′ whose number of coter-
ies in Chi(v) equals tohi for eachi ∈ {1,2, . . . , tv}.
Let g(h) = |Gh(T ′)|. For any two different vectors
h1,h2 ∈ Hv, restored subgraphsGh1(T

′) ⊆ Gh1(T
′)

and Gh2(T
′) ⊆ Gh2(T

′) are always non-isomorphic.
Then we have the equation as follows.

nis(v) = ∑
h∈Hv

g(h). (1)

A specific form of functiong(h) of h ∈ Hv can
be derived in a similar manner with the method by Li
et al. (Li and Akutsu, 2013). Due to a space limita-
tion, we here omit deriving the form of functiong(h),
which takes a different form in each of the following
three cases:

1. Vertexv is a non-na vertex.
2. Vertexv is a non-rootna-vertex.
3. Vertexv is a rootna-vertex.
We analyze the time complexity of our algo-

rithm. Since the valence of any atom is constant
and |N(H)| = 8 for a naphthalene ring, the degree
|NT (v)| of any vertexv in T is O(1). Hence|Hv| is
alsoO(1), and computing{g(h) | h ∈ Hv} and deter-
mining nis(v) can be executed inO(1) time (Li and
Akutsu, 2013). Therefore the total running time of
our algorithm isO(n) for the input sizen = |T (V)|.

4 CONSTRUCTION OF
NAPHTHALENE ISOMERS

In the first phase of our algorithm, given a tree repre-
sentationT , we compute nis(v) and{g(h) | h ∈ Hv}
for all verticesv ∈ V (T). In the second phase of our
algorithm, we generate isomers inG(T) one by one.

For this, we fix a total orderσv0 : G(T) →
[1,nis(v0)] over all isomers in G(T) such that
σv0(G) = k means thatG is thek-th isomers inG(T)
in the total order. Similarly for each non-root ver-
tex v in T , we fix a total orderσv : G(T [p(v),v]) →
[1,nis(v)] over all isomers inG(T [p(v),v]) such that
σv(G) = j means thatG is the j-th isomers in
G(T [p(v),v]). Since the way of fixing total orders
σv is same during the second phase, it holdsσu = σv
for any two verticesu,v ∈ V (T) such thatT [p(u),u]
and T [p(v),v] are rooted-isomorphic. Hence thek-
th isomerGu ∈ G(T [p(u),u]) and thek′-th isomer
Gv ∈ G(T [p(v),v]) will be rooted-isomorphic if and
only if k = k′.

Supposing such fixed total orders{σv | v ∈
V (T)}, we generate thek-isomer G ∈ G(T) of T
(i.e., the isomerG such thatσv0(G) = k) for a
specified integerk ∈ [1,nis(v0)], where we callk
the search index of vertex v. For the child set

Ch(v) = {w1,w2, . . . ,wq}, the isomerG ∈ G(T) con-
sists ofq subgraphsGw1,Gw2, ...,Gwq such thatGwi ∈
G(T [v,wi]). We letk[wi] = σwi(Gwi), i.e., Gwi is the
k[wi]-th isomer inG(T [v,wi]). Hence we see that
the isomerG ∈ G(T) consists ofk[wi]-th isomer in
G(T [v,wi]) for each childwi ∈ Ch(v), where we call
k[wi] the search index of vertexwi. Whenv is ana-
vertex, we also identify the layout-typeL[v] around
the naphthalene ringHv.

In the rest of this section, we show how to com-
pute search indices.

An isomer G ∈ G(T) can be determined by
choices of cf-types cz and layout-typesL[z] ∈ L(cz)
for all naphthalene ringsHz stored from thena-
verticesz in T . In fact, we see that only the set
{L[z] | na-verticesz in T} determines a cf-type cz of
each naphthalene ringHz. Each leaf vertexv in T
has a unique cf-type cv. Recursively when an isomer
Gw ∈ G(T [v,w]) of each childw ∈ Ch(v) of a ver-
tex v has been determined, the cf-type cv of vertex
v can be uniquely determined, and the isomerGv ∈
G(T [p(v),v]) (or Gv ∈ G(T)) consisting of these sub-
graphsGw ∈ G(T [v,w]), w ∈ Ch(v) can be uniquely
determined with a specified layout-type whenv is a
na-vertex (orGv can be uniquely determined only by
Gw, w ∈ Ch(v) whenv is not ana-vertex). Our task
is to output a set{L[z] | na-verticesz in T} of layout-
types as an isomerG ∈ G(T).

Example 2. We show how search indices and layout-
types will be computed in the exampleT in Fig. 4
1. After counting phase, we have computed{g(h) |
Hv} for all non-leaf verticesv. In the example,Hv0 =
{h1 = (1,1,1),h2 = (2,1,1)} with g(h1) = 588 and
g(h2) = 7644 and|Hv| = 1 for all the other non-leaf
verticesv in T .
2. Suppose that we generate thek-th isomer inG(T)
of the example. Recall that nis(v0) = g(h1)+g(h2) =
588+ 7644= 8232, where we can regard the first
588 isomers inG(T) are constructed based on the
first vectorh1 ∈ Hv0 and the remaining 7644 isomers
in G(T) are based on the second vectorh2 ∈ Hv0.
Hence whenk ≤ 588, we generate an isomerG ∈
G(T) based onh1 ∈ Hv0 and the corresponding cf-
typecv0 = (1,1,0,0,1,0,0,0); and whenk > 588, we
generate an isomerG ∈ G(T) based onh2 ∈ Hv0 and
the corresponding cf-typecv0 = (3,0,0,0,1,0,0,0).
3. Assumek = 600, and consider how to deter-
mine the search indicesk[w] of the childrenw of v0.
Sincek = 600> 588, we construct thek-th isomer
G ∈ G(T) based onh2 = (2,1,1) ∈ Hv0 and cf-type
cv0 = (3,0,0,0,1,0,0,0); i.e., fork′ := k−588= 12,
we construct thek′-th isomer among suchg(h2) =
7644 isomers based oncv0 = (3,0,0,0,1,0,0,0). Re-

Enumerating Naphthalene Isomers of Tree-like Chemical Graphs

263

call that

g(h2) = 7644= 91×84
=
(nis(v1)

2

)
×λ((3,0,0,0,1,0,0,0)). (2)

By h2 = (2,1,1), the subset Ch1(v0) = {v1,v11} is
partitioned into two sequences(v1) and (v11), indi-
cating that we select an isomerG′ ∈ G(T [v0,v1]) and
an isomerG′′ ∈ G(T [v0,v11]) which are not rooted-
isomorphic. There are

(nis(v1)
2

)
=

(14
2

)
= 91 such

pairs of isomersG′ andG′′, and each pair correspond
with root v0’s 84 layout-types. Byk′ = 12, we have
0×84< 12≤ 1×84. Then this means that in 600-th
isomer, vertexv0 has the first layout-type in occur-
rence vectorcv0 = (3,0,0,0,1,0,0,0), which means
that the layout-typeL[v0] = 1 at na-vertexv0 in the
exampleT in Fig. 4.
4. Then we decide the search indices for the twona-
verticesv1 an v11 in Ch1(v0). The 91 pairs of non–
isomorphic graphsG′ and G′′ rooted atv1 and v11
have search indices of the two vertices listed from
the smallest to the largest: (1,2), (1,3),. . ., (1,14),
(2,3),. . ., (13,14), and we choose the 12th one, where
(k[v1],k[v11])=(1,12). ThenG′ has thek[v1] = 1-st
isomer inG(T [v0,v1]) and G′′ has thek[v11] = 12-
th isomer inG(T [v0,v1]). Sincev1 and v11 do not
have any descendants that arena-vertex, this directly
means that vertexv1 has the 1-st layout-type, andv11
has the 12-th layout-type.

We designed an algorithm that determines the
search indicesk[w] of childrenw of a vertexv with
a search indexk, and it runs inO(log|G(T)|) time for
each non-na-vertexv in T . Due to space limitation,
we omit the algorithms and explanation of time com-
plexities.

If we calculate the layout-types for allna-vertices
v in treeT for a search indexk, k ∈ [1,nis(v)], then
we get ourk-th isomer. The algorithms for determin-
ing the search indices and the layout-type for one ver-
tex run in O(log|G(T)|), and we can see that gen-
erating thek-th isomer runs in timeO(n log|G(T)|).
Hence, all the isomers inG(T) can be generated
in O(n|G(T)| log|G(T)|) time. It should be noted
that the required space for executing our algorithm is
O(n), since we do not need to store any isomers gen-
erated before for a possible comparison with newly
generated isomers to check duplication.

5 EXPERIMENTAL RESULTS

In this section, we attempt to show the correctness and
efficiency of our algorithm. For this, we conducted
two experiments over problem instances constructed
based on some chemical compounds and databases.

We implemented our algorithm in C language and ex-
ecuted it on a PC with Intel(R) Core(TM)i7 CPU 1.7
GHz and 8 GB memory. In this paper, we assume that
a complete list of all layout types of each cf-type for
a naphthalene ring is available as a table. In our pro-
gram, we calculate the total number of isomers and
generate each of them for a specific input using the
table. The experimental results of computing time do
not include the process of preparing this table.

In the first experiment, we solve small problem in-
stances by our algorithm so that we can see whether
all isomers of the instances are correctly and effi-
ciently enumerated. For this, we used five rela-
tively small instances, whose formulas arena1O2H8,
na1C2O2H10, na1C3O2H12, na1C4O2H12, na1C5O2H12, to
compare the results with those by MolGen. Here,
chemical formula defines a set of chemical trees, from
which isomers of the same formula are generated by
our algorithm. For example, the first set consists of
two tree representations all of which have the same
formula na1O2H8. We used the algorithm due to
Shimizu et al. (Shimizu and Akutsu, 2011) to gen-
erate all such trees.

Table 2: Comparison of our algorithms with MolGen.

Instance # rep. # iso. Time (s) Mol-Time
na1O2H8 2 12 0.0001 0.222 s
na1C2O2H10 26 294 0.0010 108.025 s
na1C3O2H12 140 2458 0.0114 1064.696 s
na1C4O2H12 623 13442 0.0594 > 6 hours
na1C5O2H12 2046 46354 0.2436 > 4 days

Table 2 summarizes the results, where each row
shows the chemical formula of each instance, the
number of tree representations generated from the for-
mula (abbreviated as # rep.), the total number of naph-
thalene isomers generated from these tree represen-
tations by our algorithm (abbreviated as # iso.), the
CPU time of our algorithm (abbreviated as Time),
and that of MolGen (abbreviated as Mol-Time). Note
that MolGen runs on a workstation with Intel(R)
Xenon(R) CPU 3.00 GHz and 32 GB memory. It was
observed that the numbers of isomers generated by
our algorithm completely match with those generated
by MolGen, and that our algorithm runs much faster,
even on a slower CPU, which shows the correctness
and efficiency of our algorithm.

In the second experiment, we measured the com-
puting time by our algorithms for additional eight sets
of relatively large instances with multiple naphthalene
rings in the same manner. Table 3 shows the results
on these instances, with each row shows the chemical
formula of each instance, the number of tree represen-
tations generated from the formula (abbreviated as #
rep.), the total number of naphthalene isomers gener-

BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms

264

ated from these tree representations by our algorithm
(abbreviated as # iso.), and the CPU time of our al-
gorithm (abbreviated as Time), from which we can
observe that our algorithm runs fast even for millions
of isomers.

As we can see in Table 3, as the number ofna-
vertices in formulas increases, the number of the cor-
responding isomers goes up drastically. On the other
hand, the average computing time per isomer remains
the same level of 10−6 second, regardless of the large
size of the input instance.

Table 3: Large Instances with Multiple Naphthalene Rings.

Instance # rep. # iso. Time (s)
na2COH16 8 483 0.0017
na2C2O2H18 141 38,752 0.1261
na3COH22 22 14,276 0.0352
na3CO2H22 95 172,516 0.6417
na3C2O2H24 582 2,219,180 8.9126
na3C2O3H24 2383 19,679,568 138.7940
na4COH28 60 441,050 1.8361
na5COH34 166 14,019,964 66.3542

6 CONCLUSION

In this paper, we have described our algorithm by
a dynamic programming in a rather general way in
the sense that not only benzene and naphthalene rings
but also some other local chemical structure such as
polycyclic aromatic hydrocarbons can be handled in
a similar way. Thus we can design an algorithm
that, given a tree representation where several local
structures are contracted into virtual atoms, counts
the number of isomers of the tree and generates all
isomers one by one. Such an extended algorithm
will be made available via the EnuMol web server
(http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol/).

REFERENCES

Akutsu, T. and Nagamochi, H. (2011). Kernel methods for
chemical compounds, from classification to design. In
IEICE Transactions on Information and Systems, Vol.
E94-D, No. 10, pp. 1846-1853.

Benecke, C., G. R.-H. R. K. A. L. R. and Wieland, T.,
M. (1995). A generator of connectivity isomers and
stereoisomers for molecular structure elucidation. In
Analytica Chimica Acta, Vol. 314.

Benecke, C., G. T.-K. A. L. R. and Wieland, T. (1997).
Molecular structures generation with molgen, new
features and future developments. InFresenius’ Jour-
nal of Analytical Chemistry, Vol. 359, No. 1, pp. 23-
32.

Blum, L. C. and Reymond, J. L. (2009). 970 million drug-
like small molecules for virtual screening in the chem-
ical universe database gdb-13. InJ. Am. Chem. Soc.,
Vol. 131, No. 25, pp. 8732-8733.

Buchanan, B. G., S.-D. H. W. W. G. R. F. E. L. J. and
Djerassi, C. (1976). Applications of artificial intel-
ligence for chemical inference. 22, automatic rule for-
mation in mass spectrometry by means of the meta-
dendral program. InJ. Am. Chem. Soc., Vol. 98, No.
20, pp. 6168-6178.

Fink, T. and Reymond, J. L. (2007). Virtual explo-
ration of the chemical universe up to 11 atoms of
C,N,O,F, assembly of 26.4 million structures (110.9
million stereoisomers) and analysis for new ring sys-
tems, stereochemistry, physicochemical and proper-
ties, compound classes, and drug discovery. InJour-
nal of Chemical Information and Modeling, Vol. 47,
No. 2, pp. 342-353.

Fujiwara, H., W. J.-Z. L. N. H. and Akutsu, T. (2008). Enu-
merating tree-like chemical graphs with given path
frequency. InJournal of Chemical Information and
Modeling, Vol. 48, pp. 1345-1357.

Hardinger, S. (2005).Chemistry 14D thinkbook. Hayden
McNeil.

He, F. and Nagamochi, H. (2015). A method for generating
colorings over graph automorphism. InISORA 2015,
Luoyang, China, pp. 70-81.

Kerber, A., L. R.-G. T. and Meringer, M. (1998). Molgen
4.0, match commun. math. comput. chem. InVol. 37,
pp. 205-208.

Li, J., N. H. and Akutsu, T. (2013). Enumerating benzene
isomers of tree-like chemical graphs. InManuscript
submitted to a journal.

Meringer, M. and Schymanski, E. L. (2013). Small
molecule identification with molgen and mass spec-
trometry. InMetabolites, Vol. 3, pp. 440-462.

Nakano, S. and Uno, T. (2005). Generating colored trees.
In Lect. Notes Comput. Sci., Vol. 3787, pp. 249-260.

Peironcely, J. E., R.-C. M. F. D. R. T. C. L. F. J.-L. H. T.
(2012). Omg: open molecule generator. InJournal of
Cheminformatics, Vol. 4, Ariticle 21.

Shimizu, M., N. H. and Akutsu, T. (2011). Enumerating
tree-like chemical graphs with given upper and lower
bounds on path frequencies. InBMC Bioinformatics,
Vol. 12, Suppl 14, S3.

Enumerating Naphthalene Isomers of Tree-like Chemical Graphs

265

