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Abstract: Support Vector Machine (SVM) classifiers are widely used to analyse features extracted from brain MRI 
data to identify useful biomarkers of pathology in several disease conditions. They are trained to distinguish 
patients from healthy control subjects by making a binary classification of image features extracted by 
image processing algorithms. This task is particularly challenging when dealing with psychiatric disorders, 
as the reported neuroanatomical alterations are often very small and quite un-replicated within different 
studies. Subtle signs of pathology are difficult to catch especially in extremely heterogeneous conditions 
such as Autism Spectrum Disorders (ASD). We propose the use of the One-Class Classification (OCC) or 
Data Description method that, in contrast with two-class classification, is based on a description of one class 
of objects only. Then, new examples are tested for their similarity to the examples of this target class, end 
eventually considered as outliers. The application of the OCC to features extracted from brain MRI of 
children affected by ASD and control subjects demonstrated that a common pattern of features characterize 
the ASD population.  

1 INTRODUCTION 

Several post-processing methods to analyse brain 
Magnetic Resonance Imaging (MRI) data have been 
developed and implemented so far to obtain 
diagnostic models of pathology and useful disease 
biomarkers. Machine-learning techniques, e.g. those 
based on support vector machines (SVMs) (Vapnik, 
1995), have been shown to be valuable tools to make 
predictive diagnoses in single subjects in a large 
variety of diseases. They can be implemented for 
diagnosis prediction, to assess the disease 
progression and to evaluate the treatment 
effectiveness (Orrù et al., 2012). Conventional 
binary (also called two-class) classification 
algorithms are applied in most cases. They aim to 
classify an unknown object into one of two pre-

defined categories. In the present study we propose 
the use of the One-Class Classification (OCC) or 
Data Description method (Moya et al., 1993), which, 
in contrast to two-class classification, makes a 
description of one training class of objects (referred 
to as the positive class or target class) and detects 
which (new) objects resemble this target class, thus 
distinguishing them from examples considered 
outliers. Using OCC in standard binary classification 
problems, where objects from both the two classes 
are at disposal, could result in worse recognition 
accuracy, as the complete knowledge encoded in the 
available training set is not fully exploited. However, 
OCC could provide more robustness in case of 
difficulties embedded in the nature of data, since 
they seek to describe properties of the target class 
instead of minimizing the classification error. 
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Table 1: Dataset composition and sample characteristics. Abbreviations: ASD, autism spectrum disorders; NVIQ, non-
verbal intelligence quotient; std, standard deviation. 

Variable Subject group, mean ± std [range] 

Age (months) 
ASD (n=41) Controls (n=40) 

49 ± 12 [28-70] 49 ± 14 [24-72] 

NVIQ 73 ± 22 [34-113] 73 ± 22 [31-113] 

 Males (n=21) Females (n=20) Males (n=20) Females (n=20) 

Age (months) 50 ± 10 [34-70] 48 ± 13 [28-69] 48 ± 13 [24-70] 50 ± 16 [22-72] 

NVIQ 75 ± 22 [40-113] 70 ± 23 [34-113] 73 ± 23 [32-123] 71 ± 24 [31-106] 
 

As a case study, we focused on the analysis of 
brain features extracted from MRI data of children 
affected by Autism Spectrum Disorders (ASD), 
which are complex developmental neuropsychiatric 
conditions affecting 1 in 68 children in USA (CDCP, 
2014), and characterized by impairment in socio-
communicative abilities, as well as restricted and 
stereotyped behaviours. Different approaches have 
been proposed to date to explore the genetic, clinical 
and neurobiological heterogeneity of ASD. Several 
studies aimed to explore the predictive power of 
MRI data, to find reliable ASD markers (Ecker et al., 
2010; Jiao et al., 2010; Ingalhalikar et al., 2011; 
Calderoni et al., 2012; Zhou et al., 2014; Gori et al., 
2015; Retico et al., 2015).  

We propose the implementation of OCC to 
region-based characteristics extracted from 
structural MRI brain data, in order to measure their 
performance in the discrimination of patients with 
ASD with respect to controls in the preschool age. 
Moreover, we investigate the distribution of 
“normal” patterns of brain structure to test its 
homogeneity and its potential to enable the 
definition of a robust boundary in relation to which 
the patients with ASD are classified as outliers. 
Should it not be the case, a consistent 
neuroanatomical pattern among the ASD patients 
would be investigated. Finally, the relative 
contribution of the considered brain features to the 
decision function is studied to identify the 
neuroanatomical regions more involved in the OCC 
boundary definition.  

2 MATERIALS AND METHODS 

2.1 Samples of Subjects and MRI Data 
Acquisition 

A group of 21 male and 20 female pre-schoolers 
with ASD [mean age ± standard deviation = 49 ± 12 
months; age range = 28 – 70 months] and a group of 
40 control subjects matched by gender, age, non-

verbal IQ (NVIQ), and socioeconomic status were 
selected for this case-control study (see Table 1). 
Participants in the ASD group were recruited in the 
ASD Unit of IRCCS Stella Maris Foundation (Pisa), 
a tertiary hospital and research university in Italy. 
The control group was composed of 20 pre-
schoolers with idiopathic intellectual disability (ID), 
and 20 pre-schoolers without intellectual disability 
(noID). Subjects with ID were included within the 
control group in order to obtain a match for NVIQ 
between patients and controls. T1-weighted MRI 
data with voxel size of 1.1x1.1x1.1 mm3 were 
acquired using a GE 1.5 T Signa Neuro-optimized 
System (General Electric Medical Systems). 

2.2 Data Preprocessing and Feature 
Extraction 

The preprocessing of the entire data set included the 
volumetric segmentation and cortical reconstruction 
by the Freesurfer image analysis suite version 5.1.0, 
(http://freesurfer.net/; Fischl et al., 2004). In the 
cortical parcellation step, neuroanatomical labels 
were assigned to each location on the cortical 
surface according to the Desikan–Killiany–Tourville 
(DKT) cortical atlas, which divides the cerebral 
cortex into 62 structures (31 structures per 
hemisphere) (Klein and Tourville, 2012). The 
following 5 surface-based features for each structure 
are computed: Area (white surface area in mm2); 
Volume (gray matter volume in mm3); Thickness 
(average cortical thickness in mm); ThicknessStd 
(standard deviation of cortical thickness in mm); 
Mean-Curv (integrated rectified mean curvature in 
mm-1). We remark that the Volume is computed 
according to a surface-based method, as the average 
of the white and pial surface areas, multiplied by the 
cortical thickness. In addition we considered the 
White Surface Total Area (in mm2) and the Mean 
Thickness (in mm) of the cortex in the two 
hemispheres, thus obtaining a vector of 314 
characteristics for each subject. 
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2.3 One-class Feature Classification 

Among conventional binary classification 
algorithms, Support Vector Machines (SVM) are 
quite extensively applied tools (Vapnik, 1995). They 
are a supervised binary classification method that 
requires a training set of labeled input examples to 
learn the differences between the two sample 
classes, and a labeled test set to quantify the 
classification performance. 

In the context of classification of brain images, 
each input example is a vector x of features 
extracted by each input image. The label y 
associated to each input example indicates its 
membership, e.g. “1” for vectors belonging to the 
patients class, “-1” for controls. Basically, during the 
training phase an optimization problem is solved to 
identify the largest-margin hyperplane allowing for 
an optimal separation of the two classes. The input 
vectors contributing to the definition of the 
separating hyperplane are called support vectors. 
Since data are generally not linearly separable a 
regularization parameter C is introduced to control 
the trade-off between the number of training errors 
and the generalization ability of the classifier. It is 
usually set using heuristics or tuned using cross-
validation procedures.   

The SVM can then predict the classification of 
an unlabeled input vector by checking on which side 
of the separating hyperplane the example lies. The 
SVM belong to the class of kernel methods, which 
depend on data only through dot products. To 
achieve good separation results even in case of non-
linearly separable classes, the dot product can be 
replaced by a kernel function, which computes a dot 
product in some (possibly) higher dimensional 
feature space. This allows carrying out a linear 
classification in this feature space, without explicitly 
mapping in such a feature space the original 
observations. The separating hyperplane found in the 
feature space corresponds to a non-linear boundary 
in the input space. In this case, the prediction of the 
class membership of an unlabeled input vector is 
performed by mapping it into the feature space, and 
checking on which side of the separating hyperplane 
the example lies. Among the non-linear kernel 
functions the Radial Basis Function (RBF) Kernel is 
the most popular. It depends on the Euclidean 
distance between the examples and is defined as ݇(࢞, (ᇱ࢞ = exp(−ߛ	࢞|| −  ᇱ||ଶ). The parameter γ࢞
determines the smoothness of the boundary (in the 
input space). Like the regularization parameter C, 
also this parameter γ is usually set using heuristics or 
tuned using cross-validation procedures.  

Schölkopf et al., (2000) presented a new 
formulation of two-class SVM, where the C 
parameter was removed and replaced with a new 
parameter ν with a more natural interpretation: it is 
an upper bound to the fraction of misclassification 
and margin errors and a lower bound on the fraction 
of support vectors. For certain parameter settings, 
the results of this new algorithm coincide with the 
conventional one. Moreover, desirable properties of 
previous SVM algorithms are retained. Schölkopf et 
al., (2001) modified the previous approach to 
address the OCC problem and called the new 
algorithm single-class SVM. During the training 
phase of a single-class SVM, a hyperplane is placed 
such that it separates the target set from the origin 
with maximal margin. Similarly to the standard two-
class SVM, when a more flexible data description is 
required, an implicit mapping of the data into 
another (possibly high dimensional) feature space is 
defined, such that the dot product in this feature 
space can be computed by evaluating a simple 
kernel function. An ideal kernel function would map 
the target examples onto a bounded, spherically 
shaped area in the feature space and outlier objects 
outside this area. The single-class SVM attributes a 
new point x to the target or the outlier class by 
evaluating which side of the hyperplane it falls on in 
feature space. As in two-class algorithm, the 
regularization parameter ν ∈ (0, 1] has to be set. It 
can be interpreted as an upper bound on the fraction 
of training points outside the estimated region, and a 
lower bound on the fraction of support vectors. 

In this work, we applied single-class SVM with 
RBF kernel to the vector of 314 characteristics 
extracted for each subject of our datasets. We 
performed the single-class classification separately 
on the male subset, on the female subset and on the 
entire dataset (see Figure 1). 

In the linear-kernel classifiers, the entries of the 
vector w can be directly considered as the relative 
weights of each characteristic for the decision 
function (Gori et al., 2015). Conversely, in the non-
linear case (e.g. with the RBF kernel), the 
interpretation of the vector w is non-intuitive, since 
the separating hyperplane is obtained in the feature 
space. We used the approach proposed by Schölkopf 
et al., (1999) to approximate the preimages for the 
single-class SVM with RBF kernel. 

Additionally, to understand which features and 
which neuroanatomical regions drive the SVM 
boundary definition, we tailored the permutation 
testing method (Gori et al., 2015; Gaonkar and 
Davatzikos, 2013; Wanh et al., 2007; Mourão-
Miranda et al., 2005) to the case of OCC. 
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Figure 1: Schematic representation of analysis method. The regional features are extracted from brain sMRI scan of each 
subject using Freesurfer software. Then, the collected sets of features are classified with one-class SVM applying the LPO-
CV procedure. Abbreviations: sMRI, structural Magnetic Resonance; ROI, Region Of Interest. 

The performance of the SVM classifiers is evaluated 
in terms of the sensitivity and the specificity, 
computed by varying the classifier decisional 
threshold. These values can be represented in a 
curve known as Receiver Operating Characteristic 
(ROC)  curve  (Metz, 2006). The area under the 
ROC curve (AUC) is a global index to compare the 
performance of different classifiers. To ensure an 
unbiased estimate of the OCC SVM performance we 
implemented a cross-validation (CV) procedure, 
leaving one pair of subjects out at each iteration 
(LPO-CV). The difference with respect to a CV 
procedure to evaluate binary classification 
performance lies only in the training step: we simply 
trained the OCC on only one class (target class) 
inside the CV, and tested it on the subset of both 
classes left out for testing. 

3 RESULTS 

The Freesurfer pipeline was applied to preprocess 
the MRI of each subject. Patients with ASD and 
controls were matched on age and NVIQ. To train 
and test OCC we used RapidMiner 
(http://rapidminer.com/) advanced analytics platform 
version 5.3, which  includes the single-class SVM as 
a part of the LibSVM operator. 

We first performed single-class classification by 
setting ν=0.1 and γ using heuristics (i.e. as the 
inverse of the number of features). Then, we carried 
out the optimization of the parameters ν and γ, 
within nested LPO-CV loops.  

The intuitive approach for transforming a binary 
discrimination problem into a single-class task in the 
context of highly heterogeneous conditions like 
ASD is to use the control class as target class, 
figuring that it could enable the definition of a robust 
boundary, in relation to which the ASD patients 
would be classified as outliers. Consequently, we 
first trained a single-class SVM by considering only 
control examples to form the decision boundary, 
thus discarding information about the ASD class 
during the training phase. This would be the optimal 
approach if the control class had characteristics of 
homogeneity, since the single-class SVM could 
capture the control class structure, by adjusting itself 
to its properties. This would allow recognizing ASD 
examples as outliers, even in case the available ASD 
sample is not representative of the real ASD 
population, due to the extreme ASD heterogeneity. 
However, the results obtained in this case in terms of 
AUC were not above the chance level.  

Therefore, we repeated the same procedure using 
the ASD patient group as the target class to 
investigate whether there was a consistent 
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neuroanatomical pattern among the ASD patients in 
relation to which the controls would be classified as 
outliers. The performance achieved by optimizing 
the parameters ν and γ was: AUC=0.74 for the male 
subset, AUC= 0.68 for the female subset and 
AUC=0.64 for the entire dataset.  

These results show that the control class does not 
have characteristics of homogeneity allowing 
recognizing ASD examples as outliers.  

Conversely, there is a common structure among 
the ASD patients that the single-class SVM could 
capture.  

We also found a slight performance decrease 
when estimating the OCC performance on the entire 
dataset, which is not surprising and we ascribed it to 
the introduction of the gender as an additional 
heterogeneity factor.  

In order to evaluate the potential of single-class 
SVM with respect to the primary aim of this work, 
that is the discrimination of ASD versus controls, we 
carried out also the two-class SVM classification 
with linear and RBF kernels. The results we 
achieved were: AUC of 0.74 for males and 0.58 for 
females by using the linear kernel classification, and 
0.68 for male subset and 0.65 for females adopting 
the RBF kernel.  

To understand which of the 314 characteristics 
(i.e. which brain regions and which of the 5 
computed features) are the most relevant to the 
single-class SVM boundary definition, we trained a 
OCC SVM with RBF kernel using all the ASD 
patient group as the target class (with ν=0.1 and 
heuristic γ) and we applied the algorithm proposed 
in Schölkopf et al., (1999) to generate the preimage 
vector z. Then, we carried out a permutation testing 
procedure in the training phase originally tailored to 
the OCC with 10000 iterations and with ν=0.1 and 
heuristic γ, separately for the male subset, the female 
subset and the entire dataset.  

We used the Matlab (The MathWorks, Inc.) 
interface to the LIBSVM package 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) to train 
the OCC in the permutation testing procedure and 
the Statistical Pattern Recognition Toolbox 
(http://cmp.felk.cvut.cz/cmp/software/stprtool/index.
html) for Matlab (STPRTool) to generate the 
preimage.  

We show in Figure 2 the brain regions most 
contributing to the definition of the OCC boundary, 
as resulting from the permutation test, for male and 
female subsets, respectively. For the male 
population the regions visible in Figure 2(a,c) are: 
left (L) and right (R) medial orbito frontal cortices, 
L pars triangularis, R pars opercularis, middle 

temporal cortex and R insula. For the female 
population the regions visible in Figure 2(b,d) are: L 
and R caudate anterior cingulate, pars opercularis, 
posterior cingulated, cuneus; R pars triangularis 
postcentral gyrus, superior temporal cortex and 
superior parietal cortex. They are mostly among the 
network of structural brain alterations widely 
reported in the population with ASD, including 
frontal and temporal areas.  

Thus, despite the phenotypical heterogeneity in 
ASD a common neuroanatomical profile that 
underlies the core features could be detected with 
the OCC SVM approach.   

 

 

Figure 2. Brain region most contributing to the definition 
of the OCC boundary. For the male population the regions 
visible in a) and c) are: left (L) and right (R) medial orbito 
frontal cortices (pink), L pars triangularis (red), R pars 
opercularis (mustard), middle temporal cortex (brown) and 
R insula (yellow). For the female population the regions 
visible in b) and d) are: L and R caudate anterior cingulate 
(violet), pars opercularis (mustard), posterior cingulate 
(light violet), cuneus (magenta); R pars triangularis and 
postcentral gyrus (red), superior temporal cortex (light 
blue), superior parietal cortex (cyan).  

4 CONCLUSIONS 

The usefulness of OCC in the biomedical domain 
was already proved in a number of applications, 
including in the domain of psychiatric disorders 
(Mourão-Miranda et al., 2011). However, to the best 
of our knowledge, we propose the first application of 
OCC to the analysis of MRI data of patients with 
ASD. 

The aim of this work was to apply OCC not only 
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to measure its performance in the discrimination of 
ASD versus controls, but also to investigate whether 
the distribution of “normal” patterns of brain 
structure is enough homogeneous to enable the 
definition of a robust boundary, in relation to which 
the patients with ASD can be classified as outliers. 
As an alternative, a consistent pattern among the 
patients with ASD will provide a boundary in 
relation to which the controls are classified as 
outliers. The latter hypothesis was confirmed by our 
results. We found out evidence that the control group 
is more heterogeneous and therefore the hypersphere 
or decision boundary enclosing most of the controls 
contains data in the ASD range. Vice versa, the ASD 
group shows a common structure that the SVM OCC 
could capture. 

The present work is a proof of concept that the 
OCC framework can be applied to neuroimaging 
data to investigate if consistent patterns of 
alterations do exist even in heterogeneous 
populations. Despite the results we found need to be 
confirmed against a larger population, the approach 
we present here is a preliminary step aiming to set 
up a strategy to identify common altered features in 
specific disorders. 
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