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Abstract: In this paper, we consider the problem of enumerating naphthalene isomers, where enumeration of isomers is
important for drug design. A chemical gra@with no other cycles than naphthalene rings is catiteetlike,
and becomes a tréke possibly with multiple edges if we contract each naphthalene ring into a single virtual
atom of valence 8. We call tréethetree representation of G. There may be more than one tree-like chemical
graphs whose tree representations equdl tevhich are calledhaphthalene isomers of T. We present an
efficient algorithm that enumerates all naphthalene isomers of a given tree representation. Our algorithm first
counts the number of all the naphthalene isomers using dynamic programming, and then fgigeaehates
the k-th isomer by backtracking the counting computation. In computational experiment, we compare our
method with MolGen, a state-of-the-art enumeration tool, and it is observed that our program enumerates
the same number of naphthalene isomers within extremely shorter time, which proves that our algorithm is
effectively built.

1 INTRODUCTION checking the uniqueness, with allowing the use of
prescribed substructures to enumerate more chemi-
Enumeration of chemical structures has been widely cally adequate structures. Although OMG is a useful
applied in drug discovery (Blum and Reymond, tool, it is reported that OMG is not faster than Mol-
2009), structure elucidation (Meringer and Schyman- Gen (Peironcely, 2012), especially when dealing with
ski, 2013), exploration of chemical universe (Fink large-sized chemical graphs.
and Reymond, 2007). It is to be noted that these  Another important enumeration tool is Enumol
are important not only in chemo-informatics but also (Fujiwara and Akutsu, 2008) (Shimizu and Akutsu,
in bioinformatics because one of the major targets 2011). This tool enumerates chemical structures with
of bioinformatics is development of novel drugs. tree-like graphs efficiently. Akutsu and Nagamochi
Since DENDRAL was developed as an enumeration initiated the development of Enumol after studying
tool for structure elucidation using data from mass computational complexity of inference of a chemical
spectrometry (Buchanan and Djerassi, 1976), sev-graph from its feature vector given as a labeled path
eral enumeration tools have been developed to solvefrequency vector (Akutsu and Nagamochi, 2011).
the Computer-Assisted Structure Elucidation (CASE) Then, Fujiwara et al. (Fujiwara and Akutsu, 2008)
problem. MolGen, whose development was initiated proposed a branch-and-bound algorithm to enumerate
in 1985, is one of the best enumeration tools so far, tree-like chemical graphs from a given path frequency
since it can not only enumerate all possible chemical vector. Shimizu et al. (Shimizu and Akutsu, 2011)
compounds (Benecke and Wieland, 1995) (Beneckegave an algorithm for enumerating structures with a
and Wieland, 1997) (Kerber and Meringer, 1998), but set of feature vectors. These algorithms can only enu-
also allow users to add some restrictions to the input merate tree-like chemical graphs.
of the enumeration such as the number of multiple A benzene is a chemical compound with the
bonds. Recently, OMG (Open Molecule Generator) molecular formulaCgHg and the six carbon atoms in
has been newly developed as the first open sourcea benzene form into a hexagon. A naphthalene is
enumeration tool (Peironcely, 2012) based on the a compound with the molecular formuta,Hg, and
canonical augmentation path strategy which grows in- its molecule is composed of two benzene rings with
termediate chemical structures by adding bonds with
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Enumerating Naphthalene Isomers of Tree-like Chemical Graphs

one common edge. Among all ten carbon atoms in a ments of the atom groups around a naphthalene ring
naphthalene ring, only eight of them are attached with when we replace each virtual atomTnwith a naph-
hydrogen atoms. A substitution of a proton by other thalene ring to obtain a naphthalene isomer.

atoms (or atom groups) is one of the most common  Given a set of atoms of each kind (including the
reactions of naphthalene. In these substitution reac-virtual atomna) possibly with constraints on the num-
tions, such as sulfonation, chlorination and nitration, bers of specified paths, all possible tree-like chemi-
the hydrogen atoms of a naphthalene ring is substi- cal graphs can be enumerated by efficient algorithms
tuted by other atoms (or atom groups). Thereby a created by Fujiwara et al. (Fujiwara and Akutsu,
naphthalene ring may have bonds with other atoms 2008) and Shimizu et al. (Shimizu and Akutsu, 2011).
(or atom groups) (Hardinger, 2005). The difference When we replace each virtual atom in a tree repre-
of substitutions in the relative positions of the sub- sentation with a naphthalene ring, different chemical
stituted hydrogen atoms results in non-isomorphic structures may be generated due to different relative
structures, which are called the naphthalene isomers.positions of the substituents (atom groups) around
Given a tree-like chemical graph, Li (Li and Akutsu, each of the restored naphthalene rings. &€t ) de-
2013) proposed a different method with a guaranteed note the set of all naphthalene isomers of a tree repre-
time complexity to enumerate the benzene isomers bysentationT. In this paper, we consider the following
the two following steps: (1) count the numbgrof problem of enumerating naphthalene isomers.

all the benzene isomers of the input tree representa-
tion using dynamic programming; and (2) for each graph
k=1,2,...,f, generate thé&-th benzene isomer by . .

backtracking the previous computation using the dy- Output: All naphthalene isomer§ € G(T) of T.

namic programming. In this paper, we generalize the  |n this paper, we design an efficient algorithm that
algorithm by Li (Li and Akutsu, 2013) into one for  enumerates all the naphthalene ison@rs G(T) of
enumerating the naphthalene isomers from a tree-like a given tree representatidn We use dynamic pro-
chemical graphs. The major difference is that the gramming to first count the numbgg (T)| of all the
combinatorial complexity of arrangements of atom naphthalene isomers f and then generate all naph-
groups around a naphthalene ring is much higher thanthalene isomers by tracing back the computation pro-
that around a benzene ring. Yet, we managed to gen-cess done for counting the total numier(T)| of
erate all isomers in a running time per isomer similar naphthalene isomers. Thus our enumeration algo-
with the result by Li (Li and Akutsu, 2013) by gener-  rithm consists of the following two phases.

ating all distinct arrangements of atom groups around

a naphthalene ring in advance and storing them in aPhase 1. Count the numbe}G (T)| of the naphtha-
table. As discussed later, it is an important step to- l€ne isomers of a tree representatibfvo) by a dy-
wards extension of enumeration of benzene isomersnamic programming.

to general chemical structures. Our experimental re- Phase 2: For eachk = 1,2,...,|G(T)|, generate the
sult shows that our algorithm runs much faster than k-th isomerGy € G(T) by a procedure of backtrack-
MolGen for enumeration of naphthalene isomers of iNd the computation in Phase 1.

tree-like chemical compounds. _ _ The paper is organized as follows. Section 2 de-
In this paper, we consider chemical graphs with fines isomorphism of rooted graphs. Section 3 de-
naphthalene rings. A chemical gra@possibly with  gjgns a dynamic programming algorithm for counting
naphthalene rings is callécee-likeif (i) notwo naph-  the number of isomers of rooted subtrees and that of
thalene rings share any atoms; (ii) no multiple edges 1 gection 4 presents an algorithm for generating the
exist between a naphthalene ring and an atom (or ay.th jsomer among all isomers &f Section 5 reports
naphthalene ring); and (iii) the graph can be viewed as o, experiments to an implementation of our algorithm

amulti-tree (a tree with multiple edges) if we contract for counting and generating isomers. Section 6 makes
each naphthalene ring into a single vertex of an atom gome concluding remarks.

of a virtual elementa of valence 8. We call the tree

in the above (iii) thetree representation of G. Note

that for a given tree representation there may be

more than one tree-like chemical graphs whose tree2 PRELIMINARIES

representations are given Ay All tree-like chemi-

cal graphs whose tree representations equal ese e introduce isomorphism in tree-like graphs.

called thenaphthalene isomers of T. Distinct naph- A chemical graph is given by a connected undi-

thalene isomers of are caused by different arrange- rected graptG = (V,E) with a setV of vertices and
a setkE of edges possibly with multiple edges, where

Input: A tree representatioh of a tree-like chemical
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col(v) denotes the atom assigned to each verte¥X .
For a subgrapHhl of G, letV(H) andE(H) denote the
sets of vertices and edgeshh For a vertex subset
or a subgrapiX of G, let Ng(X) denote the set of
neighbors oK (the vertices iV — X orV —V(X) ad-
jacentto some vertex ). A vertexv with col(v) =¢
is called an/-vertex. LetEg(u,v) denote the set
of edges between verticasandv in G. The set
Ec(u,v) is called abridge if the graph becomes dis-
connected by removing edgesig(u,v). Two graphs
G = (V,E) andG' = (V’,E’) areisomorphic if there
is an isomorphism between them, i.e., a bijection
V — V' such that cdlv) = col(y(v)) holds for each
vertexv € V and |Eg (Q(u),y(v))| = |Ec(u,v)| for
all vertex pairau,v € V. When two graph& = (V,E)
andG' = (V/,E’) have designated verticess V and
r' € V' called the roots, we say th& = (V,E) and
G' = (V/,F’) arerooted-isomorphic if there is an iso-
morphismy : V — V’ such that’ = (r).

Let G be a tree-like chemical graph. A naphtha-
lene ringH is a cycle of terc-vertices eight of which
has a neighbor ihg(H) joined by a single edge. For
an ordered paifv,w) such thatEg(v,w) is bridge,
we denoteG|v,w| the subgraph induced fro@ by
the vertex subsefv} U Xy, such thatXy is the set of
vertices reachable from vertexby a path that does
not pass through vertex We regardr as the root of
G[v,w].

For each vertex not on a naphthalene ring in
G, we define acoterie of the set{G[v,w] | w €
Ne(v)} of subgraphs to be a maximal subset of
{G[v,w] | w € Ng(v)} such that any two in the sub-
set are rooted-isomorphic. Hence the §&{v,w] |
w € Ng(v)} of subgraphs is partitioned into several
sets of coteries, which is called thmterie-family
of G at vertexv. Fig. 1 shows the coterie-family
{Gv,w1],G[v,wo]}, {G[v,ws]} and{G[v,wy]} for the
subgraphs of rootof graphG, whereG[v, w;] denotes
the subgraph composed of racénd its adjacent ver-
ticesw; for eachi = 1,2, 3,4 respectively.

b 3
=T |

Figure 1: An example of coterie-family with three coteries.

For a naphthalene ringH with C-vertices
Vi,Vo,...,Vg in G and Ng(H) = {wi,wy,...,wg}
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wherew; € Ng(v;), eachc-vertexv; € V(H) is con-
tained in the subgrapB[vi,w;]. We define aoterie

of the set{G|vi,wi] | vi € V(H)} of subgraphs to be

a maximal subset ofG[vi,wi] | vi € V(H)} such that
any two in the subset are rooted-isomorphic. Hence
the set{G[vi,wi] | vi € V(H)} of subgraphs is parti-
tioned into several sets of coteries, which is called the
coterie-family of G at naphthalene rinH.

Thesize of a coterie is defined to be the number of
subgraphs that belong to the coterie. Among coteries
with the same size, we introduce some total order, and
we always denote bRiJ the subgraph that belong to
the j-th coterie of size. Fig. 2 illustrates an example
of coterie-family at a vertex with a coterie with size
1, a coterie with size 3 and a coterie with size 4.

Figure 2: An example for a coterie-family at vertex
v in a tree T where the cf-type at vertex is ¢ =
(1,0,1,1,0,0,0,0).

A coterie-family-type (cf-type) of G at a vertex
v or a naphthalene ringfl is defined to be the set
of the number of coteries of each size, and is de-
noted by theoccurrence vector ¢ whosei-th entry in-
dicates the number of coteries of size In Fig. 2,
c=(1,0,1,1,0,0,0,0).

Figure 3: The two layout-types i (c) of cf-type c =
(1,0,0,0,0,0,1,0).

For a fixed cf-typec of G at a naphthalene ring
H, there may be different ways of placing the sub-
graphs in{G[vi,wi] | v € V(H)} such that the result-
ing graphs are notisomorphic. The g&t) of layout-
types consists of such different ways of placing the
subgraphs i{G[vi,wi] | vi € V(H)}. For example, cf-
typec = (1,0,0,0,0,0,1,0) has two layout-types in
L(c), which s illustrated in Fig. 3. LeX(c) = |L(c)].
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Table 1 shows the numbér(c) of layout types for  T. Throughoutthe paper, we assume that non-rooted-
each possible cf-typeof a naphthalene ring. Among isomorphic subgraphs iG[vi,wi] | vi € V(Hy), w; €
the layout-types in.(c) for each cf-typec, we intro- Ne(vi)} can be arranged in some total order based
duce some total order, and denote lhyc) the i-th on their topological structure, and we assign indices
layout-type in£(c). In this paper, we assume thata R',;R? ... to the coteries with the same sizaccord-
complete list of all layout types of each cf-type for ing to the order so that choosing a layout-type in
a naphthalene ring is available, where the total num- £(c,) uniquely determines the relative positions of all
ber of layout types is 23,911. An efficient method the subgraphsifiG[vi,wi] |vi € V(Hy), wi € Ng(vi)}
for generating all layout types of a geometrical ob- around the naphthalene rity. However, when we
ject with two axial symmetries including naphthalene change a layout-type[v] € £(cy) for somena-vertex
ring has been discussed by He and Nagamochi (Hev in T, the cf-typec, of some othena-vertexu may
and Nagamochi, 2015). change. To avoid such inconvenience in generating
allisomers inG(T), we designate a vertex has the
Table 1: The numbeX(c) of layout types for each possible  root and systematically compute the number of iso-

cf-typec of a naphthalene ring. mers of some subtrees @f by a dynamic program-
C A(c) C O ming, where all isomers of will be generated by

(0,0,0,0,0,00,1) 1 (1,0,0,0,0,0,1,0] 2 backtracking the computation.
(0,1,0,0,0,1,0,0f 10 | (2,0,0,0,0,1,0,0) 14 Let G(T[v,w]) denote the set of isomers obtained
(0,0,1,0,1,0,00)] 14 | (1,1,0,0,1,0,0,0) 42 from the treeT [v,w] by restoring alha-verticesz (#
(3,0,0,0,1,0,0,0) 84 | (0,0,0,2,0,0,0,0) 22 v) in T[v,w] into naphthalene ringsl;. Clearly if
(1,0,1,1,0,0,00) 70 | (0,2,0,1,0,0,0,0) 114 T[v,w] andT[v,w] are rooted-isomorphic fom,w €
(2,1,0,1,0,0,0,0) 210 | (4,0,0,1,0,0,0,0) 420 Nr(v), then G(T[v,w]) = G(T[v,W]). Conversely
(0,1,2,0,0,0,0,0) 140 | (2,0,2,0,0,0,0,0) 280 T[v,w] and T[v,w/] are not rooted-isomorphic for
(1,2,1,0,0,0,0,0) 420 | (3,1,1,0,0,0,0,0) 840 wW,W € Nr(v), thenG(T[v,w]) N G(T[v,W]) =0.
(5,0,1,0,0,0,0,0) 1680 | (0,4,0,0,0,0,0,0) 648 Let us treat a given tree representafions a tree
(2,3,0,0,0,0,0,0)] 1260 | (4,2,0,0,0,0,0,0) 2520 rooted at a vertexp, where the root is chosen as a
(6,1,0,0,0,0,0,0) 5040 | (8,0,0,0,0,0,0,0), 10080 topologically unique vertex il such as “center” or

“centroid.” It is known that every tree has either a

In the rest of this section, we discuss the structure Vertex or an edge removal of which leaves no com-
of isomorphism in tree representations. ponent with more tharnn/2]| vertices. The former
atoms of valence 8, which we restore naphthalene We choose the unicentroid gf a/s the rooty of T,
rings to obtain a naphthalene isomerTof Note that ~ Where if T has the bicentroid/,v"), then we remove
Er(v,w) is a bridge ofT for each pair of adjacentver- the edge connectingandv’ and insert a virtual vertex

of T rooted atv such tha¥/ (T [v,w]) consists of and in the resulting tree. For each vertexn a rooted
the vertices reachable fromwithout visitingv. Ev-  tree representatioh = (V,E), let Ch(v) C Nr(v) de-
ery vertexvin T is shared byNr (v)| subtreed [v,w] note the set of children of, where Cliv) =0if vis
with w € Ny (v). For a subtred’ = T[v,w] for ver- a leaf vertex ofT. Whenv is not the root ofT, let
ticesv € V andw € N(v) in T, restorationof T/ isan ~ P(V) € Nr(v) denote the parent of By the topolog-
operation of expanding thea-verticesz ( v) in T’ ical uniqueness of the roat, we see that f(_)r each
into naphthalene ring, to obtain a chemical graph  Non-root vertes, tree T[v,w] with w € Ch(v) is not
Gy rooted av, wherev may be aa-vertex. LetG(T’) ~ footed-isomorphic to tre€[v, p(v)].

be the set of tree-like grapl, obtained by restoring The set Clv) of children of a vertexv in T

a subtred’ of T. is decomposed into sets @), Chy(V),...,Ch(v)

Our aim is to generate all isomers ((T) from such that the subtredgv,u] andT|v,u’] are rooted-
a given tree representatioh, supposing that we isomorphic if and only ifu,u’ € Ch(v) for somei.
know the cf-typec, of the coterie-family for the set Fig. 4 illustrates the rooted-isomorphic decomposi-
{G[vi,wi] | vi € V(Hy), Wi € Ng(vi)} of subgraphs tions of child sets of a tree presentatidn Note that
around the naphthalene rirtdj, restored from each for a given tree presentatioh rooted at a vertexp,
na-vertexvin T. Since distinct isomers are caused by we can compute the rooted-isomorphic decomposi-

different layout-types around naphthalene rings after tion {Ch(v) |i=1,2,...,t,} for all verticesve V in
restoration off, an isomefG € G(T) can be specified  polynomial time in the size oF by expressing all sub-
by a layout-type_[v] € L(cy) of eachna-vertexv in treesT[v,u], u € Ch(v) for eachv € V(T) as canoni-
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cal forms such as left-heavy trees (Nakano and Uno, Ch(vy), there is only one isomer i (T [p(w),w]).

2005).
In what follows, we assume that an input of the
problemis the set

(T,vo,{{Ch(v)|i=1,2,....ty},veV})

of a tree representatioh rooted at the unicentroid
Vp and the rooted-isomorphic decompositions of child
sets OfT.

H)IH

i
i
|
Ugg Ugy Ugs Ugg Vg7 |

0000000I0)

i
DOOC i
! ool
I U1 V1sV17 V1gVigls0) ~22

Figure 4: The rooted-isomorphic decompositions of child
sets of tree representatidn where the dotted rectangles
show the rooted-isomorphic decompositions for all nori-lea
vertices inT.

3 COUNTING THE NUMBER OF
ISOMERS

Let nis(vg) = |G(T)| for the rootvp of T, and nigv) =
|G(T[p(v),V])| for each non-root vertex in T. We
derive recursive formulas ovemis(v) | v e V(T)}
such that niés) can be computed froffinis(w) | w €

Ch(v)}.

Example 1. Before we present details, we show how
the numbers niw), v € V(T) of the exampleT in
Fig. 4 will be computed.

1. Clearly for the leaf verticesv € V(T) —
{Vo,V1,V2,V11,V12,V21} in the exampleT, we have
that nigv) = 1.

2. For the nonra-vertexv,, the rooted-isomorphic
decomposition of the child set Q) is Chi(v2) =
{v3,v4} since T[vo,v3] and T[vo,v4] are rooted-
isomorphic, where ni¥s) = nis(v4) = 1, and we
know thatG(T[p(v2),V2]) contains only one isomer,
implying that nigvz) = 1.

3. We next consider thea-vertexv; in the example
T. The rooted-isomorphic decomposition of the child
set CHv,) is given by Ch(v1) = {v2} and Ch(v1) =
{Vs, Ve, V7,Vs,Vo,V10} Where we know that n{s) = 1
and nigw) = 1, w € Chp(v1). For any vertexw €
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The corresponding cf-type,,=(2,0,0,0,0,1,0,0) has
A(cy,) = 14 layout-types (see Table 1). Therefore we
have nigv1) = 14.

4. We now consider the roaia-vertex vp, where
the rooted-isomorphic decomposition of @) is
Ch]_(Vo) = {V1,V11}Ch2(V1) = {Vzl} and C|’3(V1) =
{V23, V24, V25, Vg, V27} @nd we see that niw) = 14,
w € Chy(vo), nisi(w) =1, w € Chp(Vp) and nigw) =
1, w € Chs(vp), respectively. For nisv) = 14w €
Chy(vo) and |Chy(vp)| = 2, there are two different
coterie-families ati: i) one whenG' € G(T [vo,Vv1])
andG” € G(T [vo,v11]) are rooted-isomorphic; and ii)
the other when they are not isomorphic.

i) The former cf-type iy, = (1,1,0,0,1,0,0,0),
whereR} € G(T[vo,w1]), RS € G(T [V, V21]) andR} €
G (T [vo,Vvo3]). Note that there are rig;) x nis(va1) x
nis(v2z) = 14 x 1 x 1 = 14 combinations of iso-
mers in G(T[vo,W]) with w € Ch(vp) that give cf-
type ¢y, = (1,1,0,0,1,0,0,0) at vo. Since there
areA(cy,) = 42 layout-types (see Table 1), we have
14x 42= 588 isomers inG(T) whose cf-type a¥g is
(1,1,0,0,1,0,0,0).

i) For the latter cf-type is ¢, =
(3,0,0,0,1,0,0,0), where R} € G(T|[vo,v1])RS €
G(Tvo,v11))RE € G(T[vo,v21]) and . Rl €
G(T[vo,v23)).  Note that there are("$))) x
nis(v21) x nis(v2z) = 91x 1 x 1 = 91 combinations
of isomers in G(T[vo,w]) with w € Ch(vg) for
cf-type ¢, = (3,0,0,0,1,0,0,0) at vo. Since there
areA(cy,) = 84 layout-types (see Table 1), we have
84 x 91= 7644 isomers inG(T) whose cf-type atp
is (3,0,0,0,1,0,0,0).

In total, the number nisp) of isomers inG(T) is
588+ 7644= 8232.

In what follows, we generalize the above idea
into recursive formulas from which we can system-
atically compute the number rfig from niw),w €
Ch(v). The point is how each subset ©h in the
rooted-isomorphic decomposition of Gh can be
further partitioned into coteries. Different partitions
of subset CHv), i = 1,2,...,t give rise to distinct
cf-types. Letn; = |Chi(v)| and f; denote the num-
ber nigw) = |G(T|v,w])| of isomers of the subtree
T[v,w] rooted at a vertew € Ch(v). Denote the num-
ber of coteries partitioned from @) by hi. Then
1<h <min{n;, fj} for eachi € {1,2,...,t}. Let #
be the set of all possible vectors, thth entrance of
which is the number of coteries in Gh), then#, =
{(h1,h2,...;h) | L<hi <min{n;, i}, i=1,2,...,t},
where|H| = [N1<i< min{n;, fi}.

For a subtred’ C T rooted atv and the rooted-
isomorphic decompositioChy,...,Ch,}, we de-
fine a subsetGy(T’) of G(T'), h € #, to be the



set of restored graphs df whose number of coter-
ies in CRh(v) equals toh; for eachi € {1,2,...,t,}.
Let g(h) = |Gn(T’)|. For any two different vectors
hi,ho € 7, restored subgraph@h, (T') C Gn, (T')
and G, (T’) € Gn,(T’) are always non-isomorphic.
Then we have the equation as follows.

nis(v) = z g(h).
he#,

A specific form of functiong(h) of h € #, can
be derived in a similar manner with the method by Li
et al. (Li and Akutsu, 2013). Due to a space limita-
tion, we here omit deriving the form of functiath),
which takes a different form in each of the following
three cases:

1. Vertexv is a nonaa vertex.

2. Vertexv is a non-rooha-vertex.

3. Vertexv is a rootna-vertex.

We analyze the time complexity of our algo-
rithm. Since the valence of any atom is constant
and [IN(H)| = 8 for a naphthalene ring, the degree
[Nt (v)| of any vertexv in T is O(1). Hence|H| is
alsoO(1), and computingdg(h) | h € #4} and deter-
mining nigv) can be executed i®(1) time (Li and
Akutsu, 2013). Therefore the total running time of
our algorithm isO(n) for the input sizen = |T (V).

1)

4 CONSTRUCTION OF
NAPHTHALENE |ISOMERS

In the first phase of our algorithm, given a tree repre-
sentationT, we compute ni&) and{g(h) | h € #}
for all verticesv € V(T). In the second phase of our
algorithm, we generate isomersdi{T) one by one.

For this, we fix a total ordewy, : G(T) —
[1,nis(vo)] over all isomers inG(T) such that
Oy, (G) = k means thaG is thek-th isomers inG(T)
in the total order. Similarly for each non-root ver-
texvin T, we fix a total ordeioy : G(T[p(v),V]) —
[1,nis(v)] over all isomers inG(T[p(v),V]) such that
oy(G) = j means thatG is the j-th isomers in
G(T[p(v),v]). Since the way of fixing total orders
oy is same during the second phase, it hads= oy
for any two verticess,v € V(T) such thafT [p(u), u]
and T[p(v),v] are rooted-isomorphic. Hence tlke
th isomerG, € G(T[p(u),u]) and thek’-th isomer
Gy € G(T[p(v),v]) will be rooted-isomorphic if and
only if k=K.

Supposing such fixed total orderoy | v €
V(T)}, we generate th&-isomerG € G(T) of T
(i.e., the isomerG such thato,,(G) = k) for a
specified integek € [1,nis(vp)], where we callk
the search index of vertex v. For the child set
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Ch(v) = {wg,Ws,...,wq}, the isomelG € G(T) con-
sists ofq subgraph&y, , Guw,, ---, G, such thaGy, €
G(Tv,w]). We letkjwi] = 0w, (Gw;), i.e., Gy, is the
kjwi]-th isomer in G(T[v,wi]). Hence we see that
the isomerG € G(T) consists ofk[w;]-th isomer in
G(T[v,w;]) for each childw; € Ch(v), where we call
k[wi] the search index of vertexw;. Whenv is ana-
vertex, we also identify the layout-tyddv] around
the naphthalene ringy.

In the rest of this section, we show how to com-
pute search indices.

An isomer G € G(T) can be determined by
choices of cf-types cand layout-typed.[7] € L(c;)
for all naphthalene ringdd, stored from thena-
verticesz in T. In fact, we see that only the set
{L[Z | na-verticeszin T} determines a cf-type,of
each naphthalene ring,. Each leaf vertew in T
has a unique cf-type,c Recursively when an isomer
Gw € G(T[v,w]) of each childw € Ch(v) of a ver-
tex v has been determined, the cf-typgaf vertex
v can be uniquely determined, and the isor@gre
G(T[p(v),V]) (or Gy € G(T)) consisting of these sub-
graphsGy € G(T[v,w]), w € Ch(v) can be uniquely
determined with a specified layout-type whets a
na-vertex (orGy can be uniquely determined only by
Gw, W € Ch(v) whenv is not ana-vertex). Our task
is to output a sefL[Z] | na-verticeszin T} of layout-
types as an isomé& € G(T).

Example 2. We show how search indices and layout-
types will be computed in the examplein Fig. 4

1. After counting phase, we have computgglh) |
H,} for all non-leaf vertices. In the example#, =
{h1 =(1,1,1),h, = (2,1,1)} with g(h;) = 588 and
g(h2) = 7644 and #,| = 1 for all the other non-leaf
verticesvin T.

2. Suppose that we generate tkéh isomer inG(T)

of the example. Recall that ifig) = g(h1) +g(h2) =
588+ 7644 = 8232, where we can regard the first
588 isomers inG(T) are constructed based on the
first vectorh; € #,, and the remaining 7644 isomers
in G(T) are based on the second vectore #,.
Hence wherk < 588, we generate an isom& ¢
G(T) based orh; € #,, and the corresponding cf-
typecy, = (1,1,0,0,1,0,0,0); and wherk > 588, we
generate an isom& < G(T) based orh, € A, and
the corresponding cf-type, = (3,0,0,0,1,0,0,0).

3. Assumek = 600, and consider how to deter-
mine the search indicdgw] of the childrenw of vo.
Sincek = 600> 588, we construct th&-th isomer

G e G(T) based orh, = (2,1,1) € H, and cf-type
¢y, = (3,0,0,0,1,0,0,0); i.e., fork’ := k—588= 12,
we construct thé-th isomer among such(hy) =
7644 isomers based @y, = (3,0,0,0,1,0,0,0). Re-
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call that

g(hz) = 7644=91x 84
— (")) x A((3,0,0,0,1,0,0,0)).

By hy = (2,1,1), the subset Ct{vg) = {V1,V11} is
partitioned into two sequencés;) and (vi1), indi-
cating that we select an isomét € G(T[vo,Vv1]) and
an isomerG” € G(T|vo,v11]) which are not rooted-
isomorphic. There ard™V) = () = 91 such
pairs of isomer$s’ andG”, and each pair correspond
with root vo's 84 layout-types. By = 12, we have
0x 84<12< 1x 84. Then this means that in 600-th
isomer, vertexvg has the first layout-type in occur-
rence vector,, = (3,0,0,0,1,0,0,0), which means
that the layout-typé.[vg] = 1 atna-vertexvp in the
exampleT in Fig. 4.

4. Then we decide the search indices for the tvae
verticesvy anvys in Chy(vp). The 91 pairs of non—
isomorphic graphss’ and G” rooted atv; and vy
have search indices of the two vertices listed from
the smallest to the largest: (1,2), (1,3),, (1,14),
(2,3),...,(13,14), and we choose the 12th one, where
(k[va],K[v11])=(1,12). ThenG' has thek[v;] = 1-st
isomer in G(T[vo,v1]) and G” has thek[vi1] = 12-
th isomer inG(T[vo,Vv1]). Sincevy andviy do not
have any descendants that asevertex, this directly
means that vertex; has the 1-st layout-type, amd;
has the 12-th layout-type.

We designed an algorithm that determines the
search indice&[w] of childrenw of a vertexv with
a search indek, and it runs inO(log| G(T)|) time for
each noma-vertexv in T. Due to space limitation,
we omit the algorithms and explanation of time com-
plexities.

If we calculate the layout-types for alk-vertices
vin treeT for a search indek, k € [1,nis(v)], then
we get oulk-th isomer. The algorithms for determin-
ing the search indices and the layout-type for one ver-
tex run inO(log|G(T)|), and we can see that gen-
erating thek-th isomer runs in tim&(nlog|G(T)|).
Hence, all the isomers i;(T) can be generated
in O(n|G(T)|log|G(T)|) time. It should be noted
that the required space for executing our algorithm is
O(n), since we do not need to store any isomers gen-
erated before for a possible comparison with newly
generated isomers to check duplication.

()

5 EXPERIMENTAL RESULTS

We implemented our algorithm in C language and ex-
ecuted it on a PC with Intel(R) Core(TM)i7 CPU 1.7
GHz and 8 GB memory. In this paper, we assume that
a complete list of all layout types of each cf-type for
a naphthalene ring is available as a table. In our pro-
gram, we calculate the total number of isomers and
generate each of them for a specific input using the
table. The experimental results of computing time do
not include the process of preparing this table.

In the first experiment, we solve small problem in-
stances by our algorithm so that we can see whether
all isomers of the instances are correctly and effi-
ciently enumerated. For this, we used five rela-
tively small instances, whose formulas arg 0,Hs,
na;Cy05H49, na; C30o,H5, na; C405H5, na; C505Hyo, 1O
compare the results with those by MolGen. Here,
chemical formula defines a set of chemical trees, from
which isomers of the same formula are generated by
our algorithm. For example, the first set consists of
two tree representations all of which have the same
formula na;0,Hg. We used the algorithm due to
Shimizu et al. (Shimizu and Akutsu, 2011) to gen-
erate all such trees.

Table 2: Comparison of our algorithms with MolGen.

Instance | #rep.| #iso.| Time(s)| Mol-Time

na; OyHg 2 12 | 0.0001 0.222s
na; C;0,H10 26 294 | 0.0010 108.025 s
na; C30H12 140 | 2458 | 0.0114 | 1064.696 s
na; C40H12 623 | 13442 | 0.0594 | > 6 hours
na;CsOH1, | 2046 | 46354 | 0.2436 > 4 days

Table 2 summarizes the results, where each row
shows the chemical formula of each instance, the
number of tree representations generated from the for-
mula (abbreviated as # rep.), the total number of naph-
thalene isomers generated from these tree represen-
tations by our algorithm (abbreviated as # iso.), the
CPU time of our algorithm (abbreviated as Time),
and that of MolGen (abbreviated as Mol-Time). Note
that MolGen runs on a workstation with Intel(R)
Xenon(R) CPU 3.00 GHz and 32 GB memory. It was
observed that the numbers of isomers generated by
our algorithm completely match with those generated
by MolGen, and that our algorithm runs much faster,
even on a slower CPU, which shows the correctness
and efficiency of our algorithm.

In the second experiment, we measured the com-
puting time by our algorithms for additional eight sets
of relatively large instances with multiple naphthalene
rings in the same manner. Table 3 shows the results

In this section, we attempt to show the correctness andon these instances, with each row shows the chemical

efficiency of our algorithm. For this, we conducted

formula of each instance, the number of tree represen-

two experiments over problem instances constructedtations generated from the formula (abbreviated as #
based on some chemical compounds and databasesep.), the total number of naphthalene isomers gener-
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ated from these tree representations by our algorithmBlum, L. C. and Reymond, J. L. (2009). 970 million drug-

(abbreviated as # iso.), and the CPU time of our al- like small molecules for virtual screening in the chem-
gorithm (abbreviated as Time), from which we can ical universe database gdb-13. JrAm. Chem. Soc.,
observe that our algorithm runs fast even for millions Vol. 131, No. 25, pp. 8732-8733.

of isomers. Buchanan, B. G., S.-D. H. W. W. G. R. F. E. L. J. and

. Djerassi, C. (1976). Applications of artificial intel-
As we can see in Table 3, as the numbenaf ligence for chemical inference. 22, automatic rule for-

vertices in formulas increases, the number of the cor- mation in mass spectrometry by means of the meta-
responding isomers goes up drastically. On the other dendral program. Id. Am. Chem. Soc., Vol. 98, No.
hand, the average computing time per isomer remains 20, pp. 6168-6178.

the same level of 1@ second, regardless of the large Fink, T. and Reymond, J. L. (2007). Virtual explo-

size of the input instance. ration of the chemical universe up to 11 atoms of
C,N,0,F, assembly of 26.4 million structures (110.9
Table 3: Large Instances with Multiple Naphthalene Rings. million stereoisomers) and analysis for new ring sys-
i i tems, stereochemistry, physicochemical and proper-
Instance # rep. #iso. | Time (s) ties, compound classes, and drug discoveryJolm-
nasCOHyg 8 483 0.0017 nal of Chemical Information and Modeling, Vol. 47,
nasCyOpH1g 141 38,752 0.1261 No. 2, pp. 342-353.
nazCOH,, 22 14,276 0.0352 Fujiwara, H., W. J.-Z. L. N. H. and Akutsu, T. (2008). Enu-
resCOfe | 95| 1r2516| 0ol merating ee ke chemical graphs it gven pat
nasCo0,Hp4 | 582 | 2,219,180 8.9126 M o%enngy'voL 48, pp, 13451357
nazCpOsHzq | 2383 | 19,679,568] 138.7940 Hardinger, S. (2005) Chemistry 14D thinkbook. Hayden
nas COHyg 60 441,050 1.8361 McNeil.
nasCOHgq 166 | 14,019,964| 66.3542 He, F. and Nagamochi, H. (2015). A method for generating

colorings over graph automorphism. IIBORA 2015,
Luoyang, China, pp. 70-81.
Kerber, A., L. R.-G. T. and Meringer, M. (1998). Molgen

6 CONCLUSION 4.0, match commun. math. comput. chemVah. 37,
- ] . pp. 205-208.
In this pz_iper, e ha\{e d,escr'bed our algorithm '?y Li, J., N. H. and Akutsu, T. (2013). Enumerating benzene
a dynamic programming in a rather general way in isomers of tree-like chemical graphs. Menuscript
the sense that not only benzene and naphthalene rings  submitted to a journal.
but also some other local chemical structure such asmeringer, M. and Schymanski, E. L. (2013). Small

polycyclic aromatic hydrocarbons can be handled in molecule identification with molgen and mass spec-
a similar way. Thus we can design an algorithm trometry. InMetabolites, Vol. 3, pp. 440-462.

that, given a tree representation where several localNakano, S. and Uno, T. (2005). Generating colored trees.
structures are contracted into virtual atoms, counts In Lect. Notes Comput. ci., Vol. 3787, pp. 249-260.

the number of isomers of the tree and generates allPeironcely, J.E., R-C. M.F.D.R. T.C. L. F. J.-L.H. T.
isomers one by one. Such an extended algorithm E:Zk(l)lz_).meg:_ open “ZO'AE‘?U_'eI gglneratommma' of
will be made available via the EnuMol web server eminformatics, \ol. 4, Ariticle 21.

(http://sunflower.kuicr.kyoto-u.ac.jp/tools/fenumol/) ~ Shimizu, M., N. H. and Akutsu, T. (2011). Enumerating
tree-like chemical graphs with given upper and lower

bounds on path frequencies. BMC Bioinformatics,
Vol. 12, Suppl 14, 3.
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